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Abstract

In a directed graph, a star is an arborescence with at least one arc, in which the root dominates
all the other vertices. A galaxy is a vertex-disjoint union of stars. In this paper, we consider the
Spanning Galaxy Problem of deciding whether a digraph D has a spanning galaxy or not. We
show that although this problem is NP-complete (even when restricted to acyclic digraphs), it becomes
polynomial-time solvable when restricted to strongly connected digraphs. We prove indeed that in
the strongly connected case, the problem is equivalent to find a strong subgraph with an even number
of vertices. As a consequence of this work, we improve some results concerning the notion of directed
star arboricity of a digraph D, which is the minimum number of galaxies needed to cover all the arcs
of D. We show in particular that dst(D) ≤ ∆(D) + 1 for every digraph D and that dst(D) ≤ ∆(D)
for every acyclic digraph D.

1 Introduction

All digraphs considered here are finite and loopless. An arborescence is a connected digraph in which
every vertex has indegree 1 except one, called the root, which has indegree 0. A diforest is a disjoint
union of arborescences. A star is an arborescence with at least one arc, in which the root dominates all
the other vertices. A galaxy is a diforest of stars. A galaxy S in a digraph D is spanning if V (S) = V (D).

In this paper, we study the complexity of the following decision problem:

Spanning Galaxy Problem

Instance: A digraph D.
Question: Does D have a spanning galaxy?

In Section 2, we show that the Spanning Galaxy Problem is linear-time solvable for arborescences.
We also explore the relations between spanning galaxies and winning diforests for the parity game.

In Section 3, we prove that the Spanning Galaxy Problem is NP-complete for the class of acyclic
digraphs.

A digraph D = (V, A) is strongly connected or strong if for every pair (u, v) ∈ V 2 there is a directed
path from u to v. It has been proved that deciding whether a strong digraph contains an even circuit
is polynomial-time solvable [9, 10] although the problem is surprisingly NP-complete when restricted to
circuits going through a given arc [11]. In Section 4, we show that the Spanning Galaxy Problem has
similar characteristics when restricted to strong digraphs.
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In Section 5, we explore some parameterizations of the Spanning Galaxy Problem.
Finally, in Section 6, using the notion of spanning galaxy we improve some results concerning directed

star arboricity. The directed star arboricity of a digraph D, denoted by dst(D), is the minimum number
of galaxies needed to cover A(D). This notion has been introduced in [7] and is an analog of the star
arboricity defined in [1].

Let us denote by µ(G), the maximum multiplicity of an edge in a multigraph. By Vizing’s theorem,
one can colour the edges of a multigraph with ∆(G) + µ(G) colours so that two edges have different
colours if they are incident. Since the multigraph underlying a digraph has maximum multiplicity at
most two, for any digraph D, dst(D) ≤ ∆ + 2. Amini et al. [3] conjecture the following:

Conjecture 1 Every digraph D with maximum degree ∆ ≥ 3 satisfies dst(D) ≤ ∆.

The condition ∆ ≥ 3 in the above conjecture is necessary since the odd circuits have maximum degree
2 and directed star arboricity 3. This conjecture would be tight since every digraph with ∆ = ∆− has
directed star arboricity at least ∆. In [3], Amini et al. proved that Conjecture 1 holds when ∆ = 3.

A nice galaxy in a digraph G is a galaxy spanning all the vertices of maximum degree. To prove
Conjecture 1, it suffices to show that every digraph with maximum degree ∆ ≥ 4 has a nice galaxy.

Conjecture 2 Every digraph with maximum degree ∆ ≥ 4 has a nice galaxy.

Amini et al. [3] showed the conjecture for 2-diregular digraphs. We prove Conjecture 2 for acyclic
digraphs, which implies Conjecture 1 for acyclic digraphs. We also prove that every digraph has a galaxy
spanning the vertices with indegree at least two and derive that dst(D) ≤ ∆(D)+1 for every digraph D.

2 Spanning Galaxies and Winning Diforests

Proposition 3 The Spanning Galaxy Problem is solvable in linear time when restricted to the class
of arborescences.

Proof. If an arborescence T has no vertices, it clearly admits a spanning galaxy. If T is however
restricted to its root, it has none. Now if T has at least two vertices, we consider a furthest leaf v from r
and we denote by u the inneighbour of v. By definition, all the outneighbours of u are leaves. Thus, if T
admits a spanning galaxy, this galaxy contains the star with root u whose leaves are the outneighbours
of u. Hence, T admits a spanning galaxy if and only if T \ ({u} ∪ N+(u)) does. This gives a simple
linear-time algorithm for arborescences. �

The proof of the above proposition also implies the following lemma.

Lemma 4 Every arborescence T contains a galaxy spanning every vertex except possibly the root.

The parity game is a widely studied game. Its restriction to arborescences is played on an arborescence
T (with root r) by two players, Player 0 and Player 1, as follows. At the beginning of a play, a token is
placed on the root r and is then moved over V (T ) following the transitional relation: if the token is placed
on a vertex v, then the next position of the token is one of the vertices of N+(v). The players move the
token alternatively (starting with Player 0) until the token reaches a leaf. A player wins if its opponent
cannot move anymore. Since our arborescences are finite, one of the two player has a winning strategy.
If Player 0 has a winning strategy, we say that T is winning; otherwise, T is loosing. By convention, an
arborescence T with zero vertices is winning.

Lemma 5 An arborescence T admits a spanning galaxy if and only if T is winning.

Proof. This directly follows from:
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• An arborescence T with one vertex is loosing.

• Given an arborescence T with at least two vertices, where v is any furthest leaf from the root, and
where u is the inneighbour of v; T is winning if and only if T \ ({u} ∪ N+(u)) is winning.

�

A diforest is winning if all its arborescences are winning, otherwise it is loosing. Since stars are winning
arborescences we have that:

Lemma 6 A digraph D admits a spanning galaxy if and only if D contains a winning spanning diforest.

The directed path Pl = (r, v1, v2, . . . , vl), admits a spanning galaxy if and only if l is odd (recall that
the length of a path is its number of arcs). Given two arborescences T and T ′ and a vertex v of T , we
denote by T ∨v T ′ the arborescence obtained by identifying v in T with the root of T ′. When v is the
root of T , we simply write T ∨ T ′. Observe that T ∨ T ′ is winning if and only if T or T ′ is winning.
Similarly, if T ′ is loosing, then T ∨v T ′ is winning if and only if T is winning.

Thus, we have the two following lemmas, which we will use in Section 6.

Lemma 7 Given any arborescence T and any odd l, the arborescence T ∨ Pl is winning.

Lemma 8 Given any arborescence T , any vertex v of T , and any even l, the arborescence T ∨v Pl is
winning if and only if T is winning.

3 Acyclic Digraphs

A digraph D = (V, A) is acyclic if it does not contain any circuit.

Theorem 9 The Spanning Galaxy Problem is NP-complete, even if restricted to digraphs which are
acyclic, planar, bipartite, subcubic, with arbitrary girth, and with maximum outdegree 2.

Proof. This problem is clearly in NP and we prove now that it is NP-hard for this restricted family of
digraphs. Kratochv́ıl proved that Planar (3,≤ 4)-Sat is NP-complete [8]. In this restricted version of
Sat, the graph of incidence variable-clause of the input formula is planar, every clause is a disjunction
of three literals, and every variable occurs in at most four clauses. We reduce Planar (3,≤ 4)-Sat to
the Spanning Galaxy Problem. Given an instance I of Planar (3,≤ 4)-Sat, we construct a planar
digraph DI such that I is a satisfiable instance of Planar (3,≤ 4)-Sat if and only if DI has a spanning
galaxy. For this, we take one copy of the graph depicted in Figure 1(a) per variable of I, and one copy
of the graph depicted in Figure 1(b) per clause of I. Whenever the literal x (resp. x) appears in a clause
c in I, we identify one vertex labelled x (resp. x) of the variable gadget of x with a source of the clause
gadget of c.

Let us observe that the digraph DI is acyclic, planar, bipartite, subcubic, with maximum indegree 3
and with maximum outdegree 2.

The variable gadget of x in the graph DI is connected to the rest of the graph by the vertices labelled
by x or x. The vertices which are not labelled by x or x are called internal vertices of the variable gadget
of x. One can observe that there are only two possible galaxies that span all the internal vertices of a
variable gadget. Actually, these two galaxies span all the vertices of the variable gadget. Moreover, in
the first galaxy, every vertex x is the root of a star and every vertex x is a leaf of a star; in the second
one, every vertex x is a root of a star and every vertex x is a leaf of a star.

In addition, one can observe that the previous remark, stating that the vertices x are roots of stars
whenever the vertices x are leaves, holds for any odd paths linking a and b (resp. a and c, b and d, c and
d). Therefore, the girth of the graph DI can be made arbitrarily large.
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Figure 1: The gadgets for Theorem 9.

Let I be an instance of Planar (3,≤ 4)-Sat.
Suppose first that I is satisfiable by some truth assignment φ.

Let us exhibit then a spanning galaxy of DI . For every variable x, we span its gadget with a galaxy
in such a way that the vertices labelled x are roots of stars if and only if φ(x) =True. In this way, we
can span the internal vertices c of the clause gadgets. Indeed, since c is satisfied by φ, the vertex c has
an inneighbour x1 which is the root of a star. We then add the arc x1c to our galaxy to span c.
Suppose now that DI has a spanning galaxy T . Let φ be the truth assignment φ defined by φ(x) =True

if and only if the vertices labelled x are roots of stars of T . Then φ satisfies I since every clause vertex c
needs one of its inneighbours to be the root of some star. �

4 Strong Digraphs

Theorem 10 It is NP-complete to decide, given a strong digraph and one of its arc, whether there exists
a spanning galaxy containing this arc.

Proof. The reduction from the Spanning Galaxy Problem in the acyclic case is straightforward.
Given an acyclic digraph D, we construct D′ from D by adding a disjoint directed path (a1, a2, a3, a4),
all possible arcs from a4 to a source of D, and all possible arcs from a sink of D to a1. Note that D′ is
strong. Observe that D′ has a spanning galaxy F containing the arc a1a2 if and only if D has a spanning
galaxy. �
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Note that it is also NP-complete to decide if a strong digraph has a spanning galaxy avoiding one
prescribed arc. Indeed, in the previous proof, a2a3 /∈ A(F ) if and only if D has a spanning galaxy.

Given a strong digraph D, a handle h of D is a directed path (s, v1, . . . , v`, t) from s to t (where s and
t may be identical, or the handle possibly restricted to the arc st) such that:

• the vertices vi satisfy d−(vi) = d+(vi) = 1, for every 1 ≤ i ≤ `, and

• the digraph D \ h obtained by suppressing the arcs and internal vertices of h is strongly connected.

The vertices s and t are the endvertices of h while the vertices vi are its inner vertices. The vertex
s is the tail of h and t its head. The length of a handle is the number of arcs in the path, here ` + 1.
A handle of length one is said to be trivial. For any 1 ≤ i, j ≤ `, we say that vi precedes (resp. strictly
precedes) vj on the handle h if i ≤ j (resp. (i < j)).

Given a strong digraph D, a handle decomposition of D starting at v ∈ V (D) is a triplet (v, (hi)1≤i≤p, (Di)0≤i≤p),
where (Di)0≤i≤p is a sequence of strong digraphs and (hi)1≤i≤p is a sequence of handles such that:

• V (D0) = {v},

• hi is a handle of Di, for 1 ≤ i ≤ p and Di is the edge disjoint union of Di−1 and hi, and

• D = Dp.

A handle decomposition is uniquely determined by v and either (hi)1≤i≤p, or (Di)0≤i≤p. The number
of handles p in any handle decomposition of D is exactly |A(D)| − |V (D)|+ 1. The value p is also called
the cyclomatic number of D. Observe that p = 0 when D is a singleton and p = 1 when D is a circuit.
A digraph D with cyclomatic number two is called a theta.

The following lemma is straighforward.

Lemma 11 For every strong subdigraph D′ of some strong digraph D, there is a handle decomposition
(v, (hi)1≤i≤p, (Di)0≤i≤p) of D such that D′ = Di for some i.

A handle is even if its length is even. A handle decomposition is even if one of its handles is even. A
strong digraph is even if it has an even number of vertices. Handles, handle decompositions and strong
digraphs are odd when they are not even.

Theorem 12 Given a strong digraph D, the following are equivalent:

(1) D has a spanning galaxy.

(2) D contains a spanning winning arborescence.

(3) D has an even handle decomposition.

(4) D contains an even circuit or an even theta.

(5) D contains a even strong subgraph.

Proof. We prove the equivalence using six implications. The playful reader is invited to check that the
implication digraph of this proof is an odd theta consisting of two circuits of length 3, hence it does not
satisfy (4). This provides an illustration of Theorem 12, since this digraph does not satisfy any of the
other properties.

(2) ⇒ (1) Consider a digraph D containing a spanning winning arborescence T . Lemma 5 implies that
T contains a spanning galaxy, which also spans D.
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(3) ⇒ (2) Let (v, (hi)1≤i≤p, (Di)0≤i≤p) be an even handle decomposition of D. Let q be the largest
integer such that hq is an even handle. Since Dq−1 is strong, it contains a spanning arborescence Tq−1

rooted at sq, the first vertex of hq. Now for every q ≤ r ≤ p, we define a spanning arborescence Tr of Dr

as follows. For every hr = (sr, v1, . . . , v`, tr), we let Tr = Tr−1∨sr
Pr where Pr is the path (sr, v1, . . . , v`),

i.e. the handle hr minus its last arc. By Lemma 7, the arborescence Tq is winning since Tq−1 ∨sq
Pq is

exactly Tq−1 ∨ Pq. Therefore, by Lemma 8, Tr is winning, for every q ≤ r ≤ p. Thus Tp is a spanning
winning arborescence of D.

(1) ⇒ (3) By way of contradiction, suppose that there exists a strong digraph D with no even handle
decomposition admitting a spanning galaxy. Observe that in particular, D has no even circuit. Choose
such a D with minimum number of arcs. Let F be a spanning galaxy of D. Observe that every trivial
handle st of D belongs to F , otherwise deleting the arc st from D leaves a strong digraph with no even
handle decomposition, against the minimality of D.

Consider a handle decomposition (v, (hi)1≤i≤p, (Di)0≤i≤p) of D which minimizes the number of trivial
handles. Let q be the largest integer such that hq = (v0, . . . , v`+1) is non trivial (here we adopt the
notation s := v0 and t := v`+1)). Hence, every handle hi is trivial for every q < i ≤ p. Moreover, since
hq is odd and non trivial, we have ` ≥ 2. Having chosen a minimal number of trivial handles in this
decomposition, we have the following properties.

(i) there is no arc vivj with j ≥ i + 2, except possibly st;

(ii) for 2 ≤ i ≤ `, the vertex vi has no inneighbour in Dq−1;

(iii) for 1 ≤ i ≤ ` − 1, the vertex vi has no outneighbour in Dq−1.

In addition, the above observation implies that:

(iv) v1 has no inneighbours in Dq−1 \ {v0}.

Indeed if u is such an inneighbour, both arcs uv1 and v0v1 would be trivial handles of D. Hence, according
to the previous observation, they both belong to F which is impossible.

Furthermore,

(v) there is no arc vjvi with 0 ≤ i < j ≤ ` + 1.

Such an arc vjvi is short if there is no arc vj′vi′ for which i ≤ i′ < j′ ≤ j unless (i, j) = (i′, j′). By way
of contradiction, consider a short arc vjvi which minimizes i. By (i) and since there is no even circuit,
the vertices {vi, vi+1, . . . , vj} form an induced odd circuit. Moreover, since deleting the arc vjvi leaves
D strongly connected, we have vjvi ∈ F . Hence there is at least one vertex in X = {vi+1, . . . , vj−1}
which has a neighbour in F \ X . By (i), (ii), (iii) and the choice of vjvi, there is an arc vj′vi′ such
that i < i′ < j < j′. Let us consider such an arc vj′vi′ which minimizes i′. If i′ − i is odd then
(vj , vi, vi+1, . . . , vi′) is an even handle on the circuit (vi′ , vi′+1, . . . , vj′ ), contradicting the fact that D has
no even handle decomposition. If i′ − i is even then X ′ = {vi+1, . . . , vi′−1} has odd cardinality, and both
arcs vj′vi′ and vjvi belong to F . Hence there must be a vertex in X ′ which has a neighbour in F \ X ′,
contradicting the definition of i′. This proves (v).

These properties imply that the only arc entering S = {v1, . . . , v`} is v0v1 and the only arcs leaving
S are those leaving v`. Moreover (v0, v1, . . . , v`) is an induced path. If {v1v2, v3v4, . . . , v`−1v`} ⊆ F then
the digraph Dq−1 would also be a counterexample, contradicting the minimality of D. Thus F contains
the arcs v0v1, v2v3, . . . , v`−2v`−1 and all the arcs leaving v` (by the earlier observation). Thus the digraph
obtained from D by contracting v0v1 and v1v2 has a spanning galaxy and no even handle decomposition.
This contradicts the minimality of D.

6



(3) ⇒ (4) By way of contradiction, suppose that there are digraphs with an even handle decomposition
containing no even circuits or even thetas. Consider such a digraph D with an even handle decomposition
(v, (hi)1≤i≤p, (Di)0≤i≤p) minimizing p. It is clear, by minimality of p that the only even handle of this
decomposition is hp. Otherwise Dp−1 would contradict the minimality of p.

In the remainder, we denote by s and t the tail and the head respectively of the handle hp.

Claim 1 p > 2.

If p = 1 then D would be an even circuit. If p = 2, then h1 has odd length and thus D would either be
an even theta or contain an even circuit.

By Lemma 11, there is a handle decomposition (s, (h′
i)1≤i≤p, (D

′
i)0≤i≤p) of D starting at s and such

that h′
p = hp. For every 1 < i < p − 1, let us denote by si the tail of h′

i and by ti its head.
The vertex t is an inner vertex of h′

p−1 otherwise the digraph obtained from D by suppressing h′
p−1

would contradict the minimality of p. Thus, we can divide h′
p−1 into two subpaths: P with tail sp−1 and

head t and Q with tail t and head tp−1. Furthermore Q has odd length otherwise the digraph obtained
from D by suppressing P would contradict the minimality of p.

Claim 2 For every 1 < i < p, the endvertices of h′
i = (si, . . . , ti) are inner vertices of h′

i−1.

Suppose for a contradiction that the claim does not hold. Let q be the largest integer such that one
of the two endvertices of h′

q is not an inner vertex of h′
q−1. One of the endvertices of h′

q is an inner vertex
of h′

q−1. Otherwise h′
q−1 would be a handle of D and the digraph obtained from D by suppressing h′

q−1

would contradict the minimality of p. By directional duality, we may assume that sq is an inner vertex of
h′

q−1 and tq is not. Let us divide h′
q−1 into two paths, the path R with tail sq−1 and head sq and the path

S with tail sq and head tq−1. Then S is a handle of D and the digraph obtained from D by suppressing
h′

q−1 contradicts the minimality of p (the handles h′
q−1 and h′

q are replaced by a single handle with tail
sq−1 and head tq). This proves Claim 2.

Claim 3 For every 1 < i < p, the vertex ti precedes si on h′
i−1.

Suppose not. Then si stricly precedes ti on h′
i−1. Let R be the subpath of h′

i−1 with tail si and head ti.
Then R is a handle of D and the digraph obtained form D by suppressing R contradicts the minimality
of p (the handles h′

i−1 and h′
i are replaced by a single handle going from si−1 to ti−1 containing h′

i). This
proves Claim 3.

According to the Claim 3, the circuit h′
1 can be divided into two paths: P1 with tail s2 and head t2

and P2 with tail t2 and head s2. If s2 and t2 are identical, we assume that P2 has no arc. Observe that
P1 is a handle of D which suppression leaves a digraph with an even handle decomposition and no even
circuit or theta. The contradiction follows.

(4) ⇒ (5) Trivial since even circuits and thetas are strong digraphs with an even number of vertices.

(5) ⇒ (3) By Lemma 11 consider a handle decomposition (v, (hi)1≤i≤p, (Di)0≤i≤p) of D such that
some digraphs Di have an even number of vertices. Let q be the smallest integer such that Dq has an
even number of vertices. This implies that the handle hq has an odd number of inner vertices, thus has
even length. �

Theorem 13 Spanning Galaxy is polynomial-time solvable when restricted to strong digraphs.
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Proof. Actually, there exists a polynomial-time algorithm to decide whether a strong digraph contains
an even strong subdigraph (ESS for short), which is by Theorem 12 equivalent to Spanning Galaxy

for this class of graphs. The algorithm performs as follows. We first find a handle decomposition
(v, (hi)1≤i≤p, (Di)0≤i≤p) where hq = (x0, x1, . . . , x`) is the last non-trivial handle. If there exists an arc
with tail in V (Dq−1) and head in {x2, . . . , x`−1}, or with tail in {x1, . . . , x`−2} and head in V (Dq−1), or
an arc xixj with j > i+1, then this arc is a trivial handle hq′ with q′ > q; one can easily find a new handle
decomposition with less trivial handles. Since this operation is done in constant time and since the initial
number of trivial handles is polynomial, one can compute in polynomial time a handle decomposition
where there is no such trivial handles. If the decomposition has an even handle then return “YES” thanks
to Theorem 12. We can then suppose in the remainder that ` is odd. Let D′ be the digraph obtained
from Dq−1 by adding all the arcs between N−

D (x1) and N+
D (x`−1). Let S = {x1, x2, . . . , x`−1} be the set

of inner vertices of hq.

Claim 4 D has an ESS if and only if D[S] has an ESS or D′ has a ESS.

Since every subdigraph of D[S] is a subdigraph of D, if D[S] has an ESS, then D has an ESS. There-
fore, suppose that D[S] does not have an ESS. For every ESS E of D, the digraph E′ = D′[V (E) \ S]
is an ESS of D′. Indeed, if |V (E)| 6= |V (E′)|, the handle hq is a subdigraph of E; however hq is odd so
|V (hq)| is even, and thus |V (E′)| = |V (E)|− |V (hq)| is also even. Furthermore, since the paths of E from
N−

D (x1) to N+
D (x`−1) are replaced by single arcs in E′, E′ is strong. Finally, it is also clear that given

any ESS F ′ of D′ one of the graphs D[V (F ′)] or D[V (F )∪S] is an ESS of D – according whether or not
there is an arc uv in A(F ) ∩

(

N−
D (x1) × N+

D (x`−1)
)

.

Checking if D[S] has an ESS can be done in polynomial time. We first check if there exists a backward
arc (i.e. an arc xbxa such that a < b) such that a and b have distinct parity. If there is such an arc, the
graph D[{xa, xa+1, . . . , xb}] is an ESS.

If there exists no such arc, we distinguish two types of backward arcs xbxa of D[S]: the arcs where
a and b are both even, called e-arcs, and those where a and b are both odd, called o-arcs. Observe that
the vertex set of an ESS F of D[S] is of the form {xi, xi+1, . . . , xj}. Indeed, since there is no arc xaxb

with a + 1 < b in D[S] and since there is a path from the vertex with smaller index in V (F ) (here xi) to
the one with higher index (here xj), all the vertices between xi and xj are in F .

Furthermore since F is even, i and j have distinct parity. Consider a set A of backward arcs such that
the union of the directed path {xi, xi+1, . . . , xj} and A is strongly connected, and moreover such that A
is minimum with respect to inclusion. Such a set A can be obtained from the set of backward arcs of F
by deleting greedily some arcs. The arcs of A, when ordered increasingly according to the index of their
tail, are such that two consecutive arcs xcxa and xdxb satisfy a < b < c < d. Note that since i and j
have distinct parity, there exists two consecutive backward arcs of distinct types (one is an e-arc and the
other one is an o-arc). Thus at this stage, D[S] contains an ESS if and only if it contains an ESS with
exactly two backward arcs. Hence this can be checked in polynomial time.

In the case of D′, we check whether it contains an ESS or not by applying the original algorithm
recursively. �

5 Parameterizations of galaxy problems

The spanning galaxy problem being hard in the general case, it is natural to ask if some parameterized
version is tractable. A first attempt could be to ask for a fixed parameter tractable algorithm on pa-
rameter k (i.e. admitting an algorithm in time O(f(k)nc) for some constant c) deciding if a digraph
admits a spanning galaxy with at most k stars. Unfortunately, the problem k-Domination (which is
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W[2]-complete [6]) admits a straightforward reduction to this problem. Indeed, every minimal dominat-
ing set A of a graph G (with no isolated vertex) corresponds to the set of roots of a spanning galaxy of
the digraph D obtained from G by replacing each edge ab ∈ E(G) by the arcs ab and ba. Hence this
galaxy problem is at least as hard as k-Domination, thus it is W [2]-hard.

However, the following problem is easier to handle:

Problem 14 (k-Galaxy)
INSTANCE: A digraph D.
QUESTION: Does D have a galaxy spanning at least k vertices?

This problem is very easily fixed parameter tractable, but we will show a much stronger result. Indeed,
there is a polynomial algorithm (in size of D) which tramsforms every instance (D, k) of k-GALAXY
into an instance (D′, k′) which is equivalent to (D, k) and such that D′ has at most 2k− 2 vertices. This
algorithm is called a kernelization algorithm, and the output D′ is called a kernel. Observe that applying
a brute force algorithm on D′ to check if it admits a galaxy spanning at least k′ vertices takes O(f(k))
time. Hence the existence of the kernelization algorithm gives an FPT algorithm for k-GALAXY running
in O(f(k) + nc) time.

A galaxy F of D is locally maximal if it satisfies the following conditions:

(a) The vertices of V (D) \ V (F ) form a stable set.

(b) If uv is an arc of F and uw is an arc of D, we have w ∈ V (F ).

(c) If u ∈ V (F ) and uv, uw ∈ A(D), at least one of v and w belong to V (F ).

(d) If uv, uw ∈ F and wx ∈ A(D), then x ∈ V (F ).

If a galaxy F does not satisfy one of the previous conditions, one can easily find a galxy spanning
more vertices than F . Hence one can compute a locally maximal galaxy G in polynomial time. If G
spans at least k vertices, then we are done.

The conditions (b), (c) and (d) imply that the set N+
G = {v ∈ V (D) \V (G) | ∃u ∈ V (G), uv ∈ A(D)}

has cardinality at most |V (G)|
2 . Now let N−

G = V (D) \ (V (G) ∪ N+
G ). Note that (a) implies that N−

G is a

stable set of D. Note also that N+
G may contain in-neighbors of V (G) while N−

G does not contain out-
neighbors of V (G). Consider now a maximum matching M (polynomially computable) in the bipartite

subdigraph of D induced by the sets V (G) and N−
G . Observe that this matching M has at most |V (G)|

2
arcs otherwise we would choose M as a galaxy spanning more vertices than G.

Lemma 15 The digraph D has a galaxy of maximum size contained in the subgraph D′ induced by
V (G) ∪ N+

G ∪ V (M).

Proof. Consider for contradiction a galaxy G∗ of D such that D′ does not contain a galaxy spanning
|V (G∗)| vertices. Among the possible choices of G∗, select one which minimizes its number of vertices in
N−

G \ M , and then which minimizes its number of arcs between N−
G \ M and V (G). Since G∗ 6⊂ D′, G∗

has a vertex u ∈ N−
G \ M , and thus G∗ has an arc uv1 with v1 ∈ V (G). Since uv1 /∈ M there is an arc

u1v1 in M . We inductively define the vertices ui and vi, for i ≥ 2, as follows. If ui−1 does not belong to
G∗ then uj and vj are not defined for j ≥ i. Otherwise, let vi be any vertex such that ui−1vi is an arc of
G∗. Note that vi ∈ V (M), otherwise the path (vi, ui−1, vi−1, . . . , u1, v1, u) would be an augmenting path
with respect to M , contradicting the maximality of M . Thus let ui be the vertex such that uivi ∈ M . Let
t be the greater index such that the vertices ut and vt are defined. Since ut /∈ V (G∗) we can replace the
arcs uv1 and ui−1vi, for 2 ≤ i ≤ t, by the arcs uivi, for 1 ≤ i ≤ t. Note that since ut was not previously
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spanned, the obtained galaxy spans at least as many vertices as G∗ but covers more arcs of M . Thus the
lemma holds. �

Since the digraph D′ has at most 2.|V (G)| vertices, we have our kernel of size at most 2k − 2.

6 Directed Star Arboricity

6.1 Acyclic digraphs

In this subsection, we settle Conjecture 2 for acyclic digraphs and derive that Conjecture 1 holds for
acyclic digraphs. To do so, we need the following lemma on mixed graphs. A mixed graph is the disjoint
union of odd circuits and a matching.

Lemma 16 Every graph has a mixed subgraph spanning all the vertices of maximum degree.

Proof. Let G be a graph of maximum degree ∆ and V∆ be the set of vertices of degree ∆. The
result holds trivially if ∆ = 1 so we may assume that ∆ ≥ 2. Let H be a mixed subgraph that spans
the maximum number of vertices of V∆. Let C1, . . . , Cp be the odd circuits of H and M its matching.
Suppose by way of contradiction that there is a vertex v in V∆ \ V (H). An alternating v-path is a path
starting at v such that every even edge is in M (and so every odd edge is not in M). Let A0 (resp. A1)
be the set of vertices u such that there exists a v-alternating path of even (resp. odd) length ending at
u. Note that v ∈ A0 as (v) is an alternating v-path of length 0.

Claim 5 A0 ⊂ V∆.

Suppose that A0 6⊂ V∆. Then there is a vertex x ∈ A0 \V∆. Let P be the even alternating v-path ending
at x. Then the mixed subgraph obtained from H by replacing the matching M by M ′ = M4P spans
one more vertex of V∆, namely v, than H . This is a contradiction.

Claim 6 A1 ⊆ V (H).

Suppose by way of contradiction that a vertex x ∈ A1 is in V (G) \ V (H). Let P be an odd alternating
v-path ending at x. Then the mixed subgraph obtained form H by replacing the matching M by
M ′ = M4P spans one more vertex of V∆, namely v, than H . This is a contradiction.

Claim 7 A1 ⊆ V (M).

Suppose by way of contradiction that a vertex x ∈ A1 is in
⋃p

i=1 Ci, say in Cp. Then Cp − x has a
matching M1. Let P be an odd alternating v-path ending at x. This path of odd length has a perfect
matching M2 = P \ M . Thus the disjoint union of C1, . . . , Cp−1 and (M \ P ) ∪ M1 ∪ M2 is a mixed
subgraph spanning more vertices of V∆ than M . This is a contradiction.

Claim 8 |A0| = |A1| + 1.

Indeed, M matches every vertex of A0, except v, with a vertex of A1, and vice versa.

Claim 9 A0 is a stable set.

Suppose to the contrary that there exist two adjacent vertices x and y in A0. Let Px and Py be two
even alternating v-path ending at x and y, respectively. We choose x, y, Px and Py in such a way that
|V (Px)∪ V (Py)| is minimum. Note that Px Py may share common vertices and arcs at the beginning. If
xy ∈ M , then x is the predecessor of y in Py and vice-versa. In this case let Qy = Px−y and Qx = Py −x.

10



Otherwise let Qx = Px and Qy = Py . In both cases, Qx and Qy are alternating v-paths of same parity.
Note that by minimality of |V (Px) ∪ V (Py)| there exists only one vertex z ∈ V (Qx) ∩ V (Qy) (possibly
z = v) and three paths Qv−z, Qz−x and Qz−y, going respectively from v to z, from z to x and from z
to y such that Qx = Qv−z ∪ Qz−x, Qy = Qv−z ∪ Qz−y, and V (Qz−x) ∩ V (Qz−y) = {z}. Note that we
necessarily have z ∈ A0 since every odd vertex in Qx and Qy is followed by its neighbour in M . Let Cp+1

be the odd circuit formed by the paths Qz−x and Qz−y, and by the edge xy. Then the mixed subgraph
obtained from H by replacing the matching M by M ′ = M4Qv−z and adding the odd circuit Cp+1 spans
one more vertex of V∆ than H . This is a contradiction.

By Claim 9, all the edges with an end in A0 have the other end in A1 and thus, by Claims 5 and 8,
there are |A0| ×∆ = (|A1|+ 1)×∆ edges between A0 and A1. This is impossible because the vertices in
A1 have maximum degree ∆. �

Theorem 17 Every acyclic digraph has a nice galaxy.

Proof. Let D be an acyclic digraph and G its underlying undirected graph D. By Lemma 16, G has
a mixed subgraph H spanning all the vertices of maximum degree. The subdigraph D′ of D which is
an orientation of H is the union of oriented odd circuits and a matching. Each oriented circuit is not
directed because D is acyclic and thus has a spanning galaxy. Thus D′ has a spanning galaxy, which is
a nice galaxy of D. �

Corollary 18 If D is an acyclic digraph then dst(D) ≤ ∆(D).

Proof. We prove the result by induction on ∆(D), the result holding trivially when ∆(D) = 1. Suppose
now ∆(D) = k > 1. By Theorem 17, D has a nice galaxy Fk. Hence D′ = D \ E(Fk) has maximum
degree at most k − 1. By induction, D′ has an arc-partition into k − 1 galaxies F1, . . . , Fk−1. Thus
(F1, . . . , Fk) is an arc-partition of D into k galaxies. �

6.2 Galaxy spanning the vertices with indegree at least two

The outsection of a vertex x is the set S+(x) of vertices y to which there exists a directed path from x.
An outgenerator of D is a vertex x ∈ V (D) such that S+(x) = V (D). Note that if D is strong, every
vertex is an outgenerator. Every outgenerator is the root of a spanning arborescence, so by Lemma 4 we
get the following:

Corollary 19 Let v be an outgenerator of a digraph D. Then D contains a galaxy F spanning all the
vertices of D − v.

Theorem 20 Every digraph D has a galaxy spanning all the vertices with indegree at least 2.

Proof. We prove the result by induction on the number of vertices. Free to remove arcs entering vertices
of indegree 1 or more than 2, we may assume that every vertex of D has indegree 2 or 0. Suppose first
that D contains a vertex v of indegree 0. Set D+ = D[S+(v)] and D′ = D − D+. By definition of
outsection, there are no arcs leaving D+. So the vertices of D′ have the same indegree in D′ and D.
By the induction hypothesis, there is a galaxy F ′ spanning all the vertices of D′ with indegree 2 and by
Corollary 19, there is a galaxy F+ spanning all the vertices of D+ with indegree 2. The union of F ′ and
F+ is the desired galaxy.

Suppose now that all the vertices of D have indegree 2. Consider an initial strong component C of D.
Let us recall that every strong digraph with minimum indegree two has a vertex which deletion leaves
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the digraph strong. Consider for this a handle decomposition minimizing the number of trivial handles.
Let x0, . . . , xl be the last non-trivial handle. The vertex xl−1 has indegree at least two, hence the other
in-arcs entering xl−1 are trivial handles. If l is greater than 2, any of these trivial handle, together with
x0, . . . , xl would result in two non-trivial handles - which is impossible by assumption. Thus l = 2, and
then the vertex x1 can be deleted.

In particular, there exists a vertex v of C such that C − v is strong. Let S+ be the outsection of v in
D − (C \ {v}) and T = S+

D(v) \ S+ and D′ = D − S+
D(v). Note that v is an outgenerator of D[S+] and

D1 = D[T ∪{v}]. Moreover since C − v is strong, every vertex of C − v is an outgenerator of D2 = D[T ].
By the induction hypothesis, there is a galaxy F ′ spanning all the vertices of D′ with indegree 2. By

Corollary 19, there is a galaxy F+ of D[S+] spanning all the vertices of S+ \ {v} in which v is either not
spanned or a root. If v is a root of F+ then, by Corollary 19, there is a galaxy F1 of D1 spanning all
the vertices of T in which v is either not spanned or a root. The union of F ′, F+ and F1 is a spanning
galaxy of D. If v is not a root of F+, let u be an inneighbour of v. By Corollary 19, there is a galaxy F2

of D2 spanning all the vertices of T \ {u} in which u is either not spanned or a root. The union of F ′,
F+, F2 and the arc uv is a spanning galaxy of D. �

Note that Theorem 20 implies Amini et al. result [3] showing that a 2-diregular digraph has a spanning
galaxy.

Theorem 21 Let D be a digraph with maximum degree ∆ ≥ 2. Then dst(D) ≤ ∆ + 1.

Proof. Set D0 = D and for every i from 1 to ∆ − 2, let Fi be a galaxy spanning all the vertices of
indegree at least 2 in Di−1 and Di = Di−1 \ E(Fi). Observe that a vertex of D′ = D∆−2 has either
indegree at most one or indegree 2 and outdegree 0. Now we just have to prove that dst(D′) ≤ 3. For
this, choose one in-arc for each vertex with indegree two and denote the set of these arcs by F . The graph
D′ − F is a loopless functional digraph (i.e. every vertex has indegree exactly 1). Consider a 3-colouring
of the arcs of D′ − F such that two incident arcs get different colours. The crucial fact is that every arc
xy of F can get three colours. One is forbidden by the other in-arc of x and another by the in-arc of y.
Hence there is a colour left to extend the 3-colouring into three galaxies. �
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