The Categorical Product of two 5-chromatic digraphs can be 3-chromatic.

Stéphane Bessy and Stéphan Thomassé

Laboratoire LaPCS, U.F.R. de Mathématiques,
Université Claude Bernard - Lyon 1, 50, avenue Tony Garnier,
Bâtiment RECHERCHE [B], Domaine de Gerland
69367 Lyon Cedex 07, France
email: bessy@univ-lyon1.fr
thomasse@univ-lyon1.fr

Abstract

We provide an example of a 5-chromatic oriented graph D such that the categorical product of D and TT_5 is 3-chromatic, where TT_5 is the transitive tournament on 5 vertices.

The transitive tournament TT_5 is the digraph on the vertex set $\{1, 2, 3, 4, 5\}$ and edge set $\{(i, j) : i < j\}$. Let $D_1 = (V_1, E_1)$ and $D_2 = (V_2, E_2)$ be two digraphs. The categorical product of D_1 and D_2 is the digraph $D_1 \times D_2 = (V_1 \times V_2, E)$ where $E = \{((x, y), (z, t)) : (x, z) \in E_1 \text{ and } (y, t) \in E_2\}$. Motivated by Hedetniemi's conjecture (see Sauer [5] for a survey), the following function was defined:

$$\delta(n) := \min\{\chi(D_1 \times D_2) : \chi(D_1) = \chi(D_2) = n \text{ and } D_1, D_2 \in \mathcal{D}\}$$

where \mathcal{D} is the class of finite digraphs and $\chi(D)$ is the chromatic number of D. The first striking result concerning this function was proved by Poljak and Rödl [4]: either δ is bounded by 4 or it tends to infinity. Later on, Poljak [3], and independently Zhu [6] proved that 4 can be replaced by 3. When δ is restricted to undirected graphs, Hedetniemi [2] conjectured that $\delta(n) = n$. El-Zahar and Sauer proved in [1] that $\delta(4) = 4$ for undirected graphs. For directed graphs, it is known that $\delta(4) = \delta(3) = 3$.

Theorem 1 $\delta(5) = 3$

Proof. The oriented graph D depicted in Fig. 1 is 5-chromatic. Observe for this that the twelve vertices with degree 8 induce a graph G which is uniquely 4 colorable up to a rotation. Indeed the stability of G is 3 and the color classes must consist of three consecutive vertices in the cyclic order. Now, one of the three vertices with degree 4 has to have one neighbour in each of the four color classes. Thus D is not 4-colorable. The 3-coloration f of $D \times TT_5$ is given by the label of the vertices of D: when a vertex x of D is labelled by c^3a^2 , for instance, we mean that f(x,1) = c, f(x,2) = c, f(x,3) = c, f(x,4) = a, f(x,5) = a. To see that f is a good coloration, note that when there is an edge from x to y (both seen as words of length 5 on the alphabet $\{a,b,c\}$), the ith letter of x is not equal to the jth letter of y for every y > i. \square

Fig. 1

This example is a subgraph of the graph K_3^{TT5} which has chromatic number 5 (this is not hard to check). A short analysis also gives that $\chi(K_3^{TT_4})=6$ and $\chi(K_3^{TT_k})=4$ for all k>5. We were not able to find an infinite family of 5-chromatic digraphs (D_1,D_2) such that $\chi(D_1\times D_2)=3$.

References

- [1] E. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, *Combinatorica*, **5** (1985), 121-126.
- [2] S.T. Hedetniemi, Homomorphisms and graph automata, University of Michigan Technical Report, **03105-44-T** (1966).
- [3] S. Poljak, Coloring digraphs by iterated antichains. Comment. Math. Univ. Carolin., 32 (1991), 209-212.
- [4] S. Poljak and V. Rödl, On the arc-chromatic number of a digraph, J. Combin. Theory Ser. B, 31 (1981), 190–198.
- [5] N. Sauer, Hedetniemi's conjecture a survey, preprint.
- [6] X. Zhu, Multiplicative Structures, Ph. D. thesis (1990), The university of Calgary.