Subquadratic Kernels for
Implicit 3-HITTING SET and 3-SET PACKING Problems

Tien-Nam Le* Daniel Lokshtanov' Saket Saurabh? Stéphan Thomassé®

Meirav Zehavi¥

Abstract

We cousider four well-studied NP-complete packing/covering problems on graphs: FEED-
BACK VERTEX SET IN TOURNAMENTS (FVST), CLUSTER VERTEX DELETION (CVD),
TRIANGLE PACKING IN TOURNAMENTS (TPT) and INDUCED P3-PACKING. For these four
problems kernels with O(k?) vertices have been known for a long time. In fact, such kernels
can be obtained by interpreting these problems as finding either a packing of k pairwise
disjoint sets of size 3 (3-SET PACKING) or a hitting set of size at most k for a family of sets
of size at most 3 (3-HITTING SET). In this paper, we give the first kernels for FVST, CVD,
TPT and INDUCED P;-PACKING with a subquadratic number of vertices. Specifically, we
obtain the following results.

e FVST admits a kernel with O(k?) vertices.

e CVD admits a kernel with O(k3) vertices.

e TPT admits a kernel with O(k?) vertices.

e INDUCED P3-PACKING admits a kernel with O(k3) vertices.

Our results resolve an open problem from WorKer 2010 on the existence of kernels with
O(k?~¢) vertices for FVST and CVD. All of our results are based on novel uses of old and
new “expansion lemmas”, and a weak form of crown decomposition where (i) almost all of
the head is used by the solution (as opposed to all), (ii) almost none of the crown is used by
the solution (as opposed to none), and (iii) if H is removed from G, then there is almost no
interaction between the head and the rest (as opposed to no interaction at all).

*Ecole Normale Supérieure de Lyon, Lyon, France. tien-nam.le@ens-lyon.fr

TUniversity of Bergen, Bergen, Norway. daniello@ii.uib.no

HUniversity of Bergen, Bergen, Norway, and The Institute of Mathematical Sciences, HBNI, Chennai, India.
saket@imsc.res.in

$Ecole Normale Supérieure de Lyon, Lyon, France. stephan.thomasse@ens-lyon.fr

YUniversity of Bergen, Bergen, Norway. meirav.zehavi@ii.uib.no

1 Introduction

Kernelization, a subfield of Parameterized Complexity, provides a mathematical framework to
analyze the performance of polynomial time preprocessing. It makes it possible to quantify the
degree to which polynomial time algorithms succeed at reducing input instances of an NP-hard
problem. More formally, every instance of a parameterized problem II is associated with an
integer k, which is called the parameter, and II is said to admit a kernel if there is a polynomial-
time algorithm, called a kernelization algorithm, that reduces the input instance of I down to an
equivalent instance of IT whose size is bounded by a function f(k) of k. (Here, two instances are
equivalent if both of them are either Yes-instances or No-instances.) Such an algorithm is called
an f(k)-kernel for II. If f(k) is a polynomial function of k, we say that the kernel is a polynomial
kernel. Over the last decade, kernelization has become an active field of study, especially with
the development of complexity-theoretic lower bound tools for kernelization. These tools can
be used to show that a polynomial kernel [5, 14, 21, 23], or a kernel of a specific size [10, 11, 24]
for concrete problems would imply an unlikely complexity-theoretic collapse. We refer to the
surveys [19, 22, 27, 29], as well as the books [9, 13, 17, 32], for a detailed treatment of the area
of kernelization.

One of the most well known examples of a polynomial kernel is a kernel with O(k%) sets
and elements for d-HITTING SET using the Erdés-Rado Sunflower lemma.! In this problem,
the input consists of a universe U, a family F containing sets of size at most d over U, and
in integer k. The objective is to determine whether there exists a set S C U of size at most
k that intersects every set in F. Abu-Khzam [2] gave an improved kernel for d-HITTING SET,
still with O(k?) sets, but with O(k?!) elements.

The importance of the d-HITTING SET problem stems from the number of other problems
that can be re-cast in terms of it. For example, in the FEEDBACK VERTEX SET IN TOURNA-
MENTS (FVST) problem, the input is a tournament 7' together with an integer k. The task
is to determine whether there exists a subset S of vertices of size at most k such that the
sub-tournament 7" — S obtained from 7T by removing S is acyclic. It turns out that FVST is
a 3-HITTING SET problem, where the vertices of 1" are the universe, and the family F is the
family containing the vertex set of every directed cycle on three vertices (triangle) of T'. Indeed,
it can easily be shown that for every vertex set S, T'— .S is acyclic if and only if S is a hitting set
for . Another example is the CLUSTER VERTEX DELETION (CVD) problem. Here, the input
is a graph G and an integer k, and the task is to determine whether there exists a subset S of
at most k vertices such that every connected component of G — S is a clique (such graphs are
called cluster graphs). Also this problem can be formulated as a 3-HITTING SET problem where
the family F contains the vertex sets of all induced P3’s of G. An induced Pj is a path on three
vertices where the first and last vertex are non-adjacent in G. The kernel with O(k?) elements
for d-HITTING SET [2] can be adapted to obtain kernels with O(k?) vertices for FEEDBACK
VERTEX SET IN TOURNAMENTS [12] and for CLUSTER VERTEX DELETION [25].

The formulation of problems in terms of 3-HITTING SET is useful not only in the con-
text of kernelization, but within several paradigms for dealing with NP-hardness. Indeed, the
2.076*n°(1) time parameterized algorithm of Wahlstrém [34], the O(1.519"+°(")) time exact
exponential time algorithm of Fomin et al. [18], and the folklore factor 3-approximation algo-
rithm for 3-HITTING SET, all immediately translate to algorithms with the same performance
for FVST and CVD.

Still, as one translates graph problems into 3-HITTING SET, some structure is lost. This
structure can often be exploited to obtain algorithms with better performance than the corre-

!The origins of this result are unclear. The first kernel with O(kd) sets appeared in the work by Fellows et
al. [15], but they do not make use of the Sunflower Lemma. To the best of our knowledge, the first exposition of
the kernel based on the Sunflower Lemma appears in the book of Flum and Grohe [17].

1

sponding 3-HITTING SET algorithm. In particular, for FVST, Cai et al. [8] gave a factor 2.5
approximation algorithm. This has recently been improved to 7/3 by Mnich et al. [30]. For
CVD, You et al. [35] gave a factor 2.5 approximation algorithm, which later was improved to
7/3 by Fiorini et al. [16]. In the realm of parameterized algorithms, the graph problems also
seem more tractable than the general 3-HITTING SET. For FVST, Dom et al. [12] designed
a 2°n°W time algorithm, which was recently improved by Kumar and Lokshtanov [28] to a
1.619n.°(M) time algorithm. For CVD, Hiiffner et al. [25] gave a 2knOM) time algorithm, which
in turn was improved by Boral et al. [7] to a 1.911¥n°() time algorithm. Finally, by the result
of Fomin et al. [18] that translates parameterized algorithms for subset problems into exact ex-
ponential time algorithms in a black box fashion, the improvements in parameterized algorithms
percolate to the realm of exact exponential time algorithms. In particular, FVST and CVD
have algorithms with running times O(1.382") and O(1.476™), respectively, outperforming the
O(1.519™) time algorithm [18] for 3-HITTING SET.

Remarkably, from the perspective of kernelization, FVST and CVD have so far seemed to
be as difficult as 3-HITTING SET in the sense that no kernel with O(k?~€) vertices, for some
fixed € > 0, has been found for either of these two problems. Whether FVST and CVD admit
such kernels was first posed as an open problem in WorKer 2010 [6, page 4], and variants of this
question have been re-stated several times after that [12, 35, 4].

In this paper, we give the first kernels for FVST and CVD with a subquadratic number of
vertices. Specifically, we obtain the following results.

e FVST admits a kernel with O(k%) vertices.
e CVD admits a kernel with (’)(k:%) vertices.

The Sunflower Lemma based kernel for d-HITTING SET and the improvement of Abu-Khzam [2]
can also be applied to the d-SET PACKING problem [1]. Here, the input consists of a universe
U and a family F of sets of size d over U, together with an integer k. The task is to determine
whether there exists a subfamily F’ of k pairwise disjoint sets. The d-SET PACKING problem
is dual to d-HITTING SET in several ways, among others in the sense that the dual of the
linear programming relaxation of the d-HITTING SET problem is exactly the linear programming
relaxation of d-SET PACKING, and vice versa.

In the same way that d-HITTING SET is an archetypal “covering” problem that generalizes
many such problems, d-SET PACKING generalizes many “packing” problems. For example,
it generalizes the TRIANGLE PACKING IN TOURNAMENTS (TPT) and INDUCED P3-PACKING
problems. In TRIANGLE PACKING IN TOURNAMENTS, the input is a tournament 7" and an
integer k, and the task is to determine whether T' contains k pairwise vertex-disjoint triangles.
In INDUCED P3-PACKING, the input is a graph G and an integer k, and the task is to determine
whether G contains k pairwise vertex-disjoint induced P3’s. These problems are the duals of
FVST and CVD, respectively.

Just like the insights that led to a kernel for d-HITTING SET also led to a kernel for d-
SET PACKING, our insights from the improved kernelization algorithms for FVST and CVD
yield improved kernelization algorithms for TRIANGLE PACKING IN TOURNAMENTS (TPT) and
INDUCED P3-PACKING. Specifically, we obtain the following results.

e TPT admits a kernel with O(k%) vertices.
e INDUCED P;-PACKING admits a kernel with (’)(k%) vertices.

We remark that, while the underlying philosophy of the kernels for TRIANGLE PACKING IN
TOURNAMENTS (TPT) and INDUCED Ps3-PACKING is borrowed from the kernels for FVST and
CVD, obtaining the kernels for TPT and INDUCED P3-PACKING requires significant additional
insights. However, for the sake of exposition, we next only focus (in the introduction) on our
methods in the context of FVST and CVD.

Overview and Our Methods. Our kernelization algorithms for both FVST and CVD
begin by employing trivial factor 3 polynomial time approximation algorithms.? We use these
algorithms to obtain approximate solutions of size at most 3k, or conclude that no solution of
size at most k exists. So, let us now assume that we have solutions S of size at most 3k. In
what follows, for both FVST and CVD, we aim to understand which “subpart” of the problem
is similar to the VERTEX COVER problem.

Let us first focus on our approach to specifically solve FVST. To this end, let (T, k) be an
instance of FVST. Given the approximate solution S, our analysis starts by introducing the
notion of a strong arc. Formally, an arc zy € E(T) is strong if (i) at least one vertex among x
and y belongs to S, and (ii) there are at least k42 vertices z € V(T') such that zyz is a triangle.
Let F' be the set of all the strong arcs of T. Observe that any solution of size at most k + 1
must be a vertex cover of F'. Before we analyze F', we need to examine S as described below.

Now, we try to “fit” every vertex s € S into the unique topological ordering, <, of X =T —S5.
Towards this, for s € S and z € V(X), define f; (z) = [{y € V(X) : y 2z, sy € E(T)}|, and
fi@) ={yeV(X):y-u=, yse E(T)}} Intuitively, the functions f; (x) and f;"(z) measure
how many arcs would have been in the “wrong direction” (with respect to the ordering <) if
we inserted s into the position immediately after z in X. Using a simple “sliding argument”,
we show that for each s € S, there exists x5 € V(X) such that 0 < f (xs) — fif (zs) < 1.
Then, for each s € S, the smallest vertex (with respect to <) satisfying the property that
0 < fo(zs)— fi(zs) < 1is denoted by ¢(s). Observe that if for some s € S and x € X we have
that f; (x), f(x) > k + 2, then s participates in k + 1 triangles whose pairwise intersection
is exactly s. This implies that s must be part of every solution of size at most k. Thus,
Fo(@(9)), £ (o(s)) < ki +1.

Next, we separately investigate the structure of triangles that contain a strong arc, and
triangles that do not contain any strong arc. Formally, we call a triangle local if it does not
contain any strong arc. In particular, we show that the vertices of any local triangle cannot
lie “too far apart” in the ordering < (of course, for a vertex s € S, we use ¢(s) to measure
the distance with respect to <). Having this claim at hand, FVST can be thought of as the
problem of simultaneously hitting local triangles and strong arcs.

To take care of the two sets of objects to be hit simultaneously, we define a variant of
Expansion Lemma [33, 9], which we call Double Expansion Lemma. To (roughly) describe it
here, let £ > 0 and G be a bipartite graph with vertex sets A,S, and S C Sand A C A
We say that S has an (-ezpansion into A in G if INa(Y) N Al > (Y] for every Y C §. In
addition, we would like to ensure that Ng(A\) C S. In Double Expansion Lemma, we consider a
scheme where we have one “global” bipartite graph, as well as d vertex-disjoint “local” bipartite
graphs, and we would like to find a vertex set that exhibits the expansion and neighborhood
containment properties in all of the graphs simultaneously (see Section 3 for details).

To design the subquadratic kernel for FVST, we apply Double Expansion Lemma where
one “part” is S, and the other “part” is derived by first defining a set of “carefully selected
subintervals” of X, say Yi,...,Y), trimming their ends to obtain yet another set of subintervals,
Y{,...,Y,, and then further partitioning each trimmed subinterval Y;" into a more refined set of
subintervals, say Y;1,...,Y; 4. To be somewhat more precise, let us note that we have a global
graph, G, with vertex bipartition ({Y;; : i € {1,...,p},7 € {1,...,q}},S),% as well as local
bipartite graphs, H;, with vertex bipartition ({Y;; : 7 € {1,...,q}},S;), where S; are those
vertices in S that were determined to “fit” Y;. The graphs H; take care of local triangles, and
the global graph G takes care of vertex cover constraints (that is, the edges in F'). We apply the
Double Expansion Lemma appropriately, and show that if |V (X)| > ¢ k3/2, for some constant

2We could have also used approximation algorithms with better approximation ratios, but this modification
would not result in better kernels.
3More precisely, here we mean that each subinterval Y;, ;j is represented by a unique single vertex in G.

3

(¢, then we can find an irrelevant vertex in X (that is, a vertex whose removal preserves the
answer). This together with the fact that |S| < 3k implies that we have a kernel of size O(k%/?).

Now, let us describe our approach to solve CVD. To this end, recall that we have an
approximate solution S of size at most 3k. Our kernelization algorithm begins with a simple
application of the classical Expansion Lemma to bound the number of cliques in G'\ S. Having
bounded the number of cliques, we repeatedly apply a marking procedure called Mark, whose
sequential set of applications is of the flavor of an Expansion Lemma, and can be thought of as
a weak form of a crown decomposition, as we explain after its description. Roughly speaking,
one run of Mark is executed as follows. Initially, all the vertices in S are “alive”. For k + 1
stages, Mark examines every vertex s € S that is still alive, and attempts to associate an edge
of a clique of G'\ S to it. Here, the association can be done only if s is adjacent to exactly one
vertex of the edge, and no vertex of that edge belongs to an already associated edge. If the
attempt is successful, the vertex remains alive also for the next stage. If there exists a vertex
that is alive after stage k + 1, then this vertex is part of £+ 1 induced Ps’s that intersect only
at it, and hence we can apply a reduction rule. Supposing that this “lucky” situation does not
oceur, we say that the procedure was successful if roughly k%/3 vertices were still alive at stage
(roughly) k2/3. If the run was indeed successful in this sense, we mark all of the vertices alive
at stage k2/3, and rerun the procedure on the graph G from which all marked vertices, which
belong to S, are removed (only for the sake of applying Mark again).

Let U denote the set of all the vertices in S that were marked across all successful runs.
Furthermore, denote L = S\ U. Now, let us explain how the sets S, V(G) \ (S U L) and L
can be thought of as a weak form of a crown decomposition.? Here, the Head is U , and we
indeed prove that almost all of the vertices of U should be part of any solution (as opposed to
all vertices as in a standard crown decomposition). Second, the Crown is V(G) \ (S U L), and
as a consequence of the fact that most of U is present in every solution and as V(G) \ (SU L)
is significantly larger than k (else we already have a kernel), we can (roughly) say that most of
the vertices in V(G) \ (SU L) are not present in any solution (as opposed to none). Third, the
Rest (or Royal Body) is L, and we prove (in the sense explained below) that the “interaction”
between the Head and the Rest is structured (as opposed to non-existent as in a standard crown
decomposition). Let us now elaborate on the meaning of our last claim. Here, we compute a
“small” subset M C V(G) \ (S U L) (specifically, this is the set of vertices associated to the
vertices of L in the last unsuccessful run of Mark) such that every clique in G \ S becomes a
module with respect to L once we remove the vertices in M from it.

Having the decomposition described above, the situation is more complicated that it usually
is when we have a standard crown decomposition. To analyze this situation, we first classify the
cliques in G \ S using three definitions. First, we classify these cliques as small, large or huge,
and “throw away” the small cliques. Next, we also classify these cliques as either heavy or light,
which corresponds to whether the fraction of vertices of the cliques that belong to M is large
or small, respectively; in this step, we also throw away the heavy cliques, which can be done
safely as M is shown to be small. Then, we also classify the cliques as either visible or hidden,
corresponding to whether many or few vertices from L are adjacent to many vertices in these
cliques, respectively. We show that not too many cliques can be visible, else a reduction rule
can be applied, which allows us to throw away also large (but not huge) visible cliques. Next,
we focus on good cliques, which are either large or huge, light, and either hidden or huge.

Our analysis proceeds by defining, for every vertex s € S, a small and a large side with
respect to every clique. Roughly speaking, a side is the set of either all neighbors or all non-
neighbors of s in that clique. Then, in the context of these sides, we prove (using an exchange
argument) that good cliques exhibit a vertex cover-like behavior. That is, for any vertex s € S

4A crown decomposition is among the most classical and well-known tools in parameterized complexity. Read-
ers unfamiliar with this notion (which we use only in the introduction) are referred to books such as [9].

4

and good clique, every solution either picks s or the entire small side of that clique with respect
to s. This claim gives rise to the definition of a bipartite graph where one side is S and the other
side is the set of vertices of the good cliques. Here, there is an edge between s € S and a vertex
v in a good clique C' if v belongs to the small side of C' with respect to s. Using the Expansion
Lemma, if we find a large enough expansion in this graph, we prove that it is safe to select the
vertices in S corresponding to that expansion. Let us remark that this proof is non-trivial as
the edges of the bipartite graph are not necessarily edges in the input graph G. Finally, if no
large expansion can be found, it means that the bipartite graph contains many isolated vertices,
which belong to the good cliques. However, because these vertices are isolated, we can observe
that they form sets that are modules with respect to the entire graph G (rather than only with
respect to L), which allows us to employ a reduction rule that decreases their number.

Finally, we say a few words about our kernels for packing problems, that is, for TPT and
INDUCED P3-PACKING. In both of these kernels, we start by finding a greedy packing, S
of either triangles or induced paths on 3 vertices, depending on the problem we are dealing
with. If the greedy collection is large, then we already have the answer. FElse, the vertices
present in any set in S, say S, form a hitting set. That is, G — S is a cluster graph and
T — S is a transitive tournament. We exploit this structure in a manner similar to the way
we exploited it to design subquadratic kernels for the hitting problems. Specifically, we make
reduction rules that are, in some sense, “dual” to those given for FVST and CVD, and use
the appropriate variants of Expansion Lemma to find an irrelevant vertex to delete. However,
as we currently deal with packing problems, there are also major deviations required to design
the new kernels. For example, for INDUCED P3-PACKING, the last stage of the kernelization
algorithm, which lies at the heart of its correctness, is completely different from the last stage
of the kernelization algorithm for CVD. Here, the difference stems from the following crucial
observation: in INDUCED P3-PACKING, we need to present structural claims that hold for at
least one solution, rather than for all solutions as in CVD, but these structural claims have
to be stronger than the ones presented for CVD as the solution itself has a more complicated
structure (being a set of paths rather than a set of vertices). This crucial observation also holds
for TPT, posing difficulties of the same nature.

Additional Related Works. It is known that unless NP C Cg;'l\'yp, for any d > 2 and for any
€ > 0, d-HiTTING SET and d-SET PACKING do not admit a kernel with O(k?~¢) sets [10, 11].
In [10], Dell and Marx studied several matching and packing problems, and provided non-
trivial lower bounds as well as non-trivial upper bounds for packing some specific graphs such
as matchings, P4’s (here, the packing need not be induced) and Kj4’s (stars with d leaves).
Moser et al. [31] studied the problem of packing a fixed connected graph H on ¢ vertices in
an input graph G (that is, determining whether there exist k vertex disjoint copies of H in G)
and designed a kernel with (’)(kefl) vertices. In this context, it is also worth to point out the
dichotomy result of Jansen and Marx [26] regarding packing a fixed graph H. Finally, very
recently Bessy et al. [3] studied FVST where the input tournament is restricted to be a sparse
tournament, that is, a tournament where the feedback arc set is a matching. For this special
case, they presented a linear-vertex kernel, and remarked that their methods do not extend to
handle general tournaments.

Reading Guide. On the one hand, our kernels for FVST and CVD are independent of each
other. On the other hand, the kernels for TPT and INDUCED P;-PACKING borrow some of their
ideas from the corresponding hitting set kernels, and therefore we recommend to read them after
reading our kernels for FVST and CVD. Section 3 gives the old and new Expansion Lemmas
used in this paper. In Section 4, we give our (’)(k5/ 3)-vertex kernel for CVD, followed by a
kernel of O(k%/2) vertices for FVST in Section 5. In Sections 6 and 7, we give our kernels for
INDUCED P3-PACKING and TPT with O(k%/3) and O(k®/?) vertices, respectively. We conclude

5

the paper with some remarks and open problems in Section 8. To get a detailed idea of our
techniques, a reader can first read the statements of Expansion Lemmas in Section 3, and then
proceed to read our kernels for CVD and FVST. The proofs of the new Expansion Lemmas
and the kernels for the packing problems can be read afterwards.

2 Preliminaries

Graph Theory. Given a graph G (or digraph D), we let V(G) (V(D)) and E(G) (E(D))
denote its vertex-set and edge-set (arc-set), respectively. We use {u,v} to denote an edge in
an undirected graph and uv to denote an arc in a digraph. The open neighborhood, or simply
the neighborhood, of a vertex v € V(G) is defined as Ng(v) = {w | {v,w} € E(G)}. The closed
neighborhood of v is defined as Ng[v] = Ng(v) U {v}. The degree of v is defined as dg(v) =
|Nc(v)|. We can extend the definition of neighborhood of a vertex to a set of vertices as follows.
Given a subset U C V(G), Ng(U) = Uyepy Na(uw) and Ng[U] = U ey Nalu]. The induced
subgraph G[U] is the graph with vertex-set U and edge-set {{u,u'} | u,u’ € U, and {u,u'} €
E(G)}. Moreover, we define G \ U as the induced subgraph G[V(G) \ U]. We omit subscripts
when the graph G is clear from context. We use P, to denote a path in a graph on ¢ vertices.
A path P = wvw in a graph G is called an induced path if there is no edge between u and v in
E(G). An induced Ps-packing is a set of vertex disjoint induced P3’s. A subset X of V(G) is
called a module if every vertex in X has same set of neighbors in V(G) \ X. For a collection of
graph H, by V(H) we denote |y V(H).

A tournament is a directed graph T such that for every pair of vertices u,v € V(T), exactly
one of uv or vu is a directed arc of T'. For any three vertices z,y,z € V(T'), we say that zyz
is a triangle if arcs xy, yz and zz form a directed cycle. A tournament in which there is no
directed cycle is called a transitive tournament.

Reduction Rules. Kernelization algorithms often rely on the design of reduction rules. The
rules are numbered, and each rule consists of a condition and an action. We always apply
the first rule whose condition is true. Given a problem instance (I, k), the rule computes (in
polynomial time) an instance (I, k") of the same problem where k' < k. Typically, |I'| < |1,
where if this is not the case, it should be argued why the rule can be applied only polynomially
many times. We say that the rule safe if the instances (I, k) and (I’, k') are equivalent.

3 Tool: Expansion Lemmas

In this section we give the classical Expansion Lemma as well as some two new Expansion
Lemmas that we make use of in our kernels. We start with some preliminaries. Let £ be a
positive integer. An £-star is a graph on ¢ + 1 vertices where one vertex, called the center, has
degree ¢, and all other vertices are adjacent to the center and have degree one. A bipartite graph
is a graph whose vertex-set can be partitioned into two independent sets. Such a partition of
the vertex-set is called a bipartition of the graph. Let G be a bipartite graph with bipartition
(A, S). A subset of edges M C E(Q) is called ¢-expansion of S into A if

(i) every vertex of S is incident to exactly ¢ edges of M,

(ii) and M saturates exactly £|S| vertices in A.

Note that an f-expansion saturates all vertices of S, and for each u € S the set of edges in M
incident on u form an f-star. The following lemma allows us to compute an f-expansion in a
bipartite graph. It captures a certain property of neighborhood sets which is very useful for
designing kernelization algorithms.

Input: G with vertex bipartition (A, S).
Step 0: g<—A,§<—S
Step 1: Let H be a capacitated acyclic digraph H with vertex set V(H) = AuSuU {s,t} and
arc set E(H) = {sz:2 € S}U{ay e E(G):z € S,y c AYU{yt:y € A}, and a capacity
function ¢ of E(H) as follows: ¢(s,z) = £ for every x € S; c(y,t) = 1 for every y € A, and
c(x,y) =1 for every zy € E(G).

Find a min-cut C of H separating H into {s} U51 UA; and SoU Ay U {t} with S1U Sy = S
and A{UAy = A. If the size of C is less than ZS then set S = Sy and A= A\ (NH(Sl)ﬂA)
and repeat Step 1. Otherwise, stop the algorithm.

Output: A\, S.

Figure 1: Algorithm to compute A and S Lemma 3.2.

Lemma 3.1 ([33, 9], Expansion Lemma). Let G be a bipartite graph with bipartition (A, S)
such that there are no isolated vertices in A. Let £ be a positive integer such that |A| > £|S)|.
Then, there are non-empty subsets X C S and Y C A such that

e there is a £-expansion from X into Y,
e and there is no verter in'Y that has a neighbor in S\ X, i.e. Na(Y) = X.

Further, the sets X and Y can be computed in polynomial time.

An alternate but an equivalent view on expansion properties is as follows. Let £ > 0 and
G be a bipartite graph with vertex sets 4,5, and S C S and A C A. We say that S has an
(-expansion into A in G if |[Ng(Y) N A| > ¢]Y] for every Y C 5. We call this (ex1) property.
Using the classical Hall’s Theorem one can observe that this condition is equivalent to having
for each u € S, an f-star, and that all of the f-stars are pairwise vertex disjoint. In the next
two lemmas, and in Sections 5 and 7 we will use this definition of expansion, while in the rest
of the paper, we will use the classical definition of expansion.

Lemma 3.2 (New Expansion Lemma). Let { be a positive integer and G be a bipartite graph
with bipartition (A,S). Then, there exist SCSand AC A such that S has an (-expansion
into A in G, Ng(A) C S and |A\ Al < 01S'\ S|. Moreover, the sets S and A can be computed

i polynomial time.

The property that N(;(A\) C S will be called (ex2). Lemma 3.2 is slightly different from
Lemma 3.1, as it does not require |A| > £|S| and that there is no isolated vertex in A, and thus
Aand S may be empty. However, we still have the bound on the number of removed vertices.
That is, |A\ A| < ¢S\ S|, and hence, if |A| > £|S|, then A is nonempty. The difference between
Lemmas 3.1 and Lemma 3.2 indeed comes from they viewpoint: in Lemmas 3.1, we obtain Y
by only keeping “desired” vertices in A, while in Lemmas 3.1 we obtain A by only removing
“undesired” vertices from A. Thus, in Lemmas 3.1, if X is empty then Y is empty, while in
Lemmas 3.1, it is possible that .S is empty but Ais large.

Proof. We first give the formal description of our algorithm in Figure 1. We now analyze one
call to Step 1. Clearly, the weight of C' is |[Ng(S1) N Az2| + €]Sa| + |A1] + | Na(S2) N Ayl. If the

weight of C' is less than E\gl, then

|ING(S1) N Ag| + £|S2| + |A1] + [Na(S2) N Aq] < K\S\
= |[Ng(S1) N Ag| +£]Sa| + [Aq] < E\S\
= |Ng(S1) N As| + |A4] < €]S! —]S,
= |Ng(S1) N (A1 U Ag)| < £]Sq]
— |Ng(S1) N A| < €]S4],

which implies |S1| > 1. Hence, |[AU S| is reduced after every call to Step 1, except the last call.
The inequality above also implies that after each step, the number of vertices removed from Alis
less than ¢ times the number of vertices removed from S. Note that i in the last step, we do not
remove anything. Thus, for the output A, S, we have |A\ A[< {8\ S | (where the equality is
achieved only when |A\ A\ =[S\ S| =0, i.e. the algorithm stops after just one call of Step 1).

If the size of C' is at least ¢ |S |, then the algorithm stops. Note that by Max-Flow-Min-Cut
Theorem [20], the max-flow, which is equal to the min-cut size, is at most €|§ |, which is the
total capacity of arcs incident with s. Hence, there is a max-flow in H with optimal capacity
€\§ |. Then for every Y C S , the amount of flow passing from s through Y to ¢ in H must be
(|Y|. This gives |Ng(Y)| > £|Y]|, and since V(H) N A = A, so |Ng(Y) N A| > (|Y|. Therefore,
output A, § satisfy Property (ex1).

Throughout the algorithm we maintain an invariant that Ng(g) Cs. Clearly, this holds at
the beginning of the algorithm. Since every time we remove a set B, we remove all its neighbors
in A, and so Ng(A) C S holds at the end of every step, and so Property (ex2) is maintained
during the algorithm. Thus Property (ex2) holds for the output A,S.

The algorithm runs in polynomial time, since AU S is reduced each time we call Step 1,
except the last call, and that each call to Step 1 runs in polynomial time. O

As we discussed before, the viewpoint in the New Expansion Lemma is how many vertices
are removed, rather than how many vertices remains as in the classical Expansion Lemma. This
viewpoint enables us to generalize the Expansion Lemma to the Double expansion Lemma, where
we can simultaneously achieve expansions in many graphs. In the following lemma, we consider
a scheme where we have a “global” bipartite graph and d vertex-disjoint “local” bipartite graphs
and we would like to achieve the expansion in each of them simultaneously.

Lemma 3.3 (Double Expansion Lemma). Let ¢ be a positive integer, and G, H, ... ,Hd be
bipartite graphs with bipartition (A, S) (A1,81),...,(Aq, Sq), respectively, such that A; N A;j =
0,8;nS; =0 f07’ every i # j, and UZ 1A = A, Uz 15: ©€ 5. We can in polynomial time find
AcC A, ScC S, A C A, S C S; for every i, satisfying the following

« A= U?:l Aj.
o |A\ Al <245].
e S has an {-expansion into Ain G, and for every i, :9\1 has an (-expansion into A\Z in Hj.

° NG(E) C §, and for all 1 <1 <d, NHL(EZ) C §Z

Roughly speaking, the lemma asserts that we can find _a set A such that A is the ¢ ‘image” of
an expansion in the global graph, and the set of vertices A in every local graph is the image of
another expansmn in that local graph. Since, A= UZ 1 AZ, we achieve simultaneous expansion.
Since |A\A[< 2/|S], we again have the property that if [A| > 2¢|S|, then A is non-empty. Note
that, unlike A and AZ, we do not have S = Uz 1 SZ, or even S; C S.

To prove Lemma 3.3, we repeatedly apply Lemma 3.2, alternately to the global graph and
then to local graphs, and refine A and UZ 1 A until they are equal.

8

Input: G, H; for every i.
Step 0: Initialize A+ A, S+ S, Ez +— A;, §z + S; for every i.
Stage 1: It consists of the following two steps.

Step 1: Apply the New Expansion Lemma (Lemma 3.2) on GLA\U 5] and get 5* C S and
A* C A satisfying the Expansion Lemma. Set S < S*; A < A* and A; < A*N A4;
for every i (we do not update S;). [This is to ensure that (ex2) still holds.]

Step 2: For every i, apply the New Expansion Lemma (Lemma 3.2) on H; [121\2 U §z] and
get SF C §Z and A} C g@ satisfying the New Expansion Lemma (Lemma 3.2). Set
S; ST, Ay A7 for every 4, and A« U; A (we do not update S). [Similarly, this
is to ensure that (ex2) still holds.]

If at least one of X, S , gi, §z changes, repeat Stage 1. Otherwise, stop the algorithm.
Output: A\, §, A\i, S’\Z for every i.

Figure 2: Algorithm to compute fT, §, fTi, §Z for every ¢ in Lemma 3.3.

Proof. We first give the formal description of our algorithm in Figure 2 and an illustration in
Figure 3.

Observe that each call of Stage 1 runs in polynomial time. Towards this, note that the size
of at least one of A S Al, S; reduces after each call of Stage 1 (except the last call), and since
each step itself can be carried out in polynomial time, the algorithm itself runs in polynomial
time. We will show that the output satisfies all the properties stated in the lemma.

The first property, A= UZ 1 A is vacous, since it is always maintained as an invariant
during the algorithm. To prove the second property, observe that each time we call Step 1, we
remove some vertices from S and A. The number of vertices removed from A at Step 1 is at
most ¢ times the number of vertices removed from S at the same step (guaranteed by Lemma
3.2). Besides, initially |S| = |S|, so there are at most | S| vertices removed from S in all calls to
Step 1. This implies that there are at most ¢|S| vertices removed from A in all calls to Step
1. Similarly, each time we call Step 2, we remove some vertices from |J; S; and U, A;. The
number of vertices removed from [J; A; at Step 2 is at most ¢ times the number of vertices
removed from (J, S; at the same step. Besides, initially U, §Z‘ < 15|, so there are at most |S|
vertices removed from (J, S; in all calls to Step 2. This implies that there are at most]3]
vertices removed from | J; A\Z in all calls to Step 2, which is also exactly the number of vertices
removed from A in all calls to Step 2. In conclusion, there are at most 2¢|S| vertices removed
from A during the algorithm, and so [A \ Al < 2¢8|.

To prove that S and A satisfies (ex1) and (ex2), we first observe that S and A satisfies
(ex1) after every Step 1 of the algorithm, and so S and A satisfies (ex1) after Step 2 if no
vertex of A is removed in that step. This means that the output S and A satisfies (ex1) since 5
and A are unchanged in the last stage. It remains to show that output S and A satisfies (ex2).
To do so, we prove by induction that Ng (A) C S at the end of every stage. Clearly it is true
at the beginning of the algorithm. Suppose that it is true at after Stage j (i.e. the j** call of
Stage 1), then there are no edge between Aand S \ Sin G. At Step 1 of Stage j + 1, we
apply Lemma 3.2 on G[AU 5] and get S* and A* such that Neiavg (A*) C S*, then there is
no edge between A* and S \ §*in G. Thus there is no edge between A* and (S S) (S \ S%)
in G, i.e., Ng(A*) C S*. We then set A+ A* S« S* and so Ng(A) C S holds at the end of

Step 1 of Stage j+ 1. At Step 2Aof Stage j + 1, some vertices are removed from A while §
is unchanged, and hence Ng(A) C S holds at the end of Stage j + 1. This means that output

NENET IRV Al sr vy cfepe|
(.G EEN (7.9 i
Step 1:

GRAKEERER SRAKEERITER

;{i—l A\i—l
Stage 1,

Step 2: R R
Sic1 Sic1

Al a s a2 2 slp efop e | NIENNET XN
sz NN A L] \XM [e
Step 1: R R

SRAESRITES SRAKIRIDER

Figure 3: Illustration of the Double Expansion Algorithm — original vertices are red; a vertex
turns blue if it is removed by a call of Step 1, and turns green if it is removed by a call of Step 2.
Note that changing colors in S of G does not affect colors in S; of H; and vice versa. (Vertices
in this figure are “well-ordered” to illustrate the algorithm).

S and A satisfies (ex2).

Fix and integer i < d. To prove that S; and A; satisfies (ex1) and (ex2), we first observe
that S and A; _satisfies (ex1) after every execution of Step 2 of the algorithm, and so the
output S; and A; satisfies (ex1). It remains to show that output S; and A; satisfies (ex2). To
do so, we prove by induction that N, (A) C S; at the end of every stage. Clearly it is true at
the beginning of the algorithm. Suppose that it is true after Stage j, then there are no edge
between A\ and S; \§ in H;. At Step 1 of Stage j + 1, some vertices are removed from EZ
while S is unchanged, then obviously N, (A) C S; holds at the end of Step 1 of Stage j + 1.
At Step 2 of Stage j + 1, we apply Lemma 3.2 on H[A U S] and get S’ and A} such that
Ny, Hi[A:08)] (Ar) C S¥, then there is no edge between A} and SZ\SZ’.* in H;. Thus there are no edge

between A} and (S \ Si) U (S; \ S¥) in H;, i.e., Ng,(AF) C SF. We then set A A7, S; ST,
and so N, (A) C S holds at the end of Stage j 4+ 1. This means that output S and A satisfies
(ex2). This concludes the proof of the lemma. O

We would like to remark that the Double Expansion Lemma can be generalized to the Triple
Expansion Lemma (or 7-levels Expansion Lemma), where the system contains a global bipartite
graph Gj, local bipartite graphs H;, and super-local bipartite graphs H; ;. The proofs of these
generalized version are similar to that of the Double Expansion Lemma. The idea of the Double
Expansion Lemma (or its generlizations) is that one tries to capture different properties using
different bipartite graphs at the same time.

4 Kernel for CLUSTER VERTEX DELETION

In this section, we prove the following theorem.

Theorem 1. CVD admits a kernel with (’)(klg) vertices.
10

Let (G, k) be an instance of CVD. Recall that CVD admits a polynomial-time 3-approximation
algorithm. We call this algorithm with G as input, and thus we obtain a 3-approximate solution
S. If |S| > 3k, then we conclude that (G, k) is a No-instance. Thus, we next assume that
|S| < 3k. Notice that G'\ S is a collection of cliques, which we denote by C.

In what follows, we denote o =2, 8 =1, v =10, § =3, A =1 and 7 =1, so that (1 — %)’Y > 2n

(used in the proof of Lemma 4.11), (5 — %) > (m + A) (used in the proof of Lemma 4.13),
and vy > %(m + A) (used in the proof of 4.14).

4.1 Bounding the Number of Cliques

First, we have the following simple rule, whose safeness is obvious.

Reduction Rule 4.1. If there exists C € C such that no vertex in C has a neighbor in S, then
remove C' from G. The new instance is (G \ C, k).

Now, we define the bipartite graph B by setting one side of the bipartition to be S and the
other side to be C, such that there exists an edge between s € S and C € C if and only if s
is adjacent to at least one vertex in C'. Note that by Reduction Rule 4.1, no clique in C is an
isolated vertex in B. We thus proceed by presenting the following rule, where we rely on the
Expansion Lemma (Lemma 3.1). It should be clear that the conditions required to apply the
algorithm provided by this lemma are satisfied.

Reduction Rule 4.2. If |C| > 2|S|, then call the algorithm provided by Lemma 3.1 to compute
sets X C S and Y C C such that X has a 2-expansion into Y in B and Np(Y) C X. The new
instance is (G\ X,k — |X|).

We now argue that this rule is safe.
Lemma 4.1. Reduction Rule 4.2 is safe.

Proof. In one direction, it is clear that if S* is a solution to (G \ X,k — |X|), then S* U X
is a solution to (G, k). For the other direction, let S* be a solution to (G, k). We denote
S’ = (8*\ V(¥)) U X. Notice that for all s € X, there exists an induced P; in G of the form
u — s — v where u is any vertex in one clique associated to s by the 2-expansion that is adjacent
to s and v is any vertex in the other clique associated to s by the 2-expansion that is adjacent
to v. The existence of such u and v is implied by the definition of the edges of B. Thus, as S*
is a solution to (G, k), we have that |X \ S*| < |S* N V(Y)|, and hence |S’| < |S*| < k. Note
that G\ S’ is a collection of isolated cliques together with a subgraph of G\ S*. Thus, as G\ S*
does not contain any induced Ps, we derive that G \ S’ also does not contain any induced Ps.
We conclude that S’ is a solution to (G, k), and as X C S’, we have that S’ \ X is a solution to
(G\ X,k —|X]). Thus, (G\ X,k —|X]) is a Yes-instance. O

Due to Reduction Rule 4.2, from now on |C| < 6k.

4.2 The Specification of the Marking Procedure

We proceed by presenting a procedure called Mark. Clearly, every vertex in S that has both a
neighbor and a non-neighbor in a clique in C is a vertex due to which that clique in C is not a
module. The procedure Mark accordingly associates vertices s € S with sets mark(s) of edges
that belong to cliques in C. In particular, we would ensure that for all s € S, there would not
exist two distinct edges e, e’ € mark(s) that have a common endpoint, as well as that for all
distinct s, s € S, there would not exist two distinct edges e € mark(s), ¢’ € mark(s’) that have
a common endpoint.

SHere, we slightly abuse notation. Specifically, we mean that each clique in C is represented by a unique vertex
in V(B), and we refer to both the clique and the corresponding vertex identically.

11

Specification. The procedure Mark first initializes M < @, T < S, and for all s € S,
mark(s) < (0. At each stage i, i =1,2,...,k+ 1, Mark executes the following process. For each
s € T, if there exist C € C and {u,v} € E(C) such that {s,u} € E(G) but {s,v} ¢ E(G) and
{u, v} M = (), then insert u, v into M and {u,v} into mark(s), and otherwise remove s from 7.
The order in which the process examines the vertices in T is immaterial given that it examines
each vertex in T exactly once. Moreover, if ¢ = [ﬁk‘w?’l, then the process sets U to be equal to
T. If T is updated in subsequent stages, U is not updated as well.

We say that Mark succeeded if |U| > [ak?/3], and otherwise we say that Mark failed. More-
over, if there exists s € S such that |mark(s)| > k + 1, then we say that Mark was lucky. Let us
begin the analysis of Mark with the following simple lemma.

Lemma 4.2. For any solution S* to (G, k) and vertex s € S\ S*, it holds that S* N {u,v} # 0
for all {u,v} € mark(s).

Proof. Let S* be a solution to (G, k). Consider some vertex s € S and edge {u,v} € mark(s).
Note that {s,u,v} is the vertex set of an induced P3 in G. Therefore, S* N {s,u,v} # 0. We
thus have that if s ¢ S*, then S* N {u,v} # 0. O

In light of Lemma 4.2, we employ the following rule.

Reduction Rule 4.3. If there exists s € S such that |mark(s)| >k +1 (i.e., Mark was lucky),
then remove s from G and decrement k by 1. The new instance is (G \ s,k —1).

Lemma 4.3. Reduction Rule 4.3 is safe.

Proof. In one direction, it is clear that if S* is a solution to (G \ s,k — 1), then S* U {s} is a
solution to (G, k). For the other direction, let S* be a solution to (G, k). Observe that for all
s € 8 and {u,v}, {u',v'} € mark(s'), it holds that {u,v} N {u’,v'} = 0. Thus, by Lemma 4.2
and since |mark(s)| > k+ 1, if s ¢ S* then |S*| > k + 1, which is not possible as |S*| < k. We
derive that s € S*, and therefore S* \ {s} is a solution to (G \ s,k — 1). O

The main purpose of Mark is to derive information on (G, k) also when it is not coincidentally
lucky. More precisely, we have the following simple but useful lemma.

Lemma 4.4. For any solution S* to (G,k), U\ S*| < %/{:1/3.

Proof. Let S* be a solution to (G, k). Again, observe that for all s € S and {u,v},{v/,v'} €
mark(s), it holds that {u,v} N {u/,v'} = . In addition, observe that for all s,s" € S, {u,v} €
mark(s) and {u/,v'} € mark(s’), it holds that {u,v} N {u/;v'} = 0. Thus, by Lemma 4.2,
|S*| > > (5) = [BK2/31|U\ S*|. Since |S*| < k, we conclude that |U\ $*| < %kl/?’. O

seU\S* |mark
We also need to derive an upper bound on the number of marked vertices, namely |M].
Lemma 4.5. If Mark was neither lucky nor successful, then |M| < 6(a + ﬁ)klg

Proof. Since Mark was unlucky, |mark(s)| < k for all s € S. Thus, |M| < 2|Ulk + 2|5\
U|([Bk*/3]—1). Since Mark failed, we further have that |M| < 2([ak?/3]—1)k+6k([SE>/3]—1) <
6(c + B)k'3. O

12

4.3 Multiple Calls to the Marking Procedure

Let us now explain how we employ Mark. We initialize U=0and G=G. Then, we call Mark
with (@, k) as input. If Mark was lucky, then we execute Reduction Rule 4.3 and restart the
entire process (including the initialization phase). Else, if Mark succeeded, then for the set U
computed by the current call, we update U«<UUU and G <G \ U, and then we proceed to
execute another call. Otherwise, Mark was unlucky and also failed, and we let M denote the
same set M C V(G) \ S as computed by the current call to Mark, after which we terminate the
process. Note that after each call to Mark, either Reduction Rule 4.3 is executed or the size of /[\7
increases, and therefore it is clear that the process eventually terminates. We denote L = S\ U.
By relying on Lemma 4.4, we have the following lemma.

Lemma 4.6. Let i be the number of calls to Mark that succeeded but were unlucky. For any
solution S* to (G, k), U\ S*| <i- %kl/?’ and |S*NU| > i- (a[k¥?] — %kl/?’).

Proof. First, note that |S* N U| > i - a[k*/3] — |U \ S*| as the sets U computed at distinct
iterations are pairwise disjoint and the size of each one of them is at least a[k?/3]. Thus, it
is sufficient to prove that |U \ S*| < i - %kl/ 3. However, this inequality follows from Lemma
4.4. 0

As a consequence of the two bounds in Lemma 4.6, we have the following corollary.

k23

Corollary 4.1. For any solution S* to (G, k), |U \ S*| < (a—ll),B
Proof. First, note that k > [S*NU|. Thus, by the second bound in Lemma 4.6, k > i-(a[k%/3] —
k k2/3

1
111/3 (o k2/3 _ 11.1/3 oh imol; ~ _ 1/3
ﬁk/)ZZ (ak?/ 5k /3), which implies that i < ak2/3—%k1/3 = ozk:l/i”—% < a—lk .

By the first bound in Lemma 4.6, we thus derive that indeed |U \ $*| < (a_l k2/3. O

D

The usefulness of Corollary 4.1 stems from the observation that it implies that we have
found a (possibly large) set U C S such that not only any S* to (G, k) contains almost all the
vertices in U but also that the removal of U from G significantly simplifies G as described by
the following lemma.

Lemma 4.7. For every clique C € C, C[V(C) \ M] is a module in G\ U.

Proof. Let C be a clique in C. By the specification of Mark, for every vertex s € L, it holds that
there do not exist u,v € V(C)\ M such that u € Ng(s) and v ¢ Ng(s) (since {u,v} ¢ mark(s)).
Furthermore, every vertex in C' is adjacent to both u and v, and every vertex in a clique in
C\ {C} is adjacent to neither u nor v. Thus, C[V(C) \ M] is indeed a module in G\ U. O

4.4 Sieving Bad Cliques

We sieve cliques based on three classifications. First, we say that a clique C € C is big if
|V (C)| > vk*/3, and otherwise it is small. Furthermore, we say that a clique C' € C is huge if
|[V(C)| > 3k. Recall that by Reduction Rule 4.2, |C| < 6k. Thus, we directly have the following
observation.

Observation 4.1. The total number of vertices in small cliques in C is upper bounded by 671{:1%.

Second, we say that a clique C' € C is heavy if [V/(C) N M| > }|V(C)|, and otherwise it is
light. It is clear that the total number of vertices in heavy cliques in C is upper bounded by
0| M|. Thus, by Lemma 4.5, we have the following observation.

13

Observati02n 4.2. The total number of vertices in heavy cliques in C is upper bounded by
65(c + B)k'3.

Third, for a clique C' € C and a vertex s € S, we say that C is visible to s if [Ng(s)NV (C)| >
2nk?/3, and otherwise we say that C is hidden from s. For a clique C' € C, we let vis(C') denote
that set of vertices in S to which C' is visible. Moreover, we say that a clique C' € C is visible if
lvis(C')| > A\k?/3, and otherwise we say that it is hidden. To bound the number of visible cliques,
we need the following rule.

Reduction Rule 4.4. If there exists a vertex s € S with at least ﬁkl/?’ + 2 cliques in C visible
to s, then remove s from G and decrement k by 1. The new instance is (G \ s,k — 1).

Lemma 4.8. Reduction Rule 4.4 is safe.

Proof. In one direction, it is clear that if S* is a solution to (G \ s,k — 1), then S* U {s} is a
solution to (G, k). For the other direction, let S* be a solution to (G, k). Let A denote the
set of cliques in C that are visible to s. Since |S*| < k, |A| > 2—1nk1/3 + 2 and by the definition
of visibility, we have that there necessarily exist two distinct cliques A, A’ € A such that each
clique among A, A’ has a vertex that is a neighbor of s and does not belong to S*. Since

these two vertices together with s form an induced Ps in G, we derive that necessarily s € S*.
Therefore, S* \ {s} is a solution to (G \ s,k — 1). O

After we exhaustively apply Reduction Rule 4.4, for every vertex s € S there exist at most
2—177/&/3 +1< %kl/?’ cliques in C visible to s. Since |S| < 3k, we derive that there are at most
SILks

n 3 . 2/3 .. . : .

——— = —k*/° visible cliques. Thus, we have the following observation.
\k2/3 AN
Observgtion 4.3. The total number of vertices in non-huge visible cliques in C is upper bounded

9 112

Altogether, we say that a clique C' € C is good if it is (i) big, (ii) light and (iii) hidden or
huge (or both), and otherwise we say that it is bad. We denote the set of all good cliques in C
by D. By Observations 4.1, 4.2 and 4.3, we derive the following lemma.

Lemma 4.9. The total number of vertices in bad cliques in C is upper bounded by 9(~v + d(a +
2

B) + 35 k'

4.5 Properties of Clique Sides

For all C € C and s € S, denote No(s) = Ng(s) NV(C) and Ng(s) = V(C) \ Ne(s). Notice
that for all C € C, s € S, u € N¢(s) and v € N¢(s), it holds that s — u — v is an induced P in
G. Thus, we have the following observation.

Observation 4.4. Let S* be a solution to (G, k). Then, for all C € C and s € S, at least one
of the following three condition holds: (i) s € S*; (ii) N¢(s) C S*; (iii) N¢(s) C S*.

_ Forall C € C and s € S, let Mc(s) denote the set of minimum size among N¢(s) and
N¢(s) (if they have equal sizes, the choice is arbitrary). We first need to apply the following
simple rule.

Reduction Rule 4.5. If there exist C € C and s € S such that |Mc(s)| > k, then remove s
from G and decrement k by 1. The new instance is (G \ s,k —1).

Lemma 4.10. Reduction Rule 4.5 is safe.

14

Proof. In one direction, it is clear that if S* is a solution to (G \ s,k — 1), then S* U {s} is a
solution to (G, k). For the other direction, let S* be a solution to (G, k). Since |S*| < k and
|Mc(s)| > k, we have that both No(s) \ S* # 0 and Na(s) \ S* # 0. Thus, by Observation 4.4,
we have that necessarily s € S*. Therefore, S* \ {s} is a solution to (G \ s,k — 1). O

Specifically, since for every s € S and huge clique C' € C, |[M¢(s)| < k, we have the following
corollary, which exhibits a “vertex cover-like” interaction between S and huge cliques.

Observation 4.5. Let S* be a solution to (G, k). Then, for every s € S and huge clique C € C,
at least one of the following two conditions holds: (i) s € S*; (ii) Mc(s) C S*.

Next, we prove that a similar result holds also for non-huge cliques given that they are good.
To this end, we first prove the following simple lemma.

Lemma 4.11. For all s € L and C € D such that Ng(s) N (V(C)\ M) # 0, it holds that C' is
visible to s.

Proof. Let s € L and C € D such that Ng(s) N (V(C)\ M) # 0. Then, by Lemma 4.7, we
have that V(C)\ M C Ng(s). Thus, to prove that C is visible to s, it is sufficient to show
that |V(C)\ M| > 2nk*/3. Since C' € D, we have that C is light, and therefore |V(C) \ M| >
(1—H)|V(C)|. Moreover, since C is big, [V(C)| > vk2/3, and hence |V (C)\ M| > (1 —)vk2/3.
Since (1 — %)7 > 27, the proof is completed. O

Lemma 4.12. Let S* be a solution to (G, k) of mz’m’mum size. Then, for every non-huge clique
C €D, it holds that [V(C) N $*| < |[V(C) N M|+ (55 + A\)k2/3,

Proof. Let C' € D be a non-huge clique. Suppose, by way of contradiction, that [V (C) N S*| >
IV(CINM [+ (g2 +AK/?. Define ' = (S*\V(C))UUU(V (M)NV(C))uvis(C). By Corollary
4.1 and since C is a non-huge clique in D, |U \ $*| < 1)514:2/3 and |vis(C)| < Ak?/3. Thus,
|S’| < |S*| < k. Next we show that (V(C))\ S’ is an isolated clique. Towards this we will show
that it has no neighbor in the approximate solution S. The only possible neighbors of (V(C))\ S’
in S are in L. However, if there exists a vertex s € L such that Ng(s)N(V(C)\ M) # 0, then by
Lemma 4.11, it holds that C is visible to s. This implies that a vertex s € L is either in vis(C)
or N(s)NV(C) C M NV(C). Since, S’ contains M NV (C)) Uvis(C) we have that (V(C))\ S’
is an isolated clique. Thus, by Lemma 4.11, the graph G \ S’ consists of an isolated clique on
the vertex set (V(C))\ S’ and a subgraph of G'\ S*. Therefore, as G\ S* does not contain any
induced P, so does G'\ S’. This implies that S’ is a solution to (G, k), but since |S’| < |S*|, we
obtain a contradiction to the choice of S*. O

Lemma 4.13. Let S* be a solution to (G,k) of minimum size. Then, for every s € S and
non-huge clique C' € D, at least one of the following two conditions holds: (i) s € S*; (ii)
Mea(s) C S*.

Proof. Let s be a vertex in S, and let C € D be a non-huge clique. Suppose, by way of
contradiction, that neither s € S* nor Mc(s) C S*. By Observation 4.4, we necessarily have
that V(C)\ Mc(s) € S*. Thus, [V(C)NS*| > |V(C)\ Mc(s)| > 5|V (C)|. Therefore, to obtain
a contradiction to Lemma 4.12, it is sufficient to show that 3|V (C)| > [V(C) N M|+ ()ﬁ +
Mk2/3. Since C is light, We have that [V (C) N M| < $|V(C)|, and therefore it remains to show
that (1 — $)|V(C)| > ()6 + \)k?/3. Since C is big, |V(C)| > vk*/3. Thus, we only need to
show that (%)'y > ((a_ ng + A), which follows from the definition of «, 3,7, d and A. O

15

4.6 Expansion with Respect to Clique Sides

We construct the bipartite graph B’ by setting one side of the bipartition to be S and the
other side @ to be the set of vertices in good cliques (i.e., @ = [Joep V(C)), such that there
exists an edge between s € S and v € @' if and only if v € Mp(s) where D is the clique in
D containing v. Let I denote the set of isolated vertices in B’ that belong to @', and denote
Q = Q' \ I. Moreover, define B = B"\ I. Clearly, no clique in @ is an isolated vertex in B. We
thus proceed by presenting the following rule, where we rely on the Expansion Lemma (Lemma
3.1). It should be clear that the conditions required to apply the algorithm provided by this
lemma are satisfied.

Reduction Rule 4.6. If |Q| > ((ajl)ﬁ k2/34-1)|8|, then call the algorithm provided by Lemma
3.1 to compute sets X C S andY C Q such that X has a (ﬁkw3 + 1)-ezpansion into Y in

B and Np(Y) C X. The new instance is (G \ X, k — | X]).

We now argue that this rule is safe.
Lemma 4.14. Reduction Rule 4.6 is safe.

Proof. In one direction, it is clear that if S* is a solution to (G \ X,k — |X|), then S* U X is
a solution to (G,k). For the other direction, let S* be a solution to (G, k) of minimum size.
Define §' = ($*\ Y)U X UU. First, due to Corollary 4.1, note that |U \ U*| < (a—ll)ﬁk2/3’
Moreover, by Observation 4.5 and Lemma 4.13, for every vertex s € S\ S*, it holds that

Np(s) € S*. Thus, since X has a (ﬁk@m + 1)-expansion into Y in B, we have that

[V \ 5% < ((a_llmkﬁ/?’ +1)|X \ S*|. This implies that |S| < |S*| < k.

Notice that if G\ S’ does not contain any induced P3, then since X C S* and we have
shown that |S’| < k, this would imply that S’ is a solution to (G \ X,k — |X|). Suppose, by
way of contradiction, that G \ S’ contains some induced Ps, which we denote by W. Note
that V(W) N (X UU) = 0. Since G \ S* does not contain any induced P3 and since S is an
approximate solution, we also derive that V(W) NY #) and V(W) NS # 0. Accordingly, the

following case analysis is exhaustive.

e Case 1: W = s —u—v where s € §\ (X UU), u,v € V(C) for some C € D and
{u,v}NY # (. In this case, let y € {u, v} denote some vertex in {u,v}NY and let = denote
the other vertex in {w,v} (which might also be in Y'). Since Np(Y) C X and s ¢ X, we
have that y ¢ Np(s). Since u € N¢(s) and v € N (s), we have that |Mc(s) N {u,v}| = 1.
Since y ¢ Np(s), we have that y ¢ Mc(s) and x € Mc(s). In particular, as Np(Y) C X
and s ¢ X, we have that 2 € Np(s) \'Y (in fact, Ng(s) NY = 0). By Observation 4.5
and Lemma 4.13, we derive that S* N {s,xz} # 0. However, as x ¢ Y, this implies that
S" N {s,x} # 0, which is a contradiction.

e Case 2: W =s—v—¢ where s,5' € S\ (XUU), and v € V(C)NY for some C € D.
Since Np(Y) C X and s,s’ ¢ X, we have that v ¢ M (s) U Mo (s'), which means that
Ne(s) = V(C)\ Mc(s) and No(s') = V(C)\ M(s'). Therefore, [No(s)NV(C)|, | No(s")N
V(O)| > 3|V(C)|. Thus, since [M NV (C)| < :|V(C)| < 2|V(C)| (because C € D), we
have that there exist w € Ng(s) \ M and v’ € Ng(s') \ M. By Lemma 4.7 and since
s,s' ¢ U, we derive that C is huge or both V(C)\ M C N¢(s) and V(C) \ M C N¢(¢).

Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have
that [No(s)], [No(s')| < k. Since |V(C)| > 3k, we derive that |[No(s) N No(s')| > k + 1.
Note that any vertex w € N (s) N Ne(s'), along with s and s, forms the induced Ps in G
that is s —w — s’. Note that s, s’ ¢ S*, as otherwise {s, s’} N.S" # (), which contradicts the

16

choice of W. Thus, as S* is a solution to (G, k), it must hold that N¢(s) N Ne(s') C S*,
but as |Ne(s) N Neo(s')| > k + 1, this is a contradiction.

Let us now consider the subcase where C'is not huge, and in particular V(C)\ M C N¢(s)
and V(C)\ M C N¢(s'). Then, any vertex w € V(C)\ M, along with s and s, forms
the induced P53 in G that is s — w — s’. Again, note that s,s’ ¢ S*. Thus, since S* is
a solution to (G, k), we have that V(C)\ M C S*. Now, recall that by Lemma 4.12
and since C' € D is not huge, [V(C)N S*| < [V(C)Nn M| + ((a 05 + M\)k2/3. Hence,
[V(C)\ M| < (@ 11)6 +ANEY3. As [V(C)N M| < HV(O)] (because C € D), we have that
(1= DIV(O)] < (s + VK3, and hence [V(O)] < 525 (55 + A)k2/3, which is a
contradiction, since C’ € D implies that C is in particular big and v > 671((a_l) 5+ A).

Case 3: W =v—s— s where 5,5 € S\ (XUU), and v € V(C)NY for some C € D.
The analysis of this case is similar to the one of the previous case, and is only given
for completeness. Since Np(Y) C X and s,s ¢ X, we have that v ¢ Mc(s) U Mo(s'),
which means that N¢(s) = V(C) \ Mo(s) and Na(s') = V(C) \ Mc(s'). Therefore,
INc(s)NV(O)],[Ne(s')NV(C)| > 3|V (C)|. Thus, since |[MNV(C)| < :[V(C)| < LV (C)|
(because C' € D), we have that there exist w € Ng(s) \ M and w’ € N¢(s') \ M. By
Lemma 4.7 and since s,s' ¢ U, we derive that C is huge or both V(C)\ M C Ng(s) and
V(C)\ M C N¢(s).

Let us first consider the subcase where C' is huge. Due to Reduction Rule 4.5, we have
that [Nc(s)], |[No(s')| < k. Since |V(C)| > 3k, we derive that |[No(s) N No(s')| > k + 1.
Note that any vertex w € N¢(s) N N¢(s'), along with s and s', forms the induced P3 in G
that is w — s — s’. Note that s,s" ¢ S*, as otherwise {s, s’} NS" #), which contradicts the
choice of W. Thus, as S* is a solution to (G, k), it must hold that N¢(s) N N (s') C S*,
but as [No(s) N N¢(s')| > k 4+ 1, this is a contradiction.

Let us now consider the subcase where C'is not huge, and in particular V(C)\ M C N¢(s)
and V(C)\ M C N¢(s'). Then, any vertex w € V(C) \ M, along with s and s', forms
the induced P53 in G that is w — s — s’. Again, note that s,s’ ¢ S*. Thus, since S* is
a solution to (G, k), we have that V(C)\ M C S*. Now, recall that by Lemma 4.12
and since C' € D is not huge, |[V(C)N S*| < [V(C)nN M| + ((a 05 + \)k2/3. Hence,
[V(C)\ M| < (@ 11)6 +ANEY3. As [V(C)N M| < HV(O)] (because C € D), we have that
(1 = HIV(O) < (s + ME?, and hence |V (O)| < 57 (52ps +)\)k 2/3, Whlch is a
contradiction, since C’ € D implies that C' is in particular big and v > 3 (= 1) 5+ A).

Case 4: W = u — s — v where s € S\(XU[?), u € V(C)NY for some C' € D, and
v e V(C') for some C" € C\ {C}. Since Np(Y) C X and s ¢ X, we have that u ¢ Mc(s),
which means that N¢(s) = V(C) \ Mc(s). Therefore, [Nc(s) N V(C)| > 5|V(C)|. Thus,
since [M NV(C)| < 3|V(C)| < 4|V(C)| (because C € D), we have that there exists w €
Ne¢(s)\ M. By Lemma 4.7 and since s ¢ U, we derive that C is huge or V(C)\M C N (s).
Symmetrically, we derive that if v € Y, then C’ is huge or V(C”") \ M C N (s).

Note that for all w € N¢(s) and w’ € Ner(s), it holds that w — s —w' is an induced Ps in
G. As s ¢ S* (as otherwise s € S’), we have that No(s) € S* or Nev(s) € S*. Observe
that if v ¢ Y, then since v ¢ S’, we have that v ¢ S* and therefore it clearly holds that
Nei(s) € S*. If v € Y (which means that C’ € D), then the proof that Neov(s) € S* is
symmetric to the proof that N¢(s) € S*. Therefore, in what follows, we only show that
No(s) Z S*.

Let us first consider the subcase where C is huge. Due to Reduction Rule 4.5, we have
that [N¢o(s)| < k. Since |V (C)| > 3k, we derive that [No(s)| > 2k + 1. Since |S*| <k, it

17

is then clear that N¢(s) € S*. Now, let us now consider the subcase where C' is not huge,
and in particular V(C)\ M C N¢(s). Recall that by Lemma 4.12 and since C' € D is not
huge, |V(C) N S*| < |[V(C)N M| + (=15)ﬁ + \)k?/3. Suppose, by way of contradiction,
that Nc(s) € S*. Then, |V(C)\ M| < (5+ A\)k2/3 which leads to a contradiction as
in the previous two cases.

Since each case led to a contradiction, the proof is complete.]

4.7 Reduction of Almost Modules

At this point, it remains to bound the size of I. We first show that the sets of vertices in I,
defined according to the cliques in C, are modules also with respect to U. More precisely, we
prove the following lemma.

Lemma 4.15. For every clique C € D, C[INV(C)] is a module in G.

Proof. Let C be a clique in D. Consider two vertices u,v € I N V(C). Clearly, every vertex in
C' is adjacent to both u and v, and every vertex in a clique in C \ {C} is adjacent to neither
u nor v. Thus, C[I NV(C)] is indeed a module in G \ S. Now, consider some vertex s € S.
Then, as u,v € I N V(C), we have that u,v € V(C) \ Mc(s), because otherwise u or v would
have been adjacent to s in the bipartite graph B of Section 4.6. Thus, we have that either both
u,v € Ng(s) or both u,v € N¢(s). As the choices of u,v and s were arbitrary, we conclude
that C[I NV (C)] is indeed a module in G. O

We now present a rule that concerns the set I.

Reduction Rule 4.7. If there exists a visible clique C € D such that [INV(C)| >k+1ora
hidden clique C' € D such that |[INV(C)| > |M NV (C)| +1) k2/3 + Ak2/3 | then remove an

arbitrarily chosen vertex v € V(C)NI from G. The new mstance is (G\ v, k).
Lemma 4.16. Reduction Rule 4.7 is safe.

Proof. In one direction, it is clear that if (G, k) has a solution, so does (G '\ v, k). Now, let S* be
a solution to (G \ v, k). If S* is also a solution to (G, k), then the proof is complete. Therefore,
we next assume that S* is not a solution to (G, k). Then, there exists an induced Ps3, denoted
by W, in G\ S*. Since S* is a solution to (G'\v, k), v € V(W). Furthermore, since v € V(C)NI
and I NV(C) is a clique that is a module (by Lemma 4.15), for any vertex u € I N V(C), the
vertex set (V(W) \ {v}) U {u} induces a P3 in G\ v. As (V(W)\ {v})NS* =0 and S* is a
solution to (G \ v, k), we deduce that (I NV(C))\ {v} C S*.

In case [INV(C)| > k + 1, the conclusion that (I NV (C)) \ {v} C S* implies that |S*| > k,
which is a contradiction. Now, suppose that C' is a hidden clique in D such that [I NV(C)| >
MOV (O)+ 1)51{2/3“1@2/3 Let us denote S’ = (S*\ (INV(C)))U(MNV(C))UT Uvis(C).
By Corollary 4 1 and since C' is a hidden clique in D, we have that |S’| < |S*| — |[INV(C)| +
|[M NV(C)| + (a_ll)ﬂk:Q/?’ + M\k?/3 < |S*| < k. Moreover, by Lemma 4.11, the graph G \ S’
consists of an isolated clique on the vertex set V(C')\ S’ (for a detail argument see the proof of
Lemma 4.12) and a subgraph of (G \ v) \ S*. Therefore, as (G \ v) \ S* does not contain any
induced Ps, so does G\ S’. This implies that S’ is a solution to (G, k), and therefore (G, k) is
a Yes-instance.]

Finally, after the exhaustive application of Reduction Rule 4.7, we can bound the size of I.

Lemma 4.17. After the exhaustive application of Reduction Rule 4.7, |I| < 6(S Tat B+
12
18

Proof. First, note that after the exhaustive application of Reduction Rule 4.7, every visible
clique C € D satisfies |V(C) N I| < k+ 1 and every hidden clique C' € D satisfies |V (C)NI| <

|MNV(C)|+ (ajl)ﬁ k2/34\k?/3. Recalling that the number of visible cliques is upper bounded by

/\%k?/ 3 we have that the total number of vertices in I that belong to visible cliques in D is upper
bounded by /\%kw?’ - (k+1). Now, recalling that |C| < 6k, we also have that the total number

of vertices in I that belong to hidden cliques in D is upper bounded by |M|+ G(W + /\)klg.

y Lemma 4.5, <6(a+ 5. Thus, 2-k2/3(k+1)+ | M| +6(—1 + X k1%§6i+a+
By L 4.5, IM| < 6(a+ B)k' v = N

B+ ﬁ +)\)klg, which completes the proof. O

4.8 Proof of Theorem 1
We are finally ready to present the proof of Theorem 1.

Proof of Theorem 1. Let (G,k) be an instance of CVD. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 4.1 to 4.7. The output is the instance obtained once
none of these rules is applicable. Let us observe that each rule among Reduction Rules 4.1
to 4.16 can be applied in polynomial time, it strictly decreases the size of G and it does not
increase k. Thus, our kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by
(G, k). Let us observe that V(G) consists of the following vertices.

e Vertices in .S, whose number is at most 3k.
e Vertices in bad cliques, whose number is at most 9(y + d(a +) + /\in)k:lg = O(k:lg) (by

Lemma 4.9).

e Vertices in good cliques that are not isolated in B’, whose number is at most ((a—ll) ﬁkz/ 3+
1)|S| = (’)(klg) (due to Reduction Rule 4.6).

e Vertices in the set I, whose number is at most 6(%77 +a+ B+ ﬁ + /\)k:% = (’)(klg)
(by Lemma 4.17).

Thus, the total number of vertices is indeed O(kzlg). This completes the proof. O

5 FEEDBACK VERTEX SET IN TOURNAMENTS

In this section, we prove the following theorem.
Theorem 2. FVST admits a kernel with O(k3/?) vertices.
To prove Theorem 2, we will also use the following folklore result.
Proposition 5.1. Let T be a tournament. Then, the following conditions hold.
1. T has a directed cycle if and only if T has a directed triangle.

2. If T is acyclic then it has a unique topological ordering. That is, there exists a unique
ordering < of the vertices of T such that for every directed arc uv, we have u < v (that
is, u appears before v in the ordering <).

Let (T, k) be an instance of FVST. By Proposition 5.1, to find a set S such that T'\ S is
a directed acyclic graph, it is sufficient to find a set that intersects all the triangles of 7. This
immediately yields a simple polynomial-time 3-approximation algorithm for FVST. Indeed,
start by greedily finding a maximal collection, say S, of vertex-disjoint triangles in T and

19

output V(S). We call this algorithm with 7" as input, and obtain a 3-approximate solution S.
If |S| > 3k, then we conclude that (7', k) is a No-instance. Hence, we assume that |S| < 3k. We
call the vertex set S such that G \ S does not have any directed cycle as feedback vertex set.
Let X =T\ S. Note that since S is a feedback vertex set, X is a transitive tournament. Let
(T, h) be an instance of FVST. We say that a feedback vertex set of of size at most h of T is
a solution to the instance (T, h). For the sake of clarity of the analysis, we omit floor/ceiling
signs and remainders whenever they are not crucial.
We have the following simple rule, whose safeness can be easily observed.

Reduction Rule 5.1. If there exists s € S such that there are k + 1 triangles intersecting
pairwise (only) at s, then remove s from T. The new instance is (T'\ {s},k —1).

We apply Reduction Rule 5.1 exhaustively. Note that each application can be performed
in polynomial time, as for any vertex s € S, we can check whether that exist k£ + 1 triangles
intersecting pairwise (only) at s as follows: we construct a bipartite graph where one side of
the bipartition is the set A of in-neighbors of s, the other side of the bipartition is the set B
of out-neighbors of s, and there exists an edge between a € A and b € B if and only if a is an
out-neighbor of b; then, there exist k+ 1 triangles intersecting pairwise (only) at s if and only if
the size of a maximum matching in this bipartite graph is at least k + 1 (which can be checked
in polynomial time). Thus, from now onwards, we assume that Reduction Rule 5.1 is no longer
applicable. Throughout this section, we work with the unique ordering < of the vertices of X.
For example, whenever we will use a phrase such as the vertices are consecutive in X, we mean
that the vertices occur consecutively with respect to the ordering <. Similarly, we define the
notion of the smallest and the largest vertex in X according to the ordering <.

5.1 Exploring the Vertex Cover Structure

Let us now define a notion of wvertex cover for a set of arcs of T. Formally, for a subset of arcs
A C E(T), a subset O C V(T) is called a vertex cover for A if for every arc uv € A, either
u € Oorwv € O (or both). An arc zy of T is called strong if (i) at least one vertex among x and
y belongs to S, and (ii) there are at least k + 2 vertices z € V(T') such that xyz is a triangle.
Let F be the set of all the strong arcs of T', which can be easily found in polynomial time. We
start our analysis with the following simple observation regarding the set F.

Observation 5.1. If O is a solution to (T, k+ 1), then O is a vertex cover of F.

The proof is simple: if O does not hit zy € F, then O contains all z € V(T) such that
xyz is a triangle, i.e. |O| > k + 2, which is a contradiction.

Recall that throughout our kernelization algorithm, we work with the unique topological
ordering < of X. Accordingly, we have that if zz’ is an arc in E(X), then z < 2’. Furthermore,
we need the following notion of distance.

Definition 5.1. Let x,2' € X be two vertices such that x < ', and let d — 1 be the number
of vertices y such that x < y < x’. Then, the distance between x and ' is d. Accordingly,
¥ —xz:=dandx— 2 = —d.

In addition, we need the following definition which concerns the relations between the vertices
in S and the vertices in X.

Definition 5.2. For s € S and v € V(X), define f; (z) = |{y eV(X):y=uz sye E(T)}},
and f(z) =[{y e V(X):y>=x, ys € E(T)}|.

20

Intuitively, the functions f; (x) and f;(z) measure how many arcs would have been in the
“wrong direction” (with respect to the ordering <) if we inserted s into the position immediately
after z in X. First, for every s € S we would like to find zs € X such that f; (zs) and f ()
are almost equal.

Lemma 5.1. For each s € S, there exists x5 € V(X) such that 0 < f; (xs) — fi(xs) < 1.

Proof. Let x,, be the smallest vertex in V(X), and xps be the largest vertex in V(X). Fix some
s € S. In what follows, we omit the subscript s. We have the following two inequalities:

o f(zm)
o [(zm)

Let z,2' € V(X) where 2/ = z + 1. Then, f~(2/) — fT(2') = f~(z) — fT(x) + 1. That
is, the function f~(x) — f(z) increases by 1 whenever x increases by 1. Indeed, observe that
if s2’ € E(T), then f~(2') = f~(z) +1 and f*(2’) = f*(z). Otherwise, 2's € E(T), and so
f (@) = f~(x) and fT(a’) = fT(x) — 1. Thus, the two inequalities above, and the fact that
the function f~(z) — f(z) increases by 1 whenever x increases by 1, together imply that there
exists x5 € V(X) such that 0 < f~(zs) — fT(zs) < 1. O

(zpr) > 0 (since fT(xpr) = 0), and
(£m) < 1 (since f~(zm) < 1)

_f+
_f+

For the sake of clarity, we extract the implication of Lemma 5.1 to the following notation.

Definition 5.3. For any s € S, define p(s) as the smallest vertex s € V(X) satisfying the
inequalities in Lemma 5.1.

We now show that given Reduction Rule 5.1, neither f; (¢(s)) nor f;(¢(s)) can be too
“large”. Indeed, if there existed s € S such that f; (p(s)) > k + 2, then f(¢(s)) > k+ 1,
and we could have formed k + 1 triangles, each consisting of s, a vertex from {z € V(X) :
x =X p(s), st € E(T)}, and a vertex from {y € V(X) : y = ¢(s), ys € E(T)}. In this case,
Reduction Rule 5.1 is applicable. However, as we assumed that Reduction Rule 5.1 is no longer
applicable, we have that for all s € S, f5 (¢(s)), f(p(s)) < k + 1. By using this assumption,
we have useful certificates for strong arcs as follows.

Lemma 5.2. Let x € X, and s,s' € S. The following statements are true.

1. If st € E(T) and p(s) — x > 2k + 3, then sx is strong.
2. Ifxs € E(T) and z — @(s) > 2k + 3, then xs is strong.
3. If s € E(T) and ¢(s') — ¢(s) > 3k + 5, then s's is strong.

Proof. We first prove . As p(s) —x > 2k + 3, there are at least 2k + 2 vertices between x and
©(s). Since f; (p(s)) < k+1, we have [{y: 2 <y = ¢(s),sy € E(T)}| < k+ 1. Hence, the set
R={y:z <y =<p(s),ys € E(T)} has at least k + 2 vertices. Note that szy is a triangle for
each y € R since sz € E(T). This shows that sz is strong. The proof of | 2 | is similar.

To prove [3], we note that f(¢(s)) < k + 1 and fo(p(s") < k+1. That is, [{z : ¢(s) <
v < ¢(s), sz € E(T)} <k+1,and |[{z: ¢(s) < 2 < ¢(s'), xs € E(T)}| < k+ 1. Since
there are at least 3k + 4 vertices between ¢(s) and ¢(s'), this implies that |{z : ¢(s) < z <
o(s'), sz,xs’ € B(T)}| > k+2, i.e. s is strong. O

To proceed, we also need to introduce two terms concerning triangles.

Definition 5.4. Let x1xoxs be a triangle of T, and A = {x1,x9,23}. The span of xixows is
the mazimum distance between any two vertices in (A\ S)U p(ANS). Moreover, the triangle
is called local if none of its arcs belongs to F.

21

In the following lemma, we will show that a local triangle is indeed local in the sense that
it must have a “short” span.

Lemma 5.3. Let xyxox3 be a local triangle with at least one vertex from X. Then, its span is
at most 6k + 8.

Proof. For 1 <i < 3, define

, X, if z; € V(X), and
¢ (i) = .
o(x;) otherwise.

If the claim is false, then

max{|¢’(z1) — ¢'(x2)], ¢ (22) — ¢ (23)], |¢'(w3) — ¢/ (1) [} > 6k + 9.

By symmetry, we may assume that |¢'(z1) — ¢'(x2)] > 6k + 9. We first claim that (%)
there is an index i € [3] such that ¢'(x;) — ¢'(xit+1) > 3k + 5 (where the calculation 7 4 1 is
modulo 3). Indeed, if ¢'(z1) — ¢'(x2) > 6k + 9, then (%) is true. Therefore, next suppose that
O (x2) — @' (1) > 6k +9. If ' (23) = ¢ (x2), then ¢’ (x3) — ¢'(x1) > 6k+9, and then (%) is true.
Moreover, if ¢'(z3) < ¢'(z1), then ¢'(x2) — ¢'(z3) > 6k + 9, and then (x) is true. Hence, we
next suppose that ¢'(z1) < ¢'(x3) < ¢'(x2). Then, as ¢'(x3) — ¢'(x1) > 6k + 9, we have that
either ¢/(x3) — ¢'(x1) > 3k + 5 or ¢'(z2) — ¢'(x3) > 3k + 5, so (x) is true. This proves ().

Let i € [3] be an index satisfying (%), that is, ¢'(z;) — ¢'(xi+1) > 3k +5. If x5, ;41 € V(X),
then since z;x;41 € E(T), we have that z; < x;41, which contradicts that ¢'(x;) — ¢ (zi41) >
3k+5 is positive. Thus, at least one vertex among x; and x;11 is in .S. However, then Lemma 5.2
implies that z;x;11 is a strong arc, which contradicts the fact that x1xox3 is a local triangle. O

5.2 Applying the Double Expansion Lemma

In what follows, we denote « =3, 5 =20,v=7, u =3, =2, and £ = 3 so that 8 — 13 > ud
(used in Observation 5.3), yu > 6¢ (used in Observation 5.5), + + ¥ < 1 and £ —1 > § (used in
the proof of Lemma 5.4).

In order to proceed with our analysis, we need to classify “intervals” of vertices from X as
either good or bad, depending on how many vertices from S are mapped into these intervals.
Formally, we have the following definition.

Definition 5.5. A set Y C V(X) is an interval if it contains all the vertices in X that lie
between the largest and smallest elements in' Y (with respect to the ordering < induced by X).°
We refer to |Y| as the length of Y. Moreover, Y is good if the size of Sy = {s€ S | p(s) € Y}
is at most o'k, and otherwise it is bad.

Note that for two interval Y, Y’ C V(X), if Y NY" = (), then Sy N Syr = 0 as well.
We partition V(X)) into disjoint intervals, each of length Sk. That is, we follow the vertices of
V(X) from left to right in the ordering <, and partition them into disjoint intervals Y*, ..., Y

: : 3k _ 3vk
such that each Yj*, 1 <j <p, is of length Bk. Note that among Y7*,...,Y", at most P e

intervals are bad; otherwise, |S| > (% +1) - avk > 3k, which contradicts our assumption
that |S| < 3k. Thus, we have the following upper bound on the number of bad intervals among

Yo, Y
Observation 5.2. There are at most % bad intervals among Y7', ..., Y.

SThat is, the elements of Y are consecutive with respect to <.

22

Thus, if p > (% + ﬁ) Vk, there are at least p — % > vk good intervals. Consider
the first vvk good intervals among Yy, ..., Y, and rename them as Yi,.. .,Y7 Jk according
to the order of the appearance (by < of their vertices). The fact that the relative order of
the intervals is preserved will be used later. For all i € [yV/k], denote S; = Sy, (recall that
Sy, = {s € S| ¢(s) € V;}), and let Y be the sub-interval of Y; excluding the 6k + 9 largest
and the 6k + 9 smallest vertices of Y;. The purpose of this exclusion is to ensure that the vertex
set of any local triangle hit by Y; (that is, the triangle contains at least one vertex of Y;) is
completely contained in Y; U S; (see Lemma 5.6).

Observation 5.3. For alli € [yVk], the length of Y/ is at least Bk—2(6k+9) > (8—13)k > udk.

We now ready apply the Double Expansion Lemma. One naive idea is to construct a bipartite
graph G with vertex set (Y, S) and every H; with vertex set (Y/, S;). However, this attempt
does not work out mainly because we have too little information about the edge set of H; to
exploit. To overcome this, we chop down every Y; into sub-intervals Y; ;’s, and we merge each
Y; ; into a single “representative” vertex a;;, and we put an edge between a;; and s in H; if
the arcs between s and Y; ; have different orientations. Precisely, the construction of G and H;
is as follows.

We first partition each Y] into 'k sub-intervals, Yit,... ’Yi,u i each of length 5v/k such
that « < 2’ for every x € Yj j,2' € Y; with j < j'. We now construct the bipartite graphs
G, Hl"'WHy\/E' To this end, for all i,1 < i < Wk, define 4; = {am,...,aiym/%}, and

A= U;Y:\/f A;. Then, |A| = vk - uv'k = yuk. Tt is useful to think of a; ; as the representative
of the sub-interval Y; ; for every i, j. Let us now define the bipartite graphs (see Figure 4 for an
illustration).

Yii Y a1 G2 a3

v o] [ole \Ir A Ev X O | [4
WAL XY
SNV 7o oY] SNV 70 oy]
Yii Yo Y3 a1 Qi 43

Yo o] [atdaple 2] [= Y A ? | [o 4

suj\%/[m 507 ﬂ okl

Figure 4: Construction of G from F (upper figure) and construction of H; from T'[S; UY]] (lower
figure). Not all arcs of T[S;UY;] are shown; for arcs not shown in T'[S; UY/], their corresponding
(possibly) edges in H; are dotted.

1. G: The (undirected) bipartite graph with vertex set (A,.S) and edge set E(G) = {a; ;s :
Jdz € Y/ such that {xs, sz} N F # (}. This is to take care of strong arcs.

2. H;: The (undirected) bipartite graph with vertex set (A;,S;) and edge set E(H;) =
{a;js : 3z, 2" such that sz,xs’ € E(T)}. In other words, a; ;s ¢ E(H;) if and only if
either sz € E(T) for every z € Y; j or xs € E(T) for every x € Y; ;. This is to take care
of local triangles.

23

Before applying the Double Expansion Lemma, we mention here an observation for later
use, which is the main purpose of our “merging” vertices into representative.

Observation 5.4. If sa; j,sa; jy € E(H;) for some j < j', then there is a triangle sxa’ with
reYja €Y.

The proof is trivial: by definition of E(H;), there is x € Y; j such that sz € E(T'), and there
is #’ € Y; j such that o’s € E(T). Since i < j', x < 2/, and so za’ € E(T). Thus, szz’ is a
triangle.
By applying the Double Expansion Lemma 3.3, in polynomial time, we find A C A, S C S, as
well as A; C A; and S; C S; forall 1 < i < 7\/% such that

o A=UFA;

o |4\ 4] < 28]

e S has an (-expansion into A in G, and Ng(A) - Ng(g)'

e S has an (-expansion into 4; in H;, and Ny, (2) - NHZ(@)

Let YV = Uai,jeﬁ Y; ; and Y; = Uai,jeﬁi Y; ;. Since A= U;Y:\/f A;, we have Y = UWWY

Observation 5.5. Y is nonempty.

Proof. Recall that |S| < 3k and |A| = yuk. Since]14\;1\| < 2/|S|, we have |A| > |A| —20]S| >
ypk — 20 -3k > 0. Since A # (), there exists a;j € A, and so Y D Y;; # 0. O
5.3 Using Expansion to Detect an Irrelevant Vertex

Let O be a solution to (T, k + 1), and define
R o
0 = (O\Y> u(SulJs:|. where

Sl —

7

{@ if |0NY;| < 6vk, and

S; otherwise.

In the rest of this subsection, we show that if O MY # (), then |0’| < |O| and O’ is a solution
to (T, k+1).

Lemma 5.4. If ONY # 0, then |0] < |O).

Proof. Observe that, to obtain O/ from O, we remove ONY, and add S\ O and UZ:\/IE (SI\O).
We will prove that

’OQ?‘ > 15\ 0], and (1)
’O”Y|>|U (s:\0)| 2)

Combining (1) and (2) with § + 3 < 1 and the hypothesis of the lemma that [O N Y| >0, we

have
Wk

onY|>15\01+ | U (51 0)).
i=1

24

which implies that |0’ < |O|, proving the lemma.
To prove (1), recall that S has an E—expans&on into A in G, so | Na((5\0)n A‘ > €|S \ O]

Thus, it suffices to show that |O N Y} > ‘NG S \O)N A‘. Suppose for a contradiction that
|ONY| < |Ng(S\ 0)N A|. Then

Y jonyyl< Y jonYy,|=|0nY] <|Na(S\0)nAl. (3)
ai’jENg(g\O)ﬂA\ ai,jEA\

If |ONY; ;| > 1 for every a; ; € Ng(S\O)NA, then ZaijeNG(§\O)mK lonY; | > }Ng(g\O)

contradicting (3). Thus we conclude that there exists a; j € NG'(S\\O)QA\ such that ONY; ; = 0.
Let s € S\ O such that sa;; € E(G) (such a vertex s exists, since a;; € Ng(S\ 0)). By the
definition of E(G), there exists x € Y; ; such that sz € F. Note that ¢ O, since ONY;; =0,
and s ¢ O, since s € §\ O. As O is a solution to (T, k + 1), and because of Observation 5.1,
O must be a vertex cover of F'. But x,s ¢ O, which is a contradiction. From this we conclude
that (1) holds.

To prove (2), note that

Wk Wk Wk
0Ny = Z|0my¢and Z\s'\o}f\u (s1\0)].

Thus, it suffices to show that |O N 17;| > 6]9]\ O| for every i. If S/ = S;, then |O N Yi| > 6vk
by the definition of S’. Since Y; is a good interval, |S;| < v/k. Hence, [0 NY;| > 6vk >
81Si| > 41S;\ O|. Now suppose S; = S;. Since S; has an (-expansion into A; in H;, we have
{NHZ(gz \O)N 2{1‘ > E‘gz \ O‘. Call a;; € NH1(§@ \O)N ﬁl pure, if Y; ; MO = (). Observe that
if s € § \ O is adjacent to two pure vertices in H;, say a;; and a”/ with j < j’, then by the
definition of E(H;), then by Observation 5.4 there is a triangle szz’ with € Y; j and 2/ € Y] jv,
and so szz’ is not hit by O by definition of purity, which contradicts the assumption that O is
a feedback vertex set for T'. Thus, each s € :51 \ O is adjacent to at most one pure vertex, i.e.

there are at most }gz \ O‘ pure vertices. Thus, the number of non-pure vertices is at least (recall
that £ —1 > 0)

|N#,(Si\ O) N A| - [S:\ O] > (¢~ 1)[S; \ O] > 6]S;\ O]

For each non-pure a; ; € NHZ(@ \ 0)N A;, we have |Y;;NO| > 1, by the definition of purity.
Recall that [ONY;[=3 3 |0NY;;[. Thus, |ONY;|is at least the number of non-pure
i, i

vertices, i.e. |ONY;| > (5\@\0} As S! = S, we have |ONY;| > 8|9\ O|, and this proves (2). O

It remains to show that O’ is a solution to (T, k + 1). To do so, we will prove that O’ is a
vertex cover of F and O’ hits all local triangles.

Lemma 5.5. O’ is a vertex cover of F.

Proof. By Observation 5.1, O is a vertex cover of F, so every ss’ € F with s,s' € S is hit by
O, and hence ss’ is hit by O’, since ONS C O' N S. Thus, we only need to show that every
xzs € F with x € V(X) and s € S is hit by O’. Suppose for contradiction that zs € F is not
hit by O’. Then either x € O\ O" or s € O\ O'. Note that since ONS CO'NS, s¢ O\ O
So x € O\ O, which implies that z € O N Y. Let z € Y; ;. Then a;; € A, and since zs € F,
a; ;s € E(G). Recall (from the list properties obtained after applymg the Double Expansion
Lemma) that Ng(A) C S, which implies that s € S. However, § C O’ by the definition of
O'. This implies that s € O, a contradiction to the assumption that xs is not hit by O’. This
concludes the proof of the claim. O

25

Recall that a triangle is local if it has no strong arcs.
Lemma 5.6. If xyz is a local triangle with x € O N }Afi, then O’ hits zyz.

Proof. Suppose, for a contradiction, that O’ does not hit zyz. By Lemma 5.3, zyz has span at
most 6k + 8. Note that 2 € Y; C Y/, while Y/ is obtained from Y; by excluding 6k + 9% smallest
and 6k + 9k largest vertices, so ({z,y, 2} N X)Uep({z,y,2}NS) is a subset of Y;. In other words,
x,y,z € S; UY;. At least one of y, z belongs to S (otherwise, xyz is transitive), so at least one
of y, z belongs to S;. We consider two cases.

Case 1: y € S;. If |ON 172\ > 6vk, then S; = S! C O, and so y € O, a contradiction. We
conclude that [O N 17@| <ok Ifye §i, then y € O/, a contradiction again. Hence y € S; \ S;.
Let z € Y], then a; j; € A\Z Recall that NHZ(A\Z) C §i7 and so ya; ; ¢ E(H;). Thus, by definition
of E(H;), we have z'y € E(T) for every 2’ € Y, j, since zy € E(T).

If 2 ¢ O, then there is 2/ € Y; ; such that 2’z € E(T). (4)

To prove (4), assume that z ¢ O and za2' € E(T) for every 2’ € Y; ;. This implies that z'yz is
a triangle for every 2’ € Y; ;. Since O' does not hit zyz, we have y ¢ O’, and so y ¢ O (since
ONS CO'NS). However, O is a solution to (7, k + 1), while y,2 ¢ O, so 2’ € O for every
¥ €Y, ie., Yi; CO. Since Y;; CY;, we have |ONY;| > |Y; ;| = 5v'k, a contradiction to the
observation |O NY;| < §v/k (made at the beginning of Case 1), which proves (4).

Note that z € S; UY;. We now consider all possibilities of z.

o If z € S;, then clearly z € O’ since S; C O, a contradiction.

o If z€ 5\ §Z~, then recall that NHZ(@) C §,~, and so a; ;2 ¢ E(H;). Hence by definition of
E(H;), we have zz' € E(T) for every ' € Y;; (since zx € E(T)). If z € O, then z € O’
(since ONS C O'NS), a contradiction. Then z ¢ O, which contradicts (4). We conclude
that z ¢ S;, i.e. z €Y.

o If z € Y; and z ¢ O, since yz € E(T) while 2’y € E(T) for every 2’ € Y, ;, we have
z ¢ Y, ;. Since zz € E(T), we have z < z, and so z < 2’ for every 2’ € Y; ;. In other
words, zz' € E(T) for every z’ € Y; j, a contradiction to (4).

e Otherwise, z € Y; and z € O. Then z € Y since z ¢ O'. Let z € Y, js, then a; j» € A.
Observe that j # j’ since 2’y € E(T) for every 2’ € Y; ; while zy ¢ E(T). Since y € S\ S,
and recall that Ny, (A;) C S;, we have ya;; ¢ E(H;), and so yz' € E(T) for every 2’ € Y, js
(since yz € E(T)). If there are 2’ € Y; ;,2' € Y j» such that o, 2’ ¢ O, then 2'yz’ is not
hit by O, a contradiction. Then either Y; ; C O or Y; » C O, so

0NYi| > 100 (Y;; UYij)| > min(|Y;l, |Yiz]) = 6VE,
a contradiction to the observation |O N Y;| < 6v/k at the beginning of of Case 1.

We conclude that in all cases, O’ always hits zyz.
Case 2: z € S;. The argument is similar as for Case 1. O

Using Lemmas 5.3 to 5.6, we derive the following result.
Lemma 5.7. O is a solution to (T, k+ 1).

Proof. Suppose that O’ is not a solution to (T, k + 1). Then there is a triangle zyz which is not
hit by O’. Note that O is a solution to (T, k + 1), and O\ O’ COnN Y, so at least one vertex of
xyz belongs to O N hy, say x. Let x € ffi, ie,xeON 17; If one of the arcs of xyz belongs to
F, then O’ hits xyz, by Lemma 5.5, which is a contradiction. So, xyz is local, and O’ hits zyz,
by Lemma 5.6, which again contradicts our assumption. O

26

From Lemmas 5.4 to 5.7, we now conclude that if O is a solution to (7, k+1), and ony £ 0,
then there is another solution O’ to (T, k+1) with |O’| < |O|—1. Therefore, we have the following
reduction rule to remove an irrelevant vertex.

Reduction Rule 5.2. Let x be an arbitrary vertex in Y. Remove x from T. The new instance
is (T —{x}, k).

Lemma 5.8. Reduction rule 5.2 is safe.

Proof. In one direction, it is clear that if S* is a solution to (7', k), then S* is a solution to
(T'\ {z}, k). For the other direction, let S* be a solution to (7'\ {z}, k). Then O = S* U {x} is
a solution to (7, k + 1). Since z € O N f/, we have ONY # (), and so there is a solution O’ to
(T, k+1) with |O'| < |O| —=1=(|S*|+1) — 1 < k. Thus, O’ is a solution to (7}, k). O

5.4 Proof of Theorem 2
We are finally ready to present the proof of Theorem 2.

Proof of Theorem 2. Let (T, k) be an instance of FVST. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 5.1 and 5.2. The output is the instance obtained once
none of these rules is applicable. Let us observe that each of Reduction Rules 5.1 and 5.2 can be
applied in polynomial time, it strictly decreases the size of G and it does not increase k. Thus,
our kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by
(T, k). Let us observe that V(T') consists of the following vertices.

e Vertices in S, whose number is at most 3k.
e Vertices of X, whose number is at most pSvVk = O(k3/2) since p < (% + ﬁ) VE.

Thus, the total number of vertices is indeed (’)(k3/ 2). This complete the proof. O

6 Kernel for INDUCED FP3-PACKING

In this section, we prove the following theorem.
Theorem 3. INDUCED P3-PACKING admits a kernel with O(klg) vertices.

Our kernel for INDUCED P3-PACKING is based on the kernel for CVD. In fact, several of the
steps of both the kernelization algorithms are almost the same, but the subtle differences between
them are crucial. Specifically, while in CVD we analyze properties that must be satisfied by
all solutions, in INDUCED P;-PACKING we analyze properties such that there exists a solution
that satisfies them (if there exists a solution at all). As we progress with the description of
our kernelization algorithm for INDUCED P;-PACKING, the deviations from the kernelization
algorithm for CVD become more palpable; in particular, the later proofs of both algorithms
are completely different (for example, here we we do not even construct the bipartite graph B’
as we did in Section 4.6).

Let (G, k) be an instance of INDUCED P3-PACKING. We start by greedily finding a maximal
collection, say S, of vertex-disjoint induced P5’s in G. Clearly, this greedy procedure can be run
in polynomial time. If |S| > k, then we conclude that (G, k) is a Yes-instance. Thus, we next
suppose that |S| < k. Let S be the set of vertices that belong to the induced Ps’s in S. Since
|S| < k, we have that |S| < 3k. Notice that G \ S is a collection of cliques, which we denote
by C.

27

Inwhatfollows,wedenoteozzQ,ﬁ:1,7—43 uw=26,6=3 A=1andn =1, so that
1)y > 677 (used in the proof of 6.11), 5_1 (a 1)5 > 3 (used in the proof of Lemma 6.13),

(1-
%7 > ()ﬁ + A (used in the proof of Lemma 6.13), § > 3 (used in the proof of Lemma 6.14),
and (a_l)ﬁ + A+ 37 < 7 (used in the proof of Lemma 6.14).

6.1 Bounding the Number of Cliques

First, as in the case of CVD, we have the following simple rule, whose safeness is obvious.

Reduction Rule 6.1. If there exists C € C such that no vertex in C has a neighbor in S, then
remove C' from G. The new instance is (G \ C, k).

Now, also as in the case of CVD, we define the bipartite graph B by setting one side of the
bipartition to be S and the other side to be C, such that there exists an edge between s € S
and C' € C if and only if s is adjacent to at least one vertex in C. Note that by Reduction Rule
6.1, no clique in C is an isolated vertex in B. We thus proceed by presenting the following rule
(which is slightly different than Reduction Rule 4.2), where we rely on the Expansion Lemma
(Lemma 3.1). It should be clear that the conditions required to apply the algorithm provided
by this lemma are satisfied.

Reduction Rule 6.2. If |C| > 2|S|, then call the algorithm provided by Lemma 3.1 to compute
sets X € S and Y C C such that X has a 2-expansion into Y in B and Np(Y) C X. The new
instance is (G'\ (X UV (Y)), k —[X]). Here, V() = Ucey V(O).

We now argue that this rule is safe.
Lemma 6.1. Reduction Rule 6.2 is safe.

Proof. For every vertex s € X, let Cg and C’, be the two clique assigned to s by the 2-expansion.
Notice that for all s € X, there exists an induced P3 in G of the form us — s — vs, where ug is
any neighbor of s in Cs (as s and Cy are neighbors in B, at least one such vertex exists), and v,
is any neighbor of s in C’ (again, at least one such vertex exists). Let this special collection of
induced P3’s be denoted by X*, that is X* = {us — s —vs : s € X}. In one direction, it is clear
that if S* is a solution to (G '\ (X uUV(Y),k—|X]), then S*UX* is a solution to (G, k). For the
other direction, let S* be a solution to (G, k). Let W denote the set of every induced P3 in S*
that contains at least one vertex from X. We denote &’ = (§* \ W) U X*. Observe that since
Np(Y) C X, we have that no induced Ps in §* \ W contains any vertex from V()) U X. Thus,
it holds that S’ is a collection of induced P3’s in G. Since [W| < |X|, we have that |S'| > k.
We conclude that S’ is a solution to (G, k), and as X* C &', we have that S’ \ X* is a solution
to (G\ (X UV (Y),k—|X]). Thus, (G\ (X UV(Y),k—|X|) is a Yes-instance. O

Due to Reduction Rule 6.2, from now on |C| < 6k.

6.2 The Specification of the Marking Procedure

We proceed by presenting a procedure called Mark. The specification of this procedure is similar
to one presented in Section 4.2. In particular, let us emphasize one subtle difference: now we
mark an additional set N, which will be a crucial component of latter rules and arguments.

28

Specification. The procedure Mark first initializes M < @, T < S, and for all s € S,
mark(s) < (. At each stage i, i = 1,2,...,3k + 1, Mark executes the following process. For
each s € T, if there exist C' € C and {u,v} € E(C) such that {s,u} € E(G) but {s,v} ¢ E(G)
and {u,v} N M = (), then insert u,v into M and {u,v} into mark(s), and otherwise remove s
from T'. The order in which the process examines the vertices in 7' is immaterial given that it
examines each vertex in 7" exactly once. Moreover, if ¢ = Wk:Q/ 3], then the process sets U to T
if |T| < [ak?/?] and to an arbitrarily chosen subset of T' of size [ak?/?] otherwise, and it also
sets IV to be equal to | J,c;r mark(s). If T or M are updated in subsequent stages, U and N are
not updated as well.

We say that Mark succeeded if |U| = [ak?/3], and otherwise we say that Mark failed. More-
over, if there exists s € S such that |mark(s)| > 3k + 1, then we say that Mark was lucky. Let
us begin the analysis of Mark with the following simple rule.

Reduction Rule 6.3. If there exists s € S such that |mark(s)| > 3k+1 (i.e., Mark was lucky),
then remove s from G and decrement k by 1. The new instance is (G \ s,k —1).

Lemma 6.2. Reduction Rule 6.3 is safe.

Proof. If there exists s € S such that |mark(s)| > 3k + 1, then there exist 3k + 1 induced Ps’s
in the graph of the form s — u; — w;, i € {1,...,3k + 1}, that intersect only at s. That is, we
have a “flower” whose core is s and whose petals are {u;,w;}. In one direction, let §* be a
solution to (G \ s,k —1). Note that |V (S*)| < 3(k —1). Thus, the number of induced paths of
the form s — u; — w; that intersect V' (S*) is also upper bounded by 3(k — 1). This implies that
there exists an induced path s — u; — w; that does not contain any vertex from V(S*). Then,
S*U{s—wu; —wj;} is a solution to (G, k). For the other direction, let S* be a solution to (G, k).
Observe that there is at most one induced P; in S* that contains the vertex s. Let S’ be the set
of induced P3’s obtained by deleting the induced P; in S* that contains s (if it exists). Then,
S’ is a solution to (G'\ s,k — 1). O

As in the case of CVD, the main purpose of Mark is to derive information on (G, k) when it
is not coincidentally lucky. However, the information we require here is different than the one
we require in the case of CVD. Not only do we analyze one solution rather than all solutions,
we also need to state explicit relations between U and the set of vertices marked by U (that is,
the set N).

Lemma 6.3. For any induced Ps-packing S’ of size at most k there exists an induced P3-packing
S* of size at least |S'| such that the following conditions hold.

e Let P’ be the set of induced P3’s in 8" that do not contain any vertex from U. Then,
P C S .

o There exists a set A C U of size at most %kl/g such that for all s € U \ A, there exist
PeS* and u,v € N such that P =5s —u —v.

Proof. Let 8’ be an induced Ps-packing of G of size at most k. Observe that for all s € S
and {u,v}, {v/,v'} € mark(s), it holds that {u,v} N {uv/,v'} = . In addition, observe that
for all 5,8’ € S, {u,v} € mark(s) and {u/,v'} € mark(s'), it holds that {u,v} N {u/,v'} = 0.
As |V(S')| < 3k and for all s € U, |mark(s)| > [Bk%*?], we derive that there exist at most
3k/[BE*/3] < %k1/3 vertices s € U such that for all {u,v} € mark(s), V(S") N {u,v} # 0.
Let A denote the set of these vertices in U. Moreover, let P* be the set of induced Pj3’s in
S’ that do not contain any vertex from U \ A. Notice that P' C P*. Moreover, notice that
|S"\ P*| < |U \ A|. Now, define P as the Ps3-packing obtained by selecting, for every vertex
s € U\ A, an induced Pj that consists of s and an arbitrarily chosen edge {u,v} € mark(s) such
that V(S") N{u,v} # 0 (there exists at least one such edge). Then, $* = P* U P is an induced

29

Ps-packing. As |S"\ P*| < |U \ A|, we derive that |S*| > |S’|. Moreover, it is clear from its
construction that S* satisfied the two properties in the statement of the lemma. This completes
the proof.]

We also need to derive an upper bound on the number of marked vertices, namely |M]|.

Lemma 6.4. If Mark was neither lucky nor successful, then |M| < 6(a + B)k'3

Proof. Since Mark was unlucky, |mark(s)| < 3k for all s € S. Thus, |M| < 2|U|3k + 2|5\
Ul|([Bk?*/3]—1). Since Mark failed, we further have that |M| < 6([ak?/3]—1)k+6k([SE>/3]—1) <
6(c + B)k'3. O

6.3 Multiple Calls to the Marking Procedure

We employ Mark exactly as in the case of CVD, with the exception that now we also compute
a set M. For the sake of readability, let us repeat this short description (with the computation
of]\/4\) We initialize U = 0, M = 0 and G = G. Then, we call Mark with (G, k) as input. If
Mark was lucky, then we execute Reduction Rule 6.3 and restart the entire process (including
the initialization phase). Else, if Mark succeeded, then for the sets U and N computed by the
current call, we update U<UuU U, M<<MUNand G <« G \ U, and then we proceed to
execute another call. Otherwise, Mark was unlucky and also failed, and we let M denote the
same set M C V(G) \ S as computed by the current call to Mark, after which we terminate the
process. (It may hold that MM # ().) Note that after each call to Mark, either Reduction Rule
6.3 is executed or the size of U increases, and therefore it is clear that the process eventually
terminates. We denote L = S\ U.
By relying on Lemma 6.3, we have the following lemma.

Lemma 6.5. Let i be the number of calls to Mark that succeeded but were unlucky. If (G, k) 18
a Yes-instance, then there exists a solution S* to (G, k) and a set A C U of size at most i - k1/3

such that for all s € U \ A, there exists P € 8* and u,v € M such that P = s —u — v.

Proof. Suppose that (G, k) is a Yes-instance, and let &’ be a solution to (G, k) that minimizes
the number of vertices s € U for which there do not exist P € S’ and u,v € M such that
P =5s—u—wv. Let A denote the set of these vertices in U. Suppose, by way of contradiction,
that |A| > i - %kl/?’. Then, by the pigeonhole principle, there exists an iteration j € {1,2...,7}
such that |[ANU;| > %l{:l/ 3, where U; denotes the set U computed in iteration j. By Lemma
6.3, there exists a solution S* to (G, k) such that the following conditions hold.

e Let P’ be the set of induced Ps’s in S’ that do not contain any vertex from U;. Then,
P C S*.
e There exists a set A* C U; of size at most %kl/ 3 such that for all s € U; \ A*, there exist

P e 8" and u,v € M such that P = s —u —v. In fact, u,v € N, the set computed in
round j.

By the first condition, we deduce that for every P € S’ such that P = s — u — v for some
selU \U; and u,v € M it also holds that P € &*. Furthermore, from the second condition
we derive that S* has fewer vertices s € U; than &’ for which there do not exist P € S’ and
u,v € M such that P = s —u — v. However, we thus conclude that S* has fewer vertices s € U
than &’ for which there do not exist P € &’ and u,v € M such that P = s — u — v. Since this
contradicts the choice of §’, we have that [A| < i - %kl/ 3. This completes the proof. O

Before we proceed to proceed to present a consequence of Lemma 6.5, we need to present a
new rule that is also necessary to upper bound |M|.

30

Reduction Rule 6.4. Let i be the number of calls to Mark that succeeded but were unlucky. If
(R - k1/5 then return a trivial Yes-instance.

Lemma 6.6. Reduction Rule 6.4 is safe.

Proof. Let us consider the following simple procedure. Initialize So = (). Now, for j = 1,2,...,1,
perform the following computation: Let §; be the induced P3-packing whose existence is guar-
anteed by Lemma 6.3 when applied with &’ = S;_1. (We implicitly assume that induced Ps’s
that are not of the form s —u—wv, for s € U and U,V € M are discarded.) By the two properties
of §* as specified by Lemma 6.3, we have that for all j € {1, 2,...,1}4, |5 >]SJ-,1|+|UJ-|—%/74;1/37
where U; is the set U computed in iteration j. Since for all j € {1,2,...,i}, |U;| = [ak?/3],

: 3 k k2/3 1
we overall have that |S;| >4 - (ak?/3 — Ekl/:)’). Observe that SR TR =GR/ 3 < Logt/s.

Thus, if i > ﬁkl/:ﬂ then |S;| > k, in which case S; is a solution to (G, k). This implies that
Reduction Rule 6.4 is indeed safe. O

For the sake of clarity, let us formally define the solutions that we would like to analyze.

Definition 6.1. We say that a pair (S*, A) zs a nice solution to (G, k) if S* is a solution to
(G,k) and A C U is a set of size at most =) k2/3 such that for all s € U \ A, there exist

PeS* andu,vEMsuch that P = s —u — v.

Now, as a consequence of Lemma 6.5 and Reduction Rule 6.4, we have the following corollary.
Corollary 6.1. If (G, k) is a Yes-instance, then there exists a nice solution to (G, k).

Proof. Suppose that (G, k) is a Yes-instance. Let ¢ be the number of calls to Mark that succeeded
but were unlucky. By Lemma 6.5, there exists a solution $* to (G,k) and a set A C U of size
at most ¢ - §k1/3 such that for all s € U \ A, there exist P € §* and u,v € M such that
P = s —u —v. By Reduction Rule 6.4, we have that i < 1 k:l/3. Therefore, we have that
Al < 2L k1/3 3k1/3 (a—l)ﬂk2/3’ We have thus obtained a nice solution (S*, A) to (G, k). O

The usefulness of Corollary 6.1 stems from the observation that it implies that we have
found a (possibly large) set U C S such that not only there exists a solution that packs almost

all the vertices in U in induced P3’s with vertices in M but also that the removal of U from G
significantly simplifies G as described by the following lemma. As the proof (and statement) of
this lemma is identical to the proof of Lemma 4.7, it is omitted.

Lemma 6.7. For every clique C € C, C[V(C) \ M] is a module in G\ U.
Before we proceed to sieve bad clique, let us upper bound U\/J\ |.
Lemma 6.8. |]\7\ < %k‘l%

Proof. Due to each call to Mark, at most 2[ak?/3] - [3k?/3] new vertices are inserted into M.
By Reduction Rule 6.4, Mark was called less than %kl/ 3 times. Thus, the total number of

vertices inserted into M is upper bounded by 2(L kY3 — 1) - [ak?/3] - [BEY3) < %klg O

6.4 Sieving Bad Cliques

We sieve cliques based on three classifications, similarl to the case of CVD. First, we say that
a clique C € C is big if |V(C)| > vk*/3, and otherwise it is small. Furthermore, we say that a
clique C € C is huge if |V (C)| > pk. Recall that by Reduction Rule 6.2, |C| < 6k. Thus, as in
the case of CVD, we directly have the following observation.

31

Observation 6.1. The total number of vertices in small cliques in C is upper bounded by 6fyk1%.

Second, we say that a clique C' € C is heavy if [V/(C) N (M U M)| > $[V(C)|, and otherwise

—~

it is light. In particular, heaviness is now measured with respect to M U M, while in the case
of CVD it was measure only with respect to M. It is clear that the total number of vertices in
heavy cliques in C is upper bounded by §|M U M |. Thus, by Lemmata 6.4 and 6.8, we have the
following observation.

Observation 6.2.2 The total number of vertices in heavy cliques in C is upper bounded by
60(a+ B + lo‘f)kli

(03
Third, as in the case of CVD (except that the constant 2 is replaced by 6), for a clique C' € C
and a vertex s € S, we say that C is wisible to s if [Ng(s) N V(C)| > 6nk?/3, and otherwise
we say that C' is hidden from s. For a clique C' € C, we let vis(C) denote that set of vertices
in S to which C is visible. Moreover, we say that a clique C' € C is wvisible if |vis(C)| > \k%/3,
and otherwise we say that it is hidden. To bound the number of visible cliques, we need the
following rule.

Reduction Rule 6.5. If there exists a vertex s € S with at least %kl/?’ + 2 cliques in C wvisible
to s, then remove s from G and decrement k by 1. The new instance is (G \ s,k — 1).

Lemma 6.9. Reduction Rule 6.5 is safe.

Proof. In one direction, let S* be a solution to (G \ s,k — 1). Let A denote the set of cliques
in C that are visible to s. Since |V(S8*)| < 3(k — 1), |A| > %k’l/?’ + 2 and by the definition
of visibility, we have that there necessarily exist two distinct cliques A, A’ € A such that each
clique among A, A’ has a vertex that is a neighbor of s and does not belong to V(S*). Since
these two vertices together with s form an induced P; in G, called P, we derive that S*U{P} is
a solution to (G, k). For the other direction, let S* be a solution to (G, k). Observe that there
is at most one induced P in S* that contains the vertex s. Let S’ be the set of induced P3’s
obtained by deleting the induced Ps in S* that contains s (if it exists). Then, &’ is a solution
to (G\ s, k—1). O

After we exhaustively apply Reduction Rule 6.5, as in the case of CVD, for every vertex
s € S there exist at most %kzl/g' +1< %kzl/?’ cliques in C visible to s. Since |S| < 3k, we
|SIERYS 3
derive that there are at most W =)\—k /3 visible cliques. Thus, we have the following
n

observation.

Observ;ition 6.3. The total number of vertices in non-huge visible cliques in C is upper bounded
by 4k's.

Altogether, we say that a clique C' € C is good if it is (i) big, (ii) light and (iii) hidden or
huge (or both), and otherwise we say that it is bad. We denote the set of all good cliques in C
by D. By Observations 6.1, 6.2 and 6.3, and that y = 26, we derive the following lemma.

Lemma 6.10. The total numbgr of vertices in bad cliques in C is upper bounded by
Bu(y +0(a+ B+ %) + 1)k's.

6.5 Properties of Clique Sides

For all C' € C and s € S, denote N¢(s) = Ng(s) N V(C) and N¢(s) = V(C) \ Ne(s). Notice
that for all C € C, s € S, u € N¢(s) and v € N¢(s), it holds that s — v — v is an induced
P3 in G. Furthermore, for all C' € C and s € S, let Mc(s) denote the set of minimum size
among N¢(s) and N¢(s) (if they have equal sizes, the choice is arbitrary). Let us first verify
that Lemma 4.11 also holds in the context of INDUCED P3-PACKING.

32

Lemma 6.11. For all s € L and C € D such that Ng(s) N (V(C)\ M) # 0, it holds that C' is
visible to s.

Proof. Let s € L and C € D such that Ng(s) N (V(C)\ M) # 0. Then, by Lemma 6.7, we
have that V(C)\ M C Ng(s). Thus, to prove that C is visible to s, it is sufficient to show
that |V (C) \ M| > 61k?/3. Since C' € D, we have that C is light, and therefore |V (C)\ M| >
(1—1)|V(C)|. Moreover, since C is big, |V (C)| > vk?/3, and hence |V (C)\ M| > (1 — })vk*/3.
Since (1 — %)7 > 6m, the proof is completed. O

Now, let us also explicitly state the following simple corollary to Lemma 6.11

Corollary 6.2. For all non-huge C € D, the number of vertices s € L such that Ng(s)N(V(C)\
M) # 0 is upper bounded by \k?/3.

Proof. Let C' € D be a non-huge clique. By Lemma 6.11, C' is visible to every vertex s € L such
that Ng(s) N (V(C)\ M) # (). Thus, since C is hidden, the statement is true. O

Let us now argue that for any nice solution to (G, k), it holds that for every clique C € D,
most of the clique C' is “unused”.

Lemma 6.12. Let (S*, A) be a nice solution to (G, k). For all non-huge C' € D, it holds that

(V)N VS \ (M UID)| < (5555 + MES.

Proof. Let C' € D be a non-huge clique. Since C is a clique where Ng(C) C S, every induced
P; in §* that contains at least one vertex from V(C') must also contain at least one vertex from
S. Because (S8*, A) is a nice solution, every induced P3 in S* that contains at least one vertex

from U \ A cannot contain any vertex from V(C) \ M. Furthermore, since |A] < (a_?’l)ﬁk‘z/?’,

there exist at most 2| A| < (a—61) 3 k23 vertices v € V(S*) for which there exists an induced P in
S* that contains both v and at least one vertex from A. Now, let us denote the set of induced
P3’s in S* that contain at least one vertex from V(C)\ M and no vertex from U by P. Then,
we note that every induced path P € P must contain an edge {s,v} € E(G) for some s € L
and v € V(C), and that |[V(P)N(V(C)\ M)| =1 (by Lemma 6.7). By Corollary 6.2, we derive

that |(V(C)NV(P))\ M| < Ak?/3. This completes the proof. O

In order to proceed with our analysis, we need to refine Definition 6.1 with respect to a set
of vertices.

Definition 6.2. Let T C V(D) \ (M U]\//.7) We say that a pair (S*, A) is a T-nice solution to
(G, k) if (8%, A) is a nice solution, and for all P € 8* such that V(P)NU = 0, it holds that
V(P)NT = 0.

We now claim that that for any small enough set 7', it is possible to focus on seeking nice
solutions with respect to T'. Formally, we prove the following lemma.

o~

Lemma 6.13. Let T C V(D) \ (M U M) be a set of size at most (ai‘i)ﬁk‘z/g’. If (G)k) is a

Yes-instance, then there exists a T-nice solution to (G, k).

Proof. Suppose that (G, k) is a Yes-instance. Then, by Corollary 6.1, there exists a nice solution
to (G,k). Let (§*, A) be a nice solution to (G, k) that minimizes the number of vertices v €
T for which there exists P € S* such that V(P)NU =) and v € V(P). We claim that
there do not exist v € T and P € S8* such that V(P)NU = 0 and v € V(P). Suppose,
by way of contradiction, that there exist v € T and P € S* such that V(P) N U =0 and
v € V(P). Let C denote the clique in D such that v € V(C). We first observe that due
to Lemma 6.7 and because v ¢ M and V(P)N U = (), if we replace v in P by any other

33

vertex in V(C) \ M, we obtain yet another induced P3. Thus, by the choice of (S*, A), we
derive that V(C) \ (T U M UV(8*)) = (. In other words, V(C)\ (T'U M) C V(S*). Hence,

\(V(C)QV(S*))\(MUZ/\/T)\ > \V(C)\(TUMU]/\/[\)\ Then, because C € D and |T| < ﬁkwg’,
we have that [V(C)\ (TUMUM)| > |V(C)\ (MU M) > SHV(0)| - 5y

Thus, ‘STTI|V(C)| = 1)5k:2/3 <|(V(C)nV(S*))\ (MU M)| Now7 let us consider two cases,
corresponding to whether or not C is huge.

e Suppose that C is huge. Then, 65—1|V()| glpk‘ (0:11)5 3 > 3k

(because ‘STTlu — (a£41),8 > 3). However, |[(V (C’) V(S*)) \ (MU Z\/I\)| < V(8] < 3k.
Thus, we have reached a contradiction.

e Suppose that C' is not huge. Then, by Lemma 6. 12 this means that |(V(C) NV (S*)) \
(MUM)| < (55555 + VK. Since 251V(C) k< (v ()NV(SI))\ (M UM)]|
and |V (C)| 2 wkz/?’, we have that 55—114:2/3 (a_ B ((ng T M\)k2/3. However,

since ﬁ + A< ‘Sg—lfy, we have reached a contradiction.

As both cases led to a contradiction, the proof is complete. O

6.6 Assigning Sets of Vertices to Vertices in U

For every vertex s € U, denote Q'(s) = UCeD(MC(s)\(MU]\/Z)). Moreover, for every vertex s €
U, if |Q'(s)] < L(a—61)5 |, then denote Q(s) = Q'(s), and otherwise let (s) be an arbitrarily

seU Q(S)

chosen subset of Q(s) of size exactly |~(o¢—71) 5
Since |S| < 3k, the following observation is immediate.

K3

Observation 6.4. \Q| <1 1)5

Now, we proceed to apply the following rule, whose safeness is based on Lemma 6.13.

Reduction Rule 6.6. If there exists a vertex v € V(D) \ (M U MU Q), then remove v from
G. The new instance is (G \ v, k).

Lemma 6.14. Reduction Rule 6.5 is safe.

Proof. In one direction, it is clear that if (G\v, k) is a Yes-instance, then (G, k) is a Yes-instance.
For the other direction, let us suppose that (G, k) is a Yes-instance. By Lemma 6.13 and since
v ¢ MU M, there exists a {v}-nice solution (§*, A). If (S§*, A) is a solution to (G \ v, k),
then the proof is complete. Thus, we next suppose that (S§*, A) is not a solution to (G \ v, k).
Because (S*, A) is a {v}-nice solution, this means that there exists P* € §* such that v € V(P*)
and V(P*) N U # (. Let s* denote some vertex in V(P*) N U # 0 (if there exist two vertices
in V(P*) N U, we arbitrarily choose one of them). Now, observe that S* \ {P} is a solution
to (G'\ {v, s*} k — 1), and therefore (G \ {v,s*}, k — 1) is a Yes-instance. Moreover, note that

‘Q()‘ <) k2/3 (jl)ﬁ(k_l)Z/g (kki/;/s - (a 1) (k 1)2/3 (1_%)2/3 S (ailll)lg(k_l)2/3‘
Then, by Lemma 6.13, there exists a Q(s*)-nice solution (8, A’) to (G \ {v,s*}, k —1).

Since (§’, A’) is a Q(s*)-nice solution, we have that for all u € V(S')NQ(s*), there exists P €
S’ such that V(P)NU # 0. However, since (S’, A) is a nice solution and Q(S*)H(MU]/W\) =, we
further derive that for all u € V(S")NQ(s*), there exists P € S" such that V(P)NA’ # (. Because
|A'| < 1)6(]€ —1)%/3, we deduce that |V(S') N Q(s*)| < 2|4'| < = 1)B(k — 1)%/3. However,
since Q(*) = Lmkwﬂ (because v € Q'(s*) \ Q(s*)), we have that Q(s*) \ V(S') # 0. Let

v* denote some vertex in Q(s*) \ V(S’) (by our previous argument, such a vertex exists), and

34

let C* denote the clique in D that contains v*. Then, by the definition of Q(s*), we have that
v* € Mg+ (s*). Observe that any vertex in V(C*) \ Mg« (s*) together with s* and v* forms an
induced Ps. Hence, if V(C*)\ (Mg (s*)UV (S')) # 0, then 8" along with an induced P3 consisting
of some vertex in V(C*)\ (Mg« (s*)UV(S")), s* and v*, forms a solution to (G, k), in which case
the proof is complete. However, we claim that necessarily V(C*) \ (Mg« (s*) UV(S’)) # 0. For
this purpose, it is sufficient to prove that |V (S’)| < |[V(C*)\ M+ (s*)|. Let us first observe that
[V(C*)\ M+ (s*)| > $|V(C*)]. Hence, it is sufficient to prove that [V (C*) NV (S')| < $|V(C*)].
To this end, we consider two cases, corresponding to whether or not C* is huge.

e Suppose that C* is huge. In this case, 3|V (C*)| > &k. Since [V(C*)NV(S')| < [V(S')] =
3(k—1) and & > 3, indeed |V(S8')| < 3|V(C*)|.

o~

e Suppose that C* is not huge. In this case, by Lemma 6.12, |(V(C*)NV(S"))\ (M UM)| <

(ﬁ + \)(k — 1)¥/3. Observe that since C* € D, we have that |[(V(C*) NV (S)) \

(MUM)| = [V(C*) V(S| = V(C)NV(S)N(MUM)| > [V(C*) N V(S| = [V(C*)N

—

(MUM)| > |V(C)NV(S) — HV(CY] > [V(C*) NV (S)| — $7k*3. Thus, we derive
that [V (C*) NV(S")| — $7k%3 < ((a—Gl)ﬂ + M) (k —1)%3, and therefore |V (C*) NV (S')| <

(ﬁ + A+ %’y)kQ/‘g. However, |V (C*)| > %k2/3. Since ﬁ + A+ 3y < 7, indeed

V(S < 5lV(CH)].

As both cases led to the desired claim, the proof is complete. O

6.7 Proof of Theorem 3
We are finally ready to present the proof of Theorem 3.

Proof of Theorem 3. Let (G,k) be an instance of INDUCED P3-PACKING. Our kernelization
algorithm simply applies (exhaustively) Reduction Rules 6.1 to 6.6. The output is the instance
obtained once none of these rules is applicable. Let us observe that each rule among Reduction
Rules 4.1 to 4.16 can be applied in polynomial time, it strictly decreases the size of G' and it
does not increase k. Thus, our kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the outputted instance by
(G, k). Let us observe that V(G) consists of the following vertices.

e Vertices in .S, whose number is at most 3k.
Lo . : 2
e Vertices in bad cliques, whose number is at most 3u(y + d(a + 8 + %) +)k (by

An
Lemma 6.10).
e Vertices in M U M, whose number is at most (6(a+) + %)klg (by Lemmata 6.4 and
6.8)

e Vertices in @, whose number is at most (Oﬁillmklg (by Observation 6.4).

Thus, the total number of vertices is indeed O(l{:lg). This completes the proof. O

7 'TRIANGLE PACKING IN TOURNAMENTS

In this section, we prove the following theorem.

Theorem 4. TPT admits a kernel with O(k3/?) vertices.

35

Let (T, k) be an instance of TPT. There is a simple polynomial-time %—approximation algo-
rithm for TPT: greedily find a maximal collection, say S, of vertex-disjoint triangles in 7" and
output §. Indeed, if there is a collection S* of of vertex-disjoint triangles in 7" with |S*| > 3|S|,
then there is a triangle in S* not hit by V(S), contradicting the assumption that S is maximal.
If |S| < £, then we conclude that (7 k) is a No-instance. If [S| > k, then we conclude that (7', k)
is a Yes-instance. Hence, we assume that % <|S| < k—1. Let S = V(S), then |S| < 3k—3. By
maximality of §, T'— S does not have any directed triangle, and so by Proposition 5.1, T'— S
does not have any directed cycle. Hence, S is a feedback vertex set of T'. Let X =T — S. Note
that since S is a feedback vertex set, X is a transitive tournament.

Let (T, h) be an instance of TPT. We call a collection of at least h vertex-disjoint triangles
of T as a solution to the instance (T, h). First, we have the following reduction rule.

Reduction Rule 7.1. If there exists s € S such that there are 3k — 2 triangles pairwise
intersecting only at s, then remove s from T. The new instance is (T'\ {s}, k —1).

The safeness of rule 7.1 is simple. In one direction, if S* is a solution to (7, k), by removing
the triangle (if any) containing s, we obtain a solution to (T"'\ {s}, k—1). In the other direction,
suppose that S* is a solution to (T"\ {s},k —1). If |S*| > k, then S* is a solution to (T k).
Hence |S*| = k — 1. If there is a triangle, say szy that is not hit by V(S*), then S* U {szy} is
a solution to (T, k). Otherwise, V(S*) hits all 3k — 2 triangles pairwise intersecting only at s,
and so |V(8*)| > 3k — 2, which contradicts |S*| =k — 1.

We apply Reduction Rule 7.1 exhaustively. By the same argument as for Reduction Rule
5.1, for any vertex s € S, we can check whether that exist 3k triangles intersecting pairwise
only at s in polynomial time. Thus, from now onwards, we assume that Reduction Rule 7.1 is
no longer applicable.

In this section, we reuse the notation used in Section 5. Throughout this section we work
with the unique ordering < of vertices of X and use terms like consecutive vertices in X, smallest
and largest vertex in X.

7.1 Exploring the Vertex Cover Structure

Recall the notion of vertex cover for a set of arcs of T'. Formally, for a subset of arcs A C E(T),
a subset O C V(T) is called a vertex cover for A if for every arc uv € A, either u € O or v € O
(or both). However, the definition of strong arc is slightly different from that in Section 5. An
arc xy of T is called strong if (1) at least one vertex among x and y belongs to S, and (ii) there
are at least 3k vertices z € V(T') such that xyz is a triangle. Let F' be the set of all the strong
arcs of T', which can be easily found in polynomial time.

Recall that throughout our kernelization algorithm, we work with the unique topological
ordering < of X. Accordingly, we have that if zz’ is an arc in E(X), then z < 2’. Furthermore,
we need the following notion of distance.

Definition 7.1. Let xz,2' € X be two vertices such that x < z', and let d — 1 be the number
of vertices y such that x < y < z'. Then, the distance between x and ' is d. Accordingly,
¥ —xz:=dandx — 12 = —d.

In addition, we need the following definition which concerns the relations between the vertices
in S and the vertices in X.

Definition 7.2. For s € S and v € V(X), define f; (z) = |{y eV(X):y=uz sye E(T)}},
and f(z) = {y e V(X) :y>=x, ys € E(T)}|.

Similar to Lemma 5.1, we can prove the following.

36

Lemma 7.1. For every s € S, there is x € X such that 0 < f; (z) — f(z) < 1.
As in Section 5 we have the following notation.

Definition 7.3. For any s € S, define ¢(s) as the smallest vertex x5 € V(X) satisfying the
imequalities in Lemma 7.1.

We now show that given Reduction Rule 7.1, neither f; (¢(s)) nor f(¢(s)) can be too
“large”. Indeed, if there existed s € S such that f; (o(s)) > 3k — 1, then f}(¢(s)) > 3k — 2,
and we could have formed 3k — 2 triangles, each consisting of s, a vertex from {z € V(X) :
x =X p(s), st € E(T)}, and a vertex from {y € V(X) : y > ¢(s), ys € E(T)}. In this case,
Reduction Rule 7.1 is applicable. However, as we assumed that Reduction Rule 7.1 is no longer
applicable, we have that for all s € S, f; (p(s)), fif (¢(s)) < 3k — 2. By using this assumption,
we have useful certificates for strong arcs similar to the one in Lemma 5.2.

Lemma 7.2. Let v € X, and 5,5’ € S. The following statements are true.

1. If sz € E(T) and ¢(s) —x > 6k — 2, then sx is strong.
2. Ifxs € E(T) and © — ¢(s) > 6k — 2, then xs is strong.
3. If s € E(T) and ¢(s") — p(s) > 9k — 4, then ss is strong.

To proceed, as before, we also need to introduce two terms concerning triangles.

Definition 7.4. Let x1xoxs be a triangle of T, and A = {x1,x9,23}. The span of xixows is
the mazimum distance between any two vertices in (A\ S) U p(ANS). Moreover, the triangle
is called local if none of its arcs belongs to F.

In the following lemma, we will show that a local triangle is indeed local in the sense that
it must have a “short” span. The proof of the following is identical to the one for Lemma 5.3

Lemma 7.3. Let xyxox3 be a local triangle with at least one vertex from X. Then, its span is
at most 18k — 8.

7.2 Applying the New Expansion Lemma

In what follows, we denote @ = 3, § = 845, v = 32, u = 9, A = 25, § = 11, and ¢ =
3 so that § — 36 — 3¢ > Ay (used in Observation 7.8), (@ — 2)¢ > 4 (used in the proof of
Observation 7.10), (§ — 9)¢ > 4 (used in the proof of Lemma 7.6), £2 > 4 (used in Lemma 7.7),
and (A — QC“T” —a)(y —20) — 2ap — Lo > 0 (used in the proof of Lemma 7.5).

Next we give the definition of intervals.

Definition 7.5. A set Y C V(X) is an interval if it contains all the vertices in X that lie
between the largest and smallest elements in'Y (with respect to the ordering < induced by X).”
We refer to |Y| as the length of Y.

We partition V' (X) into disjoint intervals, each of length Sk. That is, we follow the vertices of
V(X) from left to right in the ordering <, and partition them into disjoint intervals X1,..., X,
such that each X;, 1 <i < p, is of length Sk. Let S; := {s € S : ¢(s) € X;}.

Definition 7.6. Let X; be an interval such that |S;| > av'k, then we call X; bad of Type 1.

Clearly, there are less than %\/E bad intervals of Type 1, since |S| < 3k.

Observation 7.1. There are at most % bad intervals of Type 1 among X1,...,X,.

"That is, the elements of Y are consecutive with respect to <.

37

For each i, we call a 3-approximation algorithm to TPT on the tournament T[X; U S;].
If the 3-approximation algorithm returns a solution of size least Vk, we call X; bad of Type
2. There are at most vk bad interval of Type 2; otherwise, the (obviously vertex-disjoint)
union of 3-approximate solutions of all these bad intervals has size at least k, and we conclude
immediately that (7, k) is a Yes-instance.

Observation 7.2. There are at most \'k bad intervals of Type 2 among X1, ... , Xp.

Observations 7.1 and 7.2 imply that there are at least (p—1) — %\/E— Vk non-bad intervals
— we do not call them good yet, since we will introduce another type of bad intervals. For every
non-bad interval X;, let Y;* be the sub-interval of X; excluding 18k smallest vertices and 18k
largest vertices. Then every Y;* has length (5 — 36)k. Recall that a triangle is local if it has no
arcs in common with F'. We give here two observations for later use.

Observation 7.3. If zyz is a local triangle with x € Y;* for some i, then z,y,z € X; U S;.

Proof. By Lemma 7.3, zyz has span at most 18k — 8. Note that € Y;*, while Y;* is obtained
from X; by excluding 18k smallest and 18k largest vertices, so ({z,y,z} N X)Up({z,y,z} NS)
is a subset of X;. In other words, x,y,z € S; U X;.]

Observation 7.4. If X; is a non-bad interval, then every collection of vertex-disjoint local
triangles contains less than 6Vk vertices in Yr>.

Proof. Suppose for a contradiction that there is a collection @ of local triangles with at least 6v/k
vertices of Y;*. Since each local triangle contains at most two vertices of Y;* (Y;* is transitive),
the collection has at least 3v/k local triangles. Let us consider a local triangle zyz with € Y.
By Observation 7.3, z, v, z € S; U X;. Hence O contains at least 3v/k triangles in X; U S;. This
implies that a 3-approximation algorithm for TPT when run on T[X; U S;] returns a solution
of size at least Vk. Therefore X; is bad of Type 2, a contradiction. O

We remark that Observation 7.4 is very strong since it allows us to upper bound the number
of vertex-disjoint triangles intersects a specific interval.

We now apply the New Expansion Lemma the first time to introduce the bad intervals of
Type 3; later on, we will apply the New Expansion Lemma the second time to detect a relevant
vertex. Let Y™ be the union of all ¥;* such that the corresponding X; is non-bad. Let us
consider the (undirected) bipartite graph G with vertex bipartition (S,Y™), and E(G) consists
of edges corresponding to those arcs in F' which has one endpoint in .S and another endpoint
in Y*. By applying New Expansion Lemma (Lemma 3.2) on G, we obtain Y* and S satisfying
the following.

Observation 7.5. S has an (v/k-expansion to Y* in G, Ng(f/i*) C S and [Y*\ Y*| < tVE|S).
We can now define the third type of bad intervals.
Definition 7.7. For every i, if |Y;* \ 5/}*] > 3Lk, then X; is called bad of Type 3.
Then there are at most v/k bad intervals of Type 3 since |Y*\ Y*| < (V/k|S| < 30k3/2.
Observation 7.6. There are at most 'k bad intervals of Type 3 among X1, . .. , Xp.
Finally, we are ready to define the notion of good interval.
Definition 7.8. Let X; be an interval such that it is not bad of Types 1, 2 or 3, then it is called

good.

38

Observations 7.1, 7.2 and 7.6 imply that there are at least p — —%\/E —Vk — Vk good
intervals. Then we have the following observation.

Observation 7.7. Ifp > (g + 3)\/% then there are at least vk good intervals.

For every good Xj, let YV; = Y;* N Y*. Then |Yj] > VX — 1Y\ Y*| > (8 — 36 — 30)k. Since,
B — 36 — 3¢ > Ay, we have the following observation.

Observation 7.8. |Y;| > A\vk for every good X;.

Given z, 2’ € Y; with x < 2/, we say that z and 2’ are consecutive in Y; if there is no y € Y;
such that z < y < 2/. Note that Y; is not a sub-interval of X;, so two consecutive vertices in
Y; are not necessary consecutive in X;. To avoid confusion, we do not introduce the distance
notion between two vertices in Y;; however, the order < in Y; is the restriction of < on X. The
following observation is immediate from Observation 7.4.

Observation 7.9. If X; is good, then every collection of vertex-disjoint local triangles contains
less than 6Vk vertices in Y.

For a vertex s € S;, ¢(s) can be thought as a “balanced projection” of s on X. However,
©(s) may not be a balanced projection of s on Y;. Thus, we wish to find a balanced projection
of s on Y;. To do so, we repeat what we did before to find ¢(s) as follows. For every s € S,
let Ry (z) ={yeYi:y=<uz,sy€ E(T)} and Rf (z) ={y € Yi:y > x,ys € E(T)}. Note that
R, (z) and R} (z) only count arcs between s and Y;.

Lemma 7.4. For every s € S;, there is x € Y; such that 0 < |R; (z)| — |RS (z)] < 1.

The proof of Lemma 7.4 is similar to that of Lemma 5.1, where note that |R; (z/)] —
|RF(2")| = |R; (x)| — |RS (z)| + 1 for every x < 2’ consecutive in Y.

Definition 7.9. For any s € S;, define 0(s) to be the smallest vertex in Y; satisfying the
inequalities in Lemma 7.4.

We denote R = R (0(s)), Ry = R, (0(s)) for short. We could not upper bound |R; | and |R}|
as what we did for ¢(s); thus, we overcome this by introducing the notions of heavy and light.

Definition 7.10. Given s € S;, if |R;| > 'k + 1, then we call s heavy; otherwise, we call s
light.

Thus, if s is light, |R; |, |R| < pvk. Let

R, = U (RS uR)).
{s€S;|s is light}

Then |R;| < 2uVE|S;| < 2apk since |S;| < avk.

Recall from Observation 7.8 that |Y;| > Avy. We partition Y; into subsets Y;1,..., Y, | /5 Where
Vi j| > yVk for every j < AWk, and = < ' for every x € Y; ;,2’ € Y j» with j < j' (it is useful
to think that Y;; is a “sub-interval” of Y;; however, we would like to avoid that term since Y;
itself is not an interval).

Definition 7.11. A set Y; ; is called fit if |Y; ;N Ri| < 3v'k and 6(S;) NY;; = 0.

Since |R;| < 2apk, there are at most %‘T“\/E sets Y; ; such that |Y;; N R;| > 3vk. Since
|S;| < avk, there are at most aV'k intervals Y; ; such that Y; ; contains 6(s) for some s € S;.
Thus, there are at least (A— 2% —a)\/% fit subset Y; ; of every Y;. For each fit Y ;, let Y, Y'; be

7:7j) 7/7
39

the 0v/k smallest vertices and 6v/k largest vertices in Y; ;, respectively, and Y/, >V, j\(YZ_]UYZ';)
Then Y/, = (v — 20)Vk. Let

A = (U Yijj> \R;, and A= U A;.
{7lYi,; is fit} {i|X; is good}

Then
|A;] > ()\ . Tﬂ - a> VE(y — 20)10vk — |Ri| > ((A - 20‘7”’ —a) (v — 26) — 2au> k,

and by Observation 7.7, we have |A| > Vk((\ 23“ —a)(y —20) — 2au)k.
Now we apply the New Expansion Lemma (Lemma 3.2) the second time, this time on
G[AU S] to get A and S such that § has an £v/k-expansion into A in G[AU S] A)CS

and |A\ A| < tVE|S|.

G[AUS] (

Lemma 7.5. S has an {\/k-expansion into AinG, Ng(//l\) C S and A is nonempty.

Proof. Since G[AU §] is a induced subgraph of G, then clearly S has an k- expansion into A
in G. By Observation 7.5, Ng(Y*) - S so there is no edge between Y+ and S\ S in G. Thus,

there is no edge between A and S \ S in @ since A C Y*. Since NG[AUS] (A) C S, there is no

edge between A and S\ § in G[A U S]. Thus, there is no edge between A and S\ S in G. In
other words, N(;(g) cs.

Observe that |A\ A| < ¢VE|S| < (VE[S| < €ak®/?. Hence, A > |A| —|A\ A| > (A — 22 —
a)(y — 26) — 2ap)k3/? — Lak®/? > 0. This proves the lemma. O

7.3 Using Expansion to Detect an Irrelevant Vertex

Recall that a triangle is local if it contains no strong arc, i.e. it has no arcs in common with
F. In the next lemma, we will show that given a mixed collection of local triangles and strong
arcs, it is possible to exclude a particular vertex of A from the collection.

Lemma 7.6. Let z € A and assume that there is a vertez-disjoint collection O of local triangles
and strong arcs such that |O] = k and x belongs to a local triangle of O. Then there is a
vertez-disjoint collection O of local triangles and strong arcs such that |O'| = k and z does not
belong to any local triangle or strong arc of O.

Proof. Let O be the vertex set of O, then |O| < 3k. Assume that the statement of the lemma
was false and let zyz € O and = € Y;;. By Observation 7.3, we have y,z € X; U S; since
Y;; € Y. Thus, either y € S; or z € S;; otherwise, xyz is transitive. We first prove the
following observation.

Observation 7.10. Neither y nor z is heavy.

Proof. Suppose that y is heavy. If there are v € R;,v’ € R; such that v,v" ¢ O, then
O = (O\{xyz})U{yvv'} is a desired collection, a contradiction. Thus we conclude that either
R; C O or R;‘ C O.

If R; C O, we will show that we can exchange some strong arc of O with some strong
arc outside to “free” one vertex of RJ from O. Since R;’ C Y;, by Observation 7.9, at most
6k vertices in R;j belong to a local triangle in O. Recall that \R; | > wVk by the definition

of heaviness. Thus at least (u — 6)v/k vertices belong to some strong arcs of O; we call that
set Z. Then O contains a matching of strong arcs from Z into S (since a strong arc must

40

contain at least one vertex in S). Let W be the set of vertices of S in that matching, then
[W| = |Z| > (n — 2)Vk. Note that Z C Y* since R; C Y; C Y*. By Observation 7.5, we
have Ng(i}*) C S, and so W C Na(Z) C S. By Observation 7.5 again, we have |INa(W)| >
VEW| > (u— 2)k > 4k = |O| + k. We choose an arbitrary u € Ng(W) (among at least k
candidates) such that u ¢ O, let w € W be a neighbor of u in G (such w always exists since
u € Ng(W)). Suppose that wv € O, then v € Z C R/. Then remove wv from O and add wu
to O. We still call the new collection O. In doing so, we free v € R;j from O.

If R, C O, by repeating the above argument, we can free some v e R, from O. Note that
since we have k candidates to choose to exchange strong arcs, we can avoid “recapturing” v into
O. Then O := (O \ {zyz}) U {yvv'} is a desired collection, a contradiction. Similarly, we can
show that z is not heavy. d

We have 3 cases:

Case 1: y € S; and z € X;. Then y is light by Observation 7.10, and since = € AcC A
while AN R; = 0, we have z ¢ R;, and so z ¢ R} U R,. Combining with 2y € E(T), we
have 6(y) > x. Recall that YZJ; is the set of 0v/k largest vertices of Y; ;, and hence u < v for
every u € Y/ ;,v € Y;; Since z € Y/;, we have z < v for every v € Y;; Note that 0(y) = x,
and 0(y) ¢ Y;; since Y;; is fit. Thus 6(y) > v for every v € YlJ; Since RS U R, C R;, we

have vy € E(T) for every v € YZJ; \ R;. Besides, |YZ+] N Ri| < 3Vk since Y is fit, and so
Y5\ Ril > V5 = V50 Ri| > (6 = 3)Vk.

Note that z € X; and zx € E(T),s0 z < < v for every v € Yf] If there is v € Yf]\Rl such
that v ¢ O, then @' := (O \ {zyz}) U {vyz} is a desired collection, a contradiction. Thus we

conclude that there is no such v. In other words, YZJ; \ R; C O. Since YZJ; CY;, by Observation
7.9, at most 61k vertices in YZJ; \ R; belong to local triangles in O, while we showed above that
|YZJ; \ R;| > (6 — 3)Vk. Thus at least (§ — 3 — 6)vk = (§ — 9)Vk vertices of YZJ; \ R; belong
to some strong arcs of @. Then by the same arguments as in the proof of Observation 7.10,

combined with the assumption that (6 —9)¢ > 4, we can exchange strong arcs of O to free some

NS Yﬁ; \ R; from O. Then O := (O \ {zyz}) U {vyz} is a desired collection, a contradiction.

Case 2: y € X; and 2z € S;. This case is similar to Case 1, but we will consider YZ; (instead of
YZJ;) to employ the fact that v <z for every v € Y, .

Case 3: y,z € S;. Then by a similar argument as in Case 1, both y, z are light and 0(z) <
x < 0(y). Then we have 0(z) < v < 0(y) for every v € YZ’; since 6(y),0(z) ¢ Y; ;. Note that
zv,vy € E(T) for every v € Yﬁ] \ R;, then we repeat the argument in Case 1 to reach the
contradiction. This concludes the proof.]

We can now strengthen Lemma 7.6 by omitting the assumption that x belongs to a local
triangle of O.

Lemma 7.7. Letz € A and suppose that there is a vertex-disjoint collection O of local triangles
and strong arcs with |O] = k. Then there is a vertez-disjoint collection O of local triangles and
strong arcs such that |O'| = k and x does not belong to any triangle or strong arc of O.

Proof. Let O be the vertex set of O, then |O| < 3k and x € O (otherwise, the lemma is obvious).
If belongs to a local triangle of O, then we apply Lemma 7.6. Otherwise, x belongs to a strong
arc of O, say xy (note that in this proof, we do not consider the orientation of a strong arc, i.e.
when we say wv is a strong arc, we mean either uv or vu is a strong arc).

By Lemma 7.5, Ng(A) C §, and so y € Ng(z) € S, and [Ng(y) N A| > tVE{y}| = (VE.
Let Z = Ng(y) NA. If there is v € Z such that v ¢ O, then O’ := (O \ {zy}) U {vy} is a desired
collection. Thus, we conclude that Z C O.

41

Suppose that there is v € Z such that v belongs to a local triangle of O. Since v € A\’ we
apply Lemma 7.6 to v and obtain a collection O” such that |O0”| = k and v does not belong
to any triangle or strong arc of ©@”. Note also that according to the proof of Lemma 7.6, O”
is obtained from O by exchanging some strong arcs and a local triangle. If x is freed by these
exchange, then 0" is a desired collection. Note that it is impossible that z is freed and then
recaptured to O’ in a strong arc, since we can always have k candidates of strong arcs, and
so we can avoid recapturing x. x is freed and then recaptured to @’ in a local triangle, then
we just apply Lemma 7.6 again to x to find a desired collection. Thus, we concluded that x is
“untouched” during the swapping procedure above, i.e. zy € O”. Then O' := (0" \{zy})U{vy}
is a desired collection.

We conclude that every element of Z belongs to some strong arc of O. Then O contains a
matching of strong arcs from Z to 5. Let W be the set of vertices of S in that matching, then
|W| = |Z| > ¢vk. Note that Z C A. By Lemma 7.5, we have Ng(A) C S, and so W C §. By
Lemma 7.5 again, we have |[Ng(W)| > (v/k|W| > E\/E x {\k = £k > 4k = |O| +4. Thus, there
is u € Ng(W) such that u ¢ O. Let w € W be a neighbor of u in G (such w always exists since
u € Ng(W)). Let wv € O. Then O := (O \ {zy, wv}) U{vy,wu} is a desired collection. O

Finally, we are ready to state the reduction rule that removes an irrelevant vertex.

Reduction Rule 7.2. Let x be an arbitrary vertex in A. Remove from T'. The new instance
is (T\{x}, k).
Lemma 7.8. Reduction Rule 7.2 is safe.

Proof. 1f is obvious that if (T'\{z}, k) is a Yes-instance, then (7 k) is a Yes-instance. Conversely,
suppose that (7, k) is a Yes-instance with some solution O*, while (7"\ {z}, k) is a No-instance.
Then |O*| = k. Let O be the collection of local triangles and strong arcs obtained from O as
follows. For every uvw € O*, if uvw is local, then uvw € O; otherwise, uvw must contain some
strong arcs, then choose an arbitrary strong arc of uvw to be in O@. Then |O| = k. Applying
Lemma 7.7, we obtain a collection O" such that z does not belong to any local triangle and
strong arc of O'.

We now construct a solution to (7'\ {z}, k) by repeating the following argument sequentially.
Pick an arbitrary strong arc of (', say yz, we choose a vertex w such that yzw is a triangle,
w # z and w does not belong to any element of O’ and set O’ := (O’ \ {yz}) U {yzw}. It
is clear that we can always proceed the exchange since the vertex set O\ {yz} has at most
3k — 3 vertices, while there are 3k possible choices for w since yz is strong, so we can always
find the desired w. At the end of the process O’ is a solution to (7' \ {z}, k). This concludes
the proof. O

7.4 Proof of Theorem 4
We are finally ready to present the proof of Theorem 2.

Proof of Theorem 2. Let (T,k) be an instance of TPT. Our kernelization algorithm simply
applies (exhaustively) Reduction Rules 7.1 and 7.2. The output is the instance obtained once
none of these rules is applicable. Let us observe that each of Reduction Rules 7.1 and 7.2 can be
applied in polynomial time, it strictly decreases the size of G and it does not increase k. Thus,
our kernelization algorithm runs in polynomial time.

For the sake of clarity, let us now abuse notation and denote the output instance by (7, k).
Let us observe that V(T") consists of the following vertices.

e Vertices in S, whose number is at most 3k.
e Vertices of X, whose number is at most pSvVEk = O(k3/2) since p < (g + 3) VEk.
Thus, the total number of vertices is indeed (’)(k:3/ 2). This complete the proof. O
42

8

Conclusion

In this paper we designed first subquadratic vertex kernels for FVST, CVD, TPT, and IN-
DUCED P3-PACKING. All our kernels were based on the classical Expansion Lemma and the two
new versions we proved in this article. We believe that our approach of designing kernels will
be fruitful for similar implicit packing and covering problems. A most natural open question
is whether these problems admit a kernel with O(k) vertices. Another interesting avenue is to
find other problems where the methods developed in this paper can be applied.

References

1]

[2]

[10]

[11]

F. N. ABU-KHZAM, An improved kernelization algorithm for r-set packing, Inf. Process.
Lett., 110 (2010), pp. 621-624. 2

F. N. ABU-KHzAM, A kernelization algorithm for d-Hitting Set, J. Comput. Syst. Sci., 76
(2010), pp. 524-531. 1, 2

S. BEssy, M. BOUGERET, AND J. THIEBAUT, Triangle packing in (sparse) tournaments:

approzimation and kernelization, in Proceedings of the 25th Annual European Symposium
on Algorithms (ESA), To Appear, 2017. 5

S. Bessy, F. V. FoMmiIN, S. Gaspers, C. PauL, A. PEREZ, S. SAURABH, AND
S. THOMASSE, Kernels for feedback arc set in tournaments, J. Comput. Syst. Sci., 77
(2011), pp. 1071-1078. 2

H. L. BODLAENDER, R. G. DOWNEY, M. R. FELLOWS, AND D. HERMELIN, On problems
without polynomial kernels, Journal of Computer and System Sciences, 75 (2009), pp. 423—
434. 1

H. L. BODLAENDER, F. V. FOMIN, AND S. SAURABH, Open problems, worker 2010.,
Available at http://fpt.wikidot.com/open-problems, (2010). 2

A. BoraL, M. CyYGAN, T. KOCIUMAKA, AND M. PILIPCZUK, A fast branching algorithm
for cluster vertex deletion, Theory Comput. Syst., 58 (2016), pp. 357-376. 2

M. Cal, X. DENG, AND W. ZANG, An approximation algorithm for feedback verter sets
in tournaments, SIAM J. Comput., 30 (2000), pp. 1993-2007. 2

M. Cygan, F. V. Fomin, L. KOwALIK, D. LOKSHTANOV, D. MARX, M. PILIPCZUK,
M. PILIPCZUK, AND S. SAURABH, Parameterized Algorithms, Springer, 2015. 1, 3, 4, 7

H. DELL AND D. MARX, Kernelization of packing problems, in Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2012, pp. 68-81. 1, 5

H. DELL AND D. VAN MELKEBEEK, Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses, Journal of the ACM, 61 (2014), pp. 23:1-23:27. 1,
5

M. Dowm, J. Guo, F. HUFFNER, R. NIEDERMEIER, AND A. TRuUSS, Fized-parameter

tractability results for feedback set problems in tournaments, J. Discrete Algorithms, 8
(2010), pp. 76-86. 1, 2

R. G. DowNEY AND M. R. FELLOWS, Fundamentals of Parameterized Complexity, Texts
in Computer Science, Springer, 2013. 1

43

[14]

[15]

[16]

[25]

[26]

A. DRUCKER, New limits to classical and quantum instance compression, STAM Journal
on Computing, 44 (2015), pp. 1443-1479. 1

M. R. FELLOwWS, C. KNAUER, N. NISHIMURA, P. RAGDE, F. A. RosaAMOND, U. STEGE,
D. M. THILIKOS, AND S. WHITESIDES, Fuaster fized-parameter tractable algorithms for
matching and packing problems, Algorithmica, 52 (2008), pp. 167-176. 1

S. F1orINI, G. JORET, AND O. SCHAUDT, Improved approzimation algorithms for hitting
3-vertex paths, in Integer Programming and Combinatorial Optimization - 18th Interna-
tional Conference, IPCO 2016, Liege, Belgium, June 1-3, 2016, Proceedings, vol. 9682 of
Lecture Notes in Computer Science, 2016, pp. 238-249. 2

J. FLum AND M. GROHE, Parameterized Complexity Theory, Texts in Theoretical Com-
puter Science. An EATCS Series, Springer-Verlag, Berlin, 2006. 1

F. V. FoMmIN, S. GASPERS, D. LOKSHTANOV, AND S. SAURABH, Ezact algorithms via
monotone local search, in Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, 2016, pp. 764—
775. 1,2

F. V. FOMIN AND S. SAURABH, Kernelization methods for fixed-parameter tractability, in
Tractability, Cambridge Univ. Press, Cambridge, 2014, pp. 260-282. 1

L. R. ForD AND D. R. FULKERSON, Mazimal flow through a network, Canadian journal
of Mathematics, 8 (1956), pp. 399-404. 8

L. FOrRTNOW AND R. SANTHANAM, Infeasibility of instance compression and succinct
PCPs for NP, Journal of Computer and System Sciences, 77 (2011), pp. 91-106. 1

J. Guo AND R. NIEDERMEIER, Invitation to data reduction and problem kernelization,
SIGACT News, 38 (2007), pp. 31-45. 1

D. HERMELIN, S. KrRATSCH, K. SoLTYs, M. WAHLSTROM, AND X. WU, A completeness
theory for polynomial (turing) kernelization, Algorithmica, 71 (2015), pp. 702-730. 1

D. HERMELIN AND X. WU, Weak compositions and their applications to polynomial lower
bounds for kernelization, in Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, 2012, pp. 104-113. 1

F. HUFFNER, C. KomusiEwICcz, H. MOSER, AND R. NIEDERMEIER, Fized-parameter
algorithms for cluster vertex deletion, Theory Comput. Syst., 47 (2010), pp. 196-217. 1, 2

B. M. P. JANSEN AND D. MARX, Characterizing the easy-to-find subgraphs from the
viewpoint of polynomial-time algorithms, kernels, and turing kernels, in Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, 2015, pp. 616-629. 5

S. KRATSCH, Recent developments in kernelization: A survey, Bulletin of the EATCS, 113
(2014). 1

M. KUMAR AND D. LOKSHTANOV, Faster exact and parameterized algorithm for feedback
vertex set in tournaments, in 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, vol. 47 of LIPIcs, 2016, pp. 49:1-49:13.
2

44

[29]

D. LoksHTANOV, N. MISRA, AND S. SAURABH, Kernelization - preprocessing with a
guarantee, in The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to
Michael R. Fellows on the Occasion of His 60th Birthday, 2012, pp. 129-161. 1

M. MNICH, V. V. WILLIAMS, AND L. A. VEGH, A 7/3-approximation for feedback vertex
sets in tournaments, in 24th Annual European Symposium on Algorithms, ESA 2016,
August 22-24, 2016, Aarhus, Denmark, vol. 57 of LIPIcs, 2016, pp. 67:1-67:14. 2

H. MOSER, A problem kernelization for graph packing, in SOFSEM 2009: Theory and
Practice of Computer Science, 35th Conference on Current Trends in Theory and Practice
of Computer Science, Spindleruv Mlyn, Czech Republic, January 24-30, 2009. Proceedings,
vol. 5404 of Lecture Notes in Computer Science, 2009, pp. 401-412. 5

R. NIEDERMEIER, Invitation to fized-parameter algorithms, vol. 31 of Oxford Lecture Series
in Mathematics and its Applications, Oxford University Press, Oxford, 2006. 1

S. THOMASSE, A 4k2 kernel for feedback vertex set, ACM Transactions on Algorithms, 6
(2010), pp. 32:1-32.8. 3, 7

M. WAHLSTROM, Algorithms, measures and upper bounds for satisfiability and related prob-
lems, PhD thesis, Linkoping University, Sweden, 2007. 1

J. You, J. WANG, AND Y. CAO, Approzimate association via dissociation, Discrete Ap-
plied Mathematics, 219 (2017), pp. 202-209. 2

45

