
Domination in tournaments

Maria Chudnovsky1, Ringi Kim, Chun-Hung Liu, and Paul Seymour2

Princeton University, Princeton, NJ 08544, USA
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Abstract

We investigate the following conjecture of Hehui Wu: for every tournament S, the class of S-free
tournaments has bounded domination number. We show that the conjecture is false in general, but
true when S is 2-colourable (that is, its vertex set can be partitioned into two transitive sets); the
latter follows by a direct application of VC-dimension. Our goal is to go beyond this; we give a
non-2-colourable tournament S that satisfies the conjecture. The key ingredient here (perhaps more
interesting than the result itself) is that we overcome the unboundedness of the VC-dimension by
showing that the set of shattered sets is sparse.



1 Introduction

If there is an edge of a digraph G with head v and tail u, we say that “v is adjacent from u” and
“u is adjacent to v”. If T is a tournament and X,Y ⊆ V (T ), we say that X dominates Y if every
vertex in Y \ X is adjacent from some vertex in X. The domination number of T is the smallest
cardinality of a set that dominates V (T ). A class C of tournaments has bounded domination if there
exists c such that every tournament in C has domination number at most c. If S, T are tournaments,
we say that T is S-free if no subtournament of T is isomorphic to S. A tournament S is a rebel if the
class of all S-free tournaments has bounded domination. In this paper we investigate the following
conjecture, recently proposed by Hehui Wu (private communication):

1.1 Conjecture: Every tournament is a rebel.

We will disprove this; and that leads to the question, which tournaments are rebels? We will give
a partial answer:

• all 2-colourable tournaments are rebels, and so is at least one more;

• all rebels are poset tournaments.

This needs some definitions. A k-colouring of a tournament T is a partition of V (T ) into k transitive
sets, and if T admits such a partition it is k-colourable. The chromatic number of a tournament T is
the minimum k such that T is k-colourable. We will prove below that all 2-colourable tournaments
are rebels, using VC-dimension; and since not all tournaments are rebels, one might anticipate the
converse, that all rebels are 2-colourable. The main goal of this paper is to give a counterexample
to this. The tournament on seven vertices, obtained by substituting a cyclic triangle for two of the
three vertices of a cyclic triangle, is not 2-colourable, but we will show it is a rebel. This is proved
in sections 4 and 5. Again the proof uses VC-dimension, using an extension of a theorem of Haussler
and Welzl [5] that is proved in section 3, that permits large shattered sets provided they are sparse.

Let us say a tournament is a poset tournament if its vertex set can be ordered {v1, . . . , vn} such
that for all i < j < k, if vj is adjacent from vi and adjacent to vk then vi is adjacent to vk; that
is, the “forward” edges under this linear order form the comparability graph of a partial order. In
section 6 we prove that every rebel is a poset tournament, and consequently disprove 1.1.

Domination in tournaments is an old and much-studied question [6]. For instance, let us say
a tournament T is k-majority if there are 2k − 1 linear orders on V (T ) such that for all distinct
u, v ∈ V (T ), if u is adjacent to v then u is before v in at least k of the 2k−1 orders. Alon, Brightwell,
Kierstead, Kostochka and Winkler showed in [1] that k-majority tournaments have bounded dom-
ination number, and indeed this paper is where the idea of using VC-dimension for tournament
domination was introduced. Their result follows from the fact that 2-colourable tournaments are
rebels, since it is easy to see (by estimating the number of n-vertex tournaments in each class) that
some 2-colourable tournament S is not k-majority; and since S is a rebel and the class of k-majority
tournaments is S-free, the latter has bounded domination. But this proof of the result of [1] is
basically the same as one of the proofs in [1], and indeed, 2.7 and its proof are only slight extensions
of ideas in that paper.

A tournament is k-transitive if its edge set can be partitioned into k sets each of which is tran-
sitively oriented; and Gyárfás proposed the conjecture that k-transitive tournaments have bounded
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domination number (see [7] for a discussion). Not every tournament is k-transitive (for instance, by
theorem 4 of [7]), so let S be a tournament that is not k-transitive; then no k-transitive tournament
contains S, and so if we could show that some such S is a rebel, this would imply Gyárfás’ conjecture,
which remains open. We mention also the well-known conjecture of Sands, Sauer and Woodrow [8],
that for all k there exists f(k) such that if the edges of a tournament are coloured with k colours,
then there is a set of at most f(k) vertices such that every other vertex can be reached from some
vertex in the set by a monochromatic path.

Conjecture 2.6 of [2] states that for all k there exists f(k) such that for every tournament T , if for
every vertex v the set of out-neighbours of v has chromatic number at most k, then T has chromatic
number at most f(k). If some rebel is not k-colourable, then this conjecture is true for that value
of k. To see this, let S be a rebel that is not k-colourable, and let T be a tournament satisfying the
condition above on out-neighbour sets. If T contains a copy of S with vertex set X say, then X is not
a subset of the out-neighbour set of any vertex of T , from the hypothesis, and so X is dominating;
and if not, then since S is a rebel, it follows that the domination number of T is bounded. Thus
in either case there exists a dominating set X ⊆ V (T ) with |X| at most some function of k. Since
the set of out-neighbours of each vertex in X is k-colourable, it follows that T is k|X|-colourable. In
particular, 4.1 implies that some rebel is not 2-colourable, and so conjecture 2.6 of [2] is true when
k = 2. (This was previously open.)

2 2-colourable tournaments and VC-dimension

In this section we prove that all 2-colourable tournaments are rebels. Let H be a hypergraph. (A
hypergraph consists of a set V (H) of vertices and a set E(H) of subsets of V (H) called edges.) We say
that X ⊆ V (H) is shattered by H if for every Y ⊆ X, there exists A ∈ E(H) with A ∩X = Y . The
largest cardinality of a shattered set is called the Vapnik-Chervonenkis dimension or VC-dimension

of H, after [12]. We will need the Sauer-Shelah lemma [9, 10], the following.

2.1 Let H be a hypergraph, and let X ⊆ V (H) with |X| = n, such that no d + 1-subset of X is

shattered by H. Then there are at most
∑

0≤i≤d

(n
i

)

distinct sets A ∩X where A ∈ E(H).

If T is a tournament and X ⊆ V (T ), T [X] denotes the subtournament induced on X. If {A,B}
is a 2-colouring of a tournament T , and A′, B′ are disjoint subsets of the vertex set of a tournament
T ′, an isomorphism from T to a subtournament of T ′ mapping A to a subset of A′ and B to a subset
of B′ is called an embedding of (T,A,B) into (T ′, A′, B′); and if in addition the isomorphism maps
T to T ′ (and hence A to A′ and B to B′) we call it an isomorphism from (T,A,B) to (T ′, A′, B′). If
S, T are tournaments and V (S) ⊆ V (T ), then T ← S denotes the tournament obtained from T by
replacing the edges of T with both ends in V (S) by the edges of S.

2.2 For every 2-colourable tournament S, there exists d ≥ 0 with the following property. Let {C,D}
be a 2-colouring of S. Let T be a tournament, and let A,B ⊆ V (T ) be disjoint. For each v ∈ B,

let N(v) denote the set of all u ∈ A adjacent to v. Let H be the hypergraph with vertex set A and

edge set {N(v) : v ∈ B}. Let X ⊆ A be shattered by H with |X| ≥ d. Then there is an embedding of

(S,C,D) into (T,X,B).

Proof. By adding vertices to D, we may assume that no two vertices in C are adjacent to exactly
the same subset of vertices in D. Let |C| = m and |D| = n. We claim first that:
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(1) There is a tournament R with a 2-colouring {C, I}, with |I| = m!n, such that for every transitive

tournament M with vertex set C, there is an embedding of (S,C,D) into (R←M,C, I). Moreover,

no two vertices in C are adjacent to exactly the same vertices in I.

There are m! transitive tournaments M1, . . . ,Mm! with vertex set C; one of them is S[C]. For
each such tournament Mi, extend it to a tournament S′

i by adding a set Di of n new vertices, in such
a way that there is an isomorphism from (S,C,D) to (S′

i, C,Di). For each i, let Si = S′
i ← S[C].

Thus the union of all the tournaments S1, . . . , Sm! is a digraph, although not a tournament; extend
it to a tournament R by making the set I of all the m!n new vertices transitive. This proves (1).

Let R, I be as in (1). Let c = 2|I| and d = 22c

; we claim that d satisfies the theorem. For
let T,A,B,H,X be as in the theorem. By a theorem of [11], there is a subset X1 ⊆ X with
|X1| = 2c such that T [X1] is transitive. Since |X1| = 2c, we can number the members of X1 as
X1 = {xP : P ⊆ {1, . . . , c}}. Since H shatters X1, for each p ∈ {1, . . . , c} there exists yp ∈ B such
that for each P ⊆ {1, . . . , c}, xP is adjacent to yp if and only if p ∈ P . Let Y1 = {yp : 1 ≤ p ≤ c};
then for every Z ⊆ Y1, there exists x ∈ X1 such that x is adjacent to every vertex in Z and adjacent
from every vertex in Y1 \Z, namely the vertex x = xP , where P = {p ∈ {1, . . . , c} : yp ∈ Z}. By [11]
again, since c = 2|I|, there exists Y2 ⊆ Y1 with |Y2| = |I| such that T [Y2] is transitive. Since for every
Z ⊆ Y2, there exists x ∈ X1 such that x is adjacent to every vertex in Z and adjacent from every
vertex in Y2 \ Z, and since no two vertices of R in C have the same out-neighbours in I, it follows
that there is a subset X2 ⊆ X1 with |X2| = |C|, and a transitive tournament M with V (M) = C,
and an isomorphism from (R ← M,C, I) to (T [X2 ∪ Y2],X2, Y2). From (1) there is an embedding
of (S,C,D) into (R←M,C, I); and so there is an embedding of (S,C,D) into (T [X2 ∪ Y2],X2, Y2).
This proves 2.2.

Let T be a tournament, and for each vertex v let N−
T (v) denote the set of all vertices of T that

are either adjacent to v or equal to v. Thus {N−
T (v) : v ∈ V (T )} is the edge set of a hypergraph

with vertex set V (T ), called the hypergraph of in-neighbourhoods of T .

2.3 For every 2-colourable tournament S, there is a number d such that for every S-free tournament

T , its hypergraph of in-neighbourhoods has VC-dimension at most d.

Proof. Let d be as in 2.2. We claim that d satisfies the theorem. For let T be an S-free tournament,
let H be its hypergraph of in-neighbourhoods, and suppose that X ⊆ V (T ) is shattered by H, where
|X| > d. We may assume that |X| = d+1. For each Y ⊆ X, there exists A ∈ E(H) with A∩X = Y ,
and hence there exists v ∈ V (T ) such that N−

T (v) ∩ X = Y ; let us write vY = v. Now there may
exist some sets Y ⊆ X such that vY ∈ X; but there are at most |X| = d + 1 such sets Y , and so
there are at least 2d+1 − d− 1 vertices v ∈ V (T ) \X such that the sets N−

T (v) ∩X are all different.
Since

2d+1 − d− 1 > 2d+1 − d− 2 =
∑

0≤i≤d−1

(

d + 1

i

)

,

it follows from 2.1 that the hypergraph H ′ with vertex set X and edge set all sets N−
T (v) (v ∈

V (T ) \X) has VC-dimension at least d, and hence there exists X ′ ⊆ X with |X ′| = d, shattered by
H ′. But then 2.2 implies that T is not S-free, a contradiction. This proves 2.3.
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A similar, simpler proof (which we omit) shows:

2.4 For every 2-colourable tournament S and every 2-colouring {C,D} of S, there is a number d
with the following property. Let T be a tournament, let A ⊆ V (T ), let H be the hypergraph with

vertex set V (T ) and edge set all sets N−
T (v) (v ∈ A), and suppose that X ⊆ V (T ) is shattered by H,

with |X| ≥ d. Then there is an embedding of (S,C,D) into (T,A \X,X).

If H is a hypergraph, τH denotes the minimum cardinality of a set which has nonempty intersec-
tion with every edge of H, and τ∗

H is a fractional relaxation of this: the minimum of
∑

v∈V (H) f(v)
over all functions f from V (H) to the nonnegative real numbers such that

∑

v∈A f(v) ≥ 1 for every
edge A of H.

We need the following theorem of [3], a slight refinement of earlier work of Haussler and Welzl [5].
(Logarithms are to base two.)

2.5 Let d ≥ 1, and let H be a hypergraph with VC-dimension at most d. Then

τH ≤ 2dτ∗
H log(11τ∗

H ).

2.6 Let T be a tournament, let d ≥ 1, and let the VC-dimension of its hypergraph of in-neighbourhoods

be at most d. Then the domination number of T is at most 18d.

Proof. Let H be the hypergraph of in-neighbourhoods of T . Then τ∗
H ≤ 2 (by corollary 6 of [1]),

so τH ≤ 4d log(22) ≤ 18d by 2.5. This proves 2.6.

Finally we deduce:

2.7 Every 2-colourable tournament is a rebel.

Proof. Let S be a 2-colourable tournament, let {C,D} be a 2-colouring, let d be as 2.3, and let
c = 18d. If T is an S-free tournament, its hypergraph of in-neighbourhoods has VC-dimension at
most d by 2.3, and so its domination number is at most c by 2.6. This proves 2.7.

3 Sparse shattered sets

When we are excluding a tournament S that is not 2-colourable, we find that the S-free tournaments
do not necessarily have hypergraphs of in-neighbourhoods with bounded VC-dimension; but for our
application we can prove that large shattered sets are sparse, and this turns out to be enough to
carry over the proof of 2.7. In this section we prove our main lemma, a version of 2.5 which permits
large shattered sets provided they are sparse.

3.1 Let H be a hypergraph with n vertices, and let 0 < ǫ ≤ 1, such that |f | ≥ ǫn for every edge f .

Let d ≥ 1 be an integer, and let 0 ≤ c ≤ 1, such that at most c
(

n
d

)

d-subsets of V (H) are shattered

by H. If t ≥ d is an integer such that 2−ǫt(2t)d(1
5(e/d)d + c22t(2t)!) < 1/4, then τH ≤ t.
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Proof. Suppose that τH > t. Let T be the set of all sequences (x1, . . . , x2t), where x1, . . . , x2t ∈
V (T ), not necessarily distinct. For each f ∈ E(H), let Af be the set of all (x1, . . . , x2t) ∈ T such
that x1, . . . , xt /∈ f , and xi ∈ f for at least ǫt− 1 values of i ∈ {t + 1, . . . , 2t}. Let A = ∪f∈E(H)Af .

(1) Let x1, . . . , xt ∈ V (H), and let f ∈ E(H) with x1, . . . , xt /∈ f . Then there are at least nt/2
sequences (xt+1, . . . , x2t) such that (x1, . . . , x2t) ∈ Af .

Since |f | ≥ ǫt, if we choose xt+1, . . . , x2t independently at random from V (H), the expected number
of i ∈ {t + 1, . . . , 2t} with xi ∈ f is at least ǫt; and since the median of a binomial distribution is
within 1 of its mean, it follows that at least half of all the choices of (xt+1, . . . , x2t) have at least
ǫt− 1 terms in f . This proves (1).

(2) |A| ≥ n2t/2.

There are nt choices of (x1, . . . , xt), and for each one, there exists f ∈ E(H) with x1, . . . , xt /∈ f ,
since t < τH from our assumption. Consequently, for each choice of (x1, . . . , xt), (1) implies that
there are at least nt/2 sequences (xt+1, . . . , x2t) such that (x1, . . . , x2t) ∈ Af ⊆ A; and this proves
(2).

For each (x1, . . . , x2t) ∈ T , its support is the function µ with domain V (H) where µ(v) is the
number of values of i ∈ {1, . . . , 2t} with xi = v; and a function µ that is the support of some member
of T is called a supporter. For the moment, let us fix some supporter µ. Let Sµ be the set of all
(x1, . . . , x2t) ∈ T with support µ, and for each f ∈ E(H), let Sµ

f be the set of members of Af with

support µ, that is, Sµ
f = Sµ ∩ Af .

(3) |Sµ
f | ≤ 21−ǫt|Sµ| for each f ∈ E(H).

Let f ∈ E(H) and let k =
∑

v∈f µ(v). If k > t or k < ǫt − 1 then Sµ
f = ∅ and the claim holds; so

we may assume that ǫt − 1 ≤ k ≤ t. It follows that a sequence (x1, . . . , x2t) ∈ Sµ belongs to Sµ
f if

and only if x1, . . . , xt /∈ f . Let P (x1, . . . , x2t) = {i ∈ {1, . . . , 2t} : xi ∈ f}. Thus |P (x1, . . . , x2t)| = k;
for each k-subset Q of {1, . . . , 2t} there is the same number of sequences (x1, . . . , x2t) ∈ Sµ with
P (x1, . . . , x2t) = Q; and for each such Q, either all these sequences belong to Sµ

f or none do, de-

pending whether Q ⊆ {t + 1, . . . , 2t} or not. Thus |Sµ
f |/|Sµ| equals the proportion of k-subsets of

{1, . . . , 2t} that are included in {t + 1, . . . , 2t}, that is,

|Sµ
f |
|Sµ| =

(t
k

)

(2t
k

) =
∏

0≤i≤k−1

t− i

2t− i
≤ 2−k ≤ 21−ǫt.

This proves (3).

Let V (µ) = {v : µ(v) > 0}. Thus |V (µ)| ≤ 2t.

(4) If V (µ) includes no d-set that is shattered by H then | ∪f∈E(H) Sµ
f | ≤ 1

5 (2et/d)d21−ǫt|Sµ|.
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Let there be r distinct sets of the form f ∩ V (µ) where f ∈ E(H). By 2.1,

r ≤
∑

0≤i<d

(

2t

i

)

≤ (2t)d−1

(d− 1)!

∑

0≤i<d

xi ≤ (2t)d−1

(d− 1)!
(1− x)−1,

where x = (d− 1)/(2t); and since t ≥ d, (1− x)−1 ≤ 2t
d+1 . Consequently,

r ≤ (2t)d−1

(d− 1)!

2t

d + 1
=

d

d + 1

(2t)d

d!
.

By a form of Stirling’s approximation,

d! ≥
√

2π dd+ 1

2 e−d ≥ 5

2
(d/e)dd1/2 ≥ 5(d/e)d

d

d + 1
.

It follows that

r ≤ d

d + 1

(2t)d

d!
≤ 1

5
(2et/d)d.

For f, f ′ ∈ E(H), if f ∩ V (µ) = f ′ ∩ V (µ) then Sµ
f = S ′µf ; and so there are at most r distinct sets

Sµ
f (f ∈ E(H)). By (3),

| ∪f∈E(H) Sµ
f | ≤

1

5
(2et/d)d21−ǫt|Sµ|.

This proves (4).

(5) There are at most c
(2t

d

)

n2t supporters µ for which V (µ) includes a d-subset that is shattered by H.

If (x1, . . . , x2t) ∈ T and Y ⊆ V (H), we say that (x1, . . . , x2t) covers Y if Y ⊆ {x1, . . . , x2t}. There
are n2t members of T , and each covers at most

(2t
d

)

d-subsets of V (H). Moreover, each d-subset X
of V (H) is covered by the same number of members of T . It follows that each d-subset of V (H) is
covered by at most n2t

(2t
d

)

/
(n

d

)

members of T . Since there are at most c
(n

d

)

d-subsets of V (H) that

are shattered by H, it follows that there are at most cn2t
(2t

d

)

members of T that cover a d-set that
is shattered by H. Consequently there are at most that many supporters that do so. This proves (5).

(6) |A| ≤ n2t21−ǫt(2t)d(1
5 (e/d)d + c22t(2t)!).

Every member of A belongs to ∪f∈E(H)Sµ
f for some supporter µ. There are two kinds of sup-

porters µ, those such that V (µ) includes no shattered d-set and those that do. We call these the
“first” and “second” kinds. By (4), the union of all the sets ∪f∈E(H)Sµ

f over all µ of the first kind

has cardinality at most 1
5(2et/d)d21−ǫt times the sum of the cardinalities of the sets Sµ over all such

µ, and since these sets Sµ are pairwise disjoint subsets of T , the sum of their cardinalities is at
most |T | = n2t. Thus, the union of the sets ∪f∈E(H)Sµ

f over all supporters µ of the first kind has

cardinality at most 1
5(2et/d)d21−ǫtn2t. For each supporter µ of the second kind, the set ∪f∈E(H)Sµ

f

has cardinality at most 22t21−ǫt|Sµ|, since there are only 22t distinct sets Sµ
f , and each has cardinality

at most 21−ǫt|Sµ| by (3). Since |Sµ| ≤ (2t)!, and there are at most c(2t)dn2t such supporters µ by
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(5), it follows that the union of the sets ∪f∈E(H)Sµ
f over all µ of the second kind has cardinality at

most
c(2t)dn2t22t21−ǫt(2t)!.

Adding, the result follows.

From (2) and (6), we deduce that 2−ǫt(2t)d(1
5(e/d)d + c22t(2t)!) ≥ 1/4, contradicting the choice

of t. Thus τH ≤ t. This proves 3.1.

We deduce (logarithms are to base two):

3.2 For all ǫ with 0 < ǫ ≤ 1, and all integers d ≥ 1, there exists c > 0 with the following property.

Let H be a hypergraph with n vertices, such that |f | ≥ ǫn for every edge f , and such that at most

c
(

n
d

)

d-subsets of V (H) are shattered by H. Then τH ≤ ⌈2dǫ−1 log(6ǫ−1)⌉.

Proof. Let t = ⌈2dǫ−1 log(6ǫ−1)⌉, and choose p ≥ 6 such that t = 2dǫ−1 log(pǫ−1). Then

2−ǫt(2t)d(e/d)d ≤ 2−2d log(pǫ−1)(2t)d(e/d)d = (2etp−2ǫ2/d)d.

Now
2etp−2ǫ2/d = 4ep−2ǫ log(pǫ−1);

but
log(pǫ−1)

pǫ−1
<

log p

p

since p ≥ 6 > e, and so

2etp−2ǫ2/d ≤ 4e log p

p2
< 1

since p ≥ 6. Consequently 2−ǫt(2t)d(e/d)d < 1. Choose c satisfying c22t(2t)! = 1
20(e/d)d; then

2−ǫt(2t)d(
1

5
(e/d)d + c22t(2t)!) = 2−ǫt(2t)d(

1

4
(e/d)d) < 1/4,

and the result follows from 3.1. This proves 3.2.

4 Odd girth

By analogy with graphs, let us say the odd girth of a tournament T is the minimum k such that some
k-vertex subtournament is not 2-colourable (and it is undefined if T is 2-colourable).

If X,Y ⊆ V (T ), we say that X is complete to Y and Y is complete from X if X∩Y = ∅ and every
vertex in Y is adjacent from every vertex in X. For v ∈ V (T ), we say v is complete to X if {v} is
complete to X, and so on. Let C3 denote the three-vertex tournament which is a cyclic triangle; and
let S∗ be the tournament obtained from C3 by substituting a copy of C3 for two of its three vertices.
(In other words, V (S∗) is the disjoint union of three sets X,Y,Z, where |Z| = 1, the subtournaments
induced on X and on Y are both cyclic triangles, and X is complete to Y , Y is complete to Z, and
Z is complete to X.) Our main theorem is
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4.1 S∗ is a rebel.

To prove this we must show that the class of all S∗-free tournaments has bounded domination.
Certainly all tournaments with odd girth at least 8 are S∗-free; thus, the following assertion appears
much weaker than 4.1, but as we show below, the two statements are in fact equivalent. More
precisely, 4.2 contains infinitely many assertions, one for each value of k ≥ 8; they all evidently are
implied by 4.1, and we will show that any one of them implies 4.1.

4.2 For k ≥ 8, the class of tournaments with odd girth at least k has bounded domination.

Proof of 4.1, assuming 4.2 for some k. Let k ≥ 0, and suppose that c is such that every
tournament with odd girth at least k has domination number at most c. We will show that every
S∗-free tournament has domination number at most c + k− 1. Let T be an S∗-free tournament. Let
us say a brick of T is a subset X ⊆ V (T ) with |X| < k such that T [X] is not 2-colourable. If there
is no brick in T then its odd girth is at least k, so its domination number is at most c as required;
and so we may assume there is a brick in T . Consequently we may choose a sequence X1, . . . ,Xn

of bricks of T , pairwise disjoint, such that Xi is complete to Xi+1 for 1 ≤ i ≤ n, and with n ≥ 1
maximum.

(1) There is no vertex in X2 ∪ · · · ∪Xn that is complete to X1.

Let v ∈ Xm say, where 2 ≤ m ≤ n, and suppose that v is complete to X1. Then v is complete
to the vertex set of a cyclic triangle in X1 (because T [X1] is not transitive); choose i < m maximum
such that v is complete to the vertex set of a cyclic triangle in Xi. Let Y1 be the vertex set of such
a triangle. Now i ≤ m − 2, since Xm is complete from Xm−1. From the maximality of i, the set
of out-neighbours of v in Xi+1 does not include a cyclic triangle and hence is transitive; and since
G[Xi+1] is not 2-colourable, the set of in-neighbours of v in Xi+1 is not transitive, and so includes a
cyclic triangle Y2 say. But then T [Y1 ∪ Y2 ∪ {v}] is isomorphic to S∗, a contradiction. This proves
(1).

Let C be the set of vertices of T that are complete to X1. By (1), C ∩ (X1 ∪ · · · ∪Xn) = ∅. From
the maximality of n, there is no brick included in C; and so T [C] has odd girth at least k, and hence
has domination number at most c. But X1 dominates V (T ) \ C, and so the domination number of
T is at most c + |X1| < c + k. This proves 4.1.

Thus, henceforth we may confine ourselves to tournaments with odd girth at least any constant
that we choose. Incidentally, it seems that there is a fundamental difference between tournaments
and graphs: graphs of large girth and large chromatic number can be transformed into tournaments
with large odd girth (via the use of an enumeration with which we interpret edges as backward
directed edges), but classical graph classes with large odd girth (such as Borsuk graphs) do not seem
suitable for transformation into tournaments with large odd girth. Let us turn this into a problem.

A tournament is a forest if one can enumerate its vertices so that its backward edges form a
forest. The girth of a tournament T is the smallest k for which there exists a subtournament S of T
with k vertices which is not a forest. The following problem is not very well-posed, but nonetheless
interesting:

4.3 Problem: Find constructions of tournaments with large odd girth and large chromatic number

which are not based on tournaments with large girth and large chromatic number.
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5 Domination in tournaments with large odd girth

We will prove the following, which therefore implies 4.1 and 4.2.

5.1 The class of tournaments with odd girth at least 74 has bounded domination.

It is helpful first to prove the following somewhat weaker statement.

5.2 The class of tournaments T with odd girth at least 74 and such that |N−
T (v)| ≥ |V (T )|/6 for

every vertex v has bounded domination.

Proof. The seven-vertex Paley tournament has vertex set {v0, . . . , v6}, and for 0 ≤ i, j ≤ 6, we say
vi is adjacent to vj if j = i + 1, i + 2 or i + 4 modulo 7. Let P ∗ denote the tournament obtained by
reversing any one of its edges, say v4v1 (its automorphism group is transitive on edges, so it makes no
difference which edge we reverse). Then {v1, v2, v3, v4} is the only 4-vertex transitive set in P ∗ (we
leave checking this to the reader), and in particular there is a unique 2-colouring, say {C,D}, where
|C| = 4. Choose d to satisfy 2.4, taking P ∗ for S. Choose c to satisfy 3.2, taking ǫ = 1/6, and let
t = ⌈12d log(36)⌉. Now choose δ such that 1

6δ2d322t(2t)! = 1. We will prove that every tournament
with odd girth at least 74 and such that |N−

T (v)| ≥ |V (T )|/6 for every vertex v has domination
number at most t + 2δ−1.

Let T be such a tournament. Let us say a domino in T is a 7-vertex subtournament of T
isomorphic to P ∗. Let G be the graph with vertex set V (T ), in which two vertices are adjacent if
some domino contains them both. For each edge uv of G, there may be more than one domino that
contains both u, v; but since the union of any two such dominoes induces a 2-colourable tournament
(since T has odd girth at least 74) and both dominoes are uniquely 2-colourable, it follows that either
u, v have the same colour in the 2-colouring of every domino containing them both, or they have
different colours in the 2-colouring of every domino containing them both. Edges uv of the latter
kind we call odd edges.

For each v ∈ V (T ) and i ≥ 0, let N i
G(v) denote the set of all vertices in V (T ) with distance

(in G) from v at most i. It turns out that the set of vertices v such that |N2
G(v)| is large (linear in

|V (T )|) can be dominated by a bounded subset for one reason, and the set of v with |N2
G(v)| not so

large can be dominated by a bounded subset for another reason. Proving these statements will take
several steps.

(1) For each v ∈ V (T ), T [N4
G(v)] is 2-colourable.

For every u ∈ N4
G(v), there is a path of G of length at most four between u, v; let A be the set

of all such u such that some such path contains an even number of odd edges, and B the set such
that some such path has an odd number of odd edges. We claim that {A,B} is a 2-colouring of
T [N4

G(v)]. To show this we must show that A ∩B = ∅, and T [A], T [B] are both transitive. For the
first, suppose that u ∈ A ∩ B, and take two paths of G between u, v, one with an odd number of
odd edges and one with an even number. The union of these two paths has at most eight edges; for
each of these edges, choose a domino containing both its ends. The union of these dominoes contains
at most 48 vertices, and thus induces a 2-colourable subtournament, contradicting that each of the
dominoes is uniquely 2-colourable. Thus A ∩B = ∅.

Suppose that T [A] is not transitive; then there is a cyclic triangle in T [A] with vertices u1, u2, u3

say. For each of u1, u2, u3 take a path of G of length at most four between it and v (necessarily
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containing an even number of odd edges); then the union of these paths has at most twelve edges.
For each of these edges, choose a domino containing both ends of the edge; then the union of these
dominoes has at most 73 vertices and so is 2-colourable, again a contradiction. Similarly T [B] is
transitive. This proves (1).

Let n = |V (T )|, and let S be the set of vertices v of T such that |N2
G(v)| ≥ δn.

(2) There is a set dominating S of cardinality at most 2δ−1.

Choose S0 in S maximal such that every two members of S0 have distance at least five in G.
It follows that the sets N2

G(v)(v ∈ S0) are pairwise disjoint, and since they all have cardinality at
least δn, there are at most 1/δ of them, that is, |S0| ≤ δ−1. Now from the maximality of S0, every
vertex in S has distance at most four in G from some member of S0, and hence there are at most δ−1

2-colourable subtournaments of T with union including S, by (1). But every 2-colourable tournament
has domination number at most two, and so there is a set of at most 2δ−1 vertices dominating S.
This proves (2).

In view of (2), it remains to find a t-set that dominates V (T ) \S. We may therefore assume that
n ≥ d. Let H be the hypergraph with vertex set V (T ) and edge set all edges N−(v) (v ∈ V (T ) \ S).
We need to show that τH ≤ t. To do so we will apply 3.2, and for the latter we need to show that
the d-subsets of V (T ) shattered by H are sparse. We prove that as follows. A domino has a unique
2-colouring {A,B}, and one of A,B has cardinality three, say A; we call A the outside of the domino,
and B its inside. A domino is normal if its inside is disjoint from S. Let G′ be the graph with vertex
set V (T ) in which u, v are adjacent if there is a normal domino such that u, v both belong to its
outside. We see that G′ is a subgraph of the graph G defined earlier.

(3) Every vertex v ∈ V (T ) has degree at most δn in G′.

For we may assume that v has degree at least one in G′, and therefore belongs to the outside of some
normal domino; and so v is adjacent in G to a vertex u ∈ V (T ) \ S. Since u /∈ S, |N2

G(u)| < δn;
but every neighbour of v in G′ belong to N2

G(u), and so v has at most δn neighbours in G′ (in fact
fewer). This proves (3).

(4) The number of d-subsets of V (T ) shattered by H is at most 1
6δ2d3

(n
d

)

.

Let K be the set of all outsides of normal dominoes. (We remark that K is a set, not a multi-
set; two normal dominoes with the same outside contribute only one member to K.) Every member
of K is a triangle of G′, and it is an easy exercise to check that an n-vertex graph with maximum de-
gree at most k has at most nk(k−1)/6 triangles. Consequently it follows from (3) that |K| ≤ 1

6δ2n3.

Each set in K is a subset of
(n−3
d−3

)

d-subsets of V (T ), and so, since n ≥ d, there are at most

1

6
δ2n3

(

n− 3

d− 3

)

=
1

6
dδ2 (d− 1)(d − 2)

(n− 1)(n − 2)
n2

(

n

d

)

≤ 1

6
δ2d3

(

n

d

)

d-subsets of V (T ) that include members of K. But from 2.4, every d-set shattered by H includes a
member of K. This proves (4).
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From 3.2, taking ǫ = 1/6, we deduce that τH ≤ t. Consequently there is a set of cardinality
at most t dominating V (T ) \ S; and from (2), we deduce that T has domination number at most
t + 2δ−1. This proves 5.2.

Proof of 5.1. Let c be as in 5.2; we claim every tournament T with odd girth at least 74 has
domination number at most c. We may assume that every vertex of T has an in-neighbour; and so,
by the theorem of [4], for each vertex v there is a rational number f(v) with 0 ≤ f(v) ≤ 1/3, summing
to 1, such that for each v, the sum of f(u) over all in-neighbours u of v is at least 1/2− f(v)/2, and
in particular is at least 1/3.

Let n = |V (T )|, and choose an integer M ≥ n such that Mf(v) is an integer for each vertex
v. For each v with f(v) > 0, substitute a transitive tournament Tv say with Mf(v) vertices for v
(vertices v with f(v) = 0 are not deleted). Let the tournament just constructed be T ′. Then for
every vertex v of T with f(v) = 0, v has at least M/2 in-neighbours in T ′; and for each v ∈ V (T ) with
f(v) > 0, every vertex of Tv has at least M/3 in-neighbours in T ′. Since |V (T ′)| ≤M + n ≤ 2M , it
follows that every vertex of T ′ has at least |V (T ′)|/6 in-neighbours in T ′. Moreover, the domination
number of T is at most that of T ′, and the odd girth of T ′ is at least 74. The result follows from
5.2. This proves 5.1.

6 Poset tournaments

In this section we show that not all tournaments are rebels, disproving 1.1.
First, let us observe that not every tournament is a poset tournament. For instance, take a random

tournament T on 2n + 1 vertices, where every edge is directed one way or the other independently
and with probability 1/2. It is straightforward to check that if n is sufficiently large, then with
positive probability, there is no partition (A,B, {v}) into three sets where |A| = |B| = n, such that
every in-neighbour of v in B is adjacent to every out-neighbour of v in A; and a tournament T with
no such partition is not a poset tournament. (To see the latter, suppose it is, take the corresponding
linear order {v1, . . . , v2n+1}, and let v = vn+1, B = {v1, . . . , vn} and A = {vn+2, . . . , v2n+1}.) It
follows that not every tournament is a rebel, because we will show that:

6.1 Every rebel is a poset tournament.

Proof. Let S be a rebel, and choose c such that every tournament not containing S has domination
number at most c. Let k = c + 1.

Let V be a set defined as follows. Let V0 be a set of cardinality kk, and define V1, . . . , Vk

inductively by: having defined Vi−1 where i ≤ k, let Vi be the set of all subsets X ⊆ Vi−1 with
|X| = k. In particular, it follows that |Vi| ≥ kk for all i. Let V = V0 ∪ · · · ∪Vk. Choose a linear order
of V , say {v1, . . . , vn}, where for 0 ≤ i < j ≤ k, if vs ∈ Vi and vt ∈ Vj then s > t.

Let H1 be the digraph with vertex set V , where if X ∈ Vi where i > 0, then X is adjacent in H1

to every Y ∈ Vi−1 with Y ∈ X. Let H2 be the transitive closure of H1.
Let T be the tournament with vertex set V , in which for 1 ≤ s < t ≤ n, vs is adjacent to vt in T

if and only if vs is adjacent to vt in H2. We see that T is a poset tournament.
Suppose that the domination number of T is at most c, and choose X ⊆ V dominating T

with |X| ≤ c. Since |X| ≤ k − 1, there exists i with 1 ≤ i ≤ k such that X ∩ Vi = ∅. Let
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Y = X ∩ (V0 ∪ · · · ∪ Vi−1) and Z = X ∩ (Vi+1 ∪ · · · ∪ Vk). For each y ∈ Y , choose p(y) ∈ Vi−1 such
that there is a directed path of H1 from p(y) to y (possibly p(y) = y). Let P = {p(y) : y ∈ Y }.
Thus |P | ≤ |Y | ≤ c; choose a subset Q of Vi−1 of cardinality c = k − 1 including P . Now there are
|Vi−1|−k+1 k-subsets of Vi−1 including Q, and each is a member of Vi; and so there are |Vi−1|−k+1
members of Vi that are adjacent to every member of Q in H1. These vertices are therefore adjacent
in H2 to every vertex in Y , and so not dominated in T by Y . Consequently they are all dominated
by Z. But each vertex in Z dominates at most kk−1 vertices in Vi, since k − i ≤ k − 1; and since
|Z| ≤ k − 1, it follows that |Vi−1| − k + 1 ≤ (k − 1)kk−1, and so |Vi−1| ≤ (k − 1)(kk−1 + 1) < kk, a
contradiction.

This proves that the domination number of T is more than c, and from the definition of c, it
follows that T contains S. Consequently S is a poset tournament. This proves 6.1.

Thus, this suggests the question: is every poset tournament a rebel? As a first step, is the
seven-vertex Paley tournament a rebel?

7 Growth rates

Finally, let us mention a curiosity, not connected to domination, but lending credence to the false
conjecture that all rebels are 2-colourable. There is a dramatic difference between excluding a 2-
colourable tournament and excluding one that is not 2-colourable, because of the following.

7.1 Let S be a tournament, let V be a set of size n say, where n is even, and let f(n) be the number

of S-free tournaments with vertex set V .

• If S is not 2-colourable then f(n) ≥ 2n2/4;

• If S is 2-colourable then for all ǫ > 0, f(n) ≤ 2ǫn2

if n is sufficiently large in terms of ǫ.

Proof. (Sketch) If S is not 2-colourable, then no 2-colourable tournament contains it, and there are
at least 2n2/4 2-colourable tournaments on V . Now we assume S is 2-colourable, and let 0 < ǫ ≤ 1.
We claim that there is a constant c such that every S-free tournament on n vertices (with n sufficiently
large) can be obtained from a tournament with some d vertices, where ǫ−1 ≪ d < c, by first replacing
each vertex by a transitive set of size ⌊n/d⌋ or ⌈n/d⌉ (and directing the edges within each transitive
set according to some fixed ordering of V ) and then reversing the direction of at most 1

2ǫn2 edges.
To see this we use the regularity lemma. Let T be an S-free tournament with vertex set V . Choose
δ > 0 much smaller than ǫ, and take a δ-regular partition of V into say d sets all of size ⌊n/d⌋ or
⌈n/d⌉, where ǫ−1 ≪ d, and d is at most a constant depending on ǫ. Since the VC-dimension of the
in-neighbourhood hypergraph of T is bounded (by 2.3), it follows that for each δ-regular pair (X,Y )
of sets in this partition, either there are at most δ|X||Y | edges from X to Y , or at most δ|X||Y | from
Y to X. Consequently T can be obtained from a d-vertex tournament as described earlier; and so
the number of such T is at most 2ǫn2

. This proves 7.1.
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