Hoang-Reed conjecture holds for tournaments
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Abstract
Hoang-Reed conjecture asserts that every digraph D has a collection C of circuits Ch,...,Cs+,

where §1 is the minimum outdegree of D, such that the circuits of C have a forest-like structure.
Formally, |V (C;) N (V(C1) U...UV(Ci—1))| < 1, for all i = 2,...,67. We verify this conjecture for
the class of tournaments.

1 Introduction.

One of the most celebrated problems concerning digraphs is the Caccetta-Héggkvist conjecture (see [1])
asserting that every digraph D on n vertices and with minimum outdegree n/k has a circuit of length
at most k. Little is known about this problem, and, more generally, questions concerning digraphs
and involving the minimum outdegree tend to be intractable. As a consequence, many open problems
flourished in this area, see [4] for a survey. The Hoang-Reed conjecture [3] is one of these.

A circuit-tree is either a singleton or consists of a set of circuits Cy, . .., Cy such that |V(C;)N(V(Cy)U
..UV(Cizq))| =1lforalli=2,... k, where V(C}) is the set of vertices of C;. A less explicit, yet concise,
definition is simply that a circuit-tree is a digraph in which there exists a unique zy-directed path for
every distinct vertices x and y. A vertex-disjoint union of circuit-trees is a circuit-forest. When all circuits
have length three, we speak of a triangle-tree. For short, a k-circuit-forest is a circuit-forest consisting of
k circuits.

Conjecture 1 (Hoang and Reed [3]) Every digraph has a §-circuit-forest.

This conjecture is not even known to be true for 7 = 3. In the case 7 = 2, C. Thomassen proved
in [6] that every digraph with minimum outdegree two has two circuits intersecting on a vertex (i.e.
contains a circuit-tree with two circuits). The motivation of the Hoang-Reed conjecture is that it would
imply the Caccetta-Héggkvist conjecture, as the reader can easily check. Our goal in this paper is to
show Conjecture 1 for the class of tournaments, i.e. orientations of complete graphs. Since this class is
notoriously much simpler than general digraphs, our result is by no means a first step toward a better
understanding of the problem. However, it gives a little bit of insight in the triangle-structure of a
tournament 7T, that is the 3-uniform hypergraph on vertex set V' which edges are the 3-circuits of T'.

Indeed, if a tournament T has a §t-circuit-forest, by the fact that every circuit contains a directed
triangle, T" also has a §*-triangle-forest. Observe that a §T-triangle-forest spans exactly 20% + ¢ vertices,
where ¢ is the number of components of the triangle-forest. When T is a regular tournament with
outdegree 67, hence with 261 + 1 vertices, a § T-triangle-forest of T is necessarily a spanning §T-triangle-
tree. The main result of this paper establish the existence of such a tree for every tournament.

Theorem 1 Every tournament has a 6T -triangle-tree.
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2 Components in bipartite graphs.

We first need two lemmas in order to get lower bounds on the largest component of a bipartite graph in
terms of the number of edges.

Lemma 1 Let k > 1 and let ay,a9,...,a; and by, ba, ..., b be two sequences of positive reals. Let
A= Zle a; and B = Zle b;. If Zle a;b; = AQB + q, where ¢ > 0, then there is an 1 such that

a; +b; > A8 4 /2.

Proof. If k =1, then the lemma follows immediately as ¢ = A—QB and A+ B > A"’TB ++VAB. So assume

that & > 1. Without loss of generality, we may assume that (a1,b1) > (a2,b2) > ... > (ag,by) in the
lexicographical order. Let r be the minimum value such that b, > b; for all ¢ = 1,2,..., k. Note that
a1 > |Al/2, since otherwise Zle ab; < Zle Ab;/2 = AB/2. Analogously b, > |B|/2. Define a’ and ¥’
so that ay = A/2+a' and b, = B/2+ V.

If r #£ 1, then the following holds:

Zfﬂ aib; < arby + Zf:Q a;b,
S al(B—br)—i—(A—al)br
= @) V) (& )
= 48 24t/
< AB
S 5

As ¢ > 0, this implies we have equality everywhere above, which means that by = B — b,.. As
B = by +b,, we must have k = 2. As there was equality everywhere above we have b’ = 0 or ¢’ = 0 which
implies that a; = az = A/2 or by = by = B/2. In both cases we would have r = 1, a contradiction.
Suppose now that » = 1. Then

AB A B A B
— tg<ab+(A—a))(B-b) = (5 +d) (5 +V)+ (5 —d)(5 D)
2 2 2 2 2
This implies that ¢ < 2a’b’. The minimum value of o'+’ is obtained when ¢’ = ¥ = y/¢q/2. Therefore
the minimum value of ay + by is A/2 + B/2 + 24/q/2. This completes the proof of the lemma. [

Corollary 1 Let G be a bipartite graph with partite sets A and B. If |E(G)| = % + q, where ¢ > 0,
then there is a component in G of size at least |V(G)|/2 + /2q.

Proof. Let Q1,Q2,...,Qr be the components of G. Let a; = |[ANQ;| and b; = |B N Q;| for all
i=1,2,...,k. We note that Zle a;b; > ‘Agﬂ + q. By Lemma 1, we have a; + b; > AJ“TB + /2q for
some 7. This completes the proof. |

Lemma 2 Let T be a triangle-tree in a digraph D, and let X C V(T) and Y C V(T) be such that
| X|+ Y| > |V(T)| +2. Then there exists a triangle C in T such that the three disjoint triangle-trees in
T — E(C) can be named Ty, T5,T5 such that Y intersects both Ty and To and X intersects both Ty and
Ts.

Proof. We show this by induction. As |X|+ |Y| > |V(T)| 4+ 2, we note that T contains at least one
triangle. If T only contains one triangle then the lemma holds as either X or Y equals V(T'), and the
other has at least two vertices. Assume now that the lemma holds for all smaller triangle-trees and that
T contains at least two triangles. Let T' = T; U C, where C' is a triangle and T3 is a triangle-tree. If
I X NV(T)|+ Y NV (Ty)| > |V(T1)| + 2, then we are done by induction. So assume that this is not the
case. As |[V(T1)| = |V(T)| — 2 this implies that | X \ V/(T1)| + |Y \ V(T1)| > 3.

Without loss of generality assume that | X \ V(T1)| > 2 and |Y \ V(T1)| > 1. Let T3 be the singleton-
tree consisting of a vertex in Y \ V(T7) and let T3 be the singleton-tree X \ (V(T1) UV (T3)). Note that



T — E(C) consists of the triangle-trees T}, T and T3. By definition, X intersects both 75 and T3 and YV
intersects To. If Y also intersects T}, we have our conclusion. If not, since | X| + Y| > |V(T)| + 2, we
have Y =T, UT3 and X = V(T'), and free to rename 77, T», T3, we have our conclusion. |

3 Proof of Theorem 1.

We will need the following results:

Theorem 2 (Tewes and Volkmann [5]) Let D be a p-partite tournament with partite sets Vi,Va, ... V.
Then there exists a partition Q1,Q2,...,Qr of D such that

e cach Q; induces an independent set or a strong component,

e there are no arcs from Q; to Q; for all j > i, and there is an arc from Q; to Qi1 for all i =
1,2, k—1.

Theorem 3 (Guo and Volkmann [2]) Let D be a strong p-partite tournament with partite sets Vi, Va, ... V,.
For every 1 < i < p, there ezists a vertex x € V; which belongs to a k-circuit for all 3 < k < p.

Now, we assume that D is a strong tournament as otherwise we just consider the terminal strong
component. Let 7" be a maximum size triangle-tree in D, and assume for the sake of contradiction that
|V(T)| < 267(D)+1. Let DMT be the multipartite tournament obtained from D by deleting all the arcs
with both endpoints in V(7). Let Vi, Va, ...,V be the partite sets in D™7T such that V; = V(T) and
|[Vi| =1 for all i > 1.

Let Q1,Q2,...,Qy be a partition of V(DMT) given by Theorem 2.

If there is a Q; with Q; N Vi # () and Q; Z Vi then we obtain the following contradiction. Since
Q; € V1, we observe that (Q; contains at least two partite set. In addition, note that at least three partite
sets intersect Q; as DMT(Q,) would not be strong if there were only two partite sets since |V;| = 1 for
all i > 1. By Theorem 3, in the subgraph of DMT induced by Q;, there is a 3-circuit containing exactly
one vertex from V;. This contradicts the maximality of T. So every set @); is either a subset of V; or is
disjoint from V;.

Note that Q1 NV; # () and QrNV; # 0, as otherwise D would not be strong. Applying the observation
above, we obtain Q1 U Qg C V1. Let D’ = D(V4). If there is a vertex = € Q with df, (z) < %, then
dh(z) < %, which implies that |V (T)| > 267 (D) + 1, a contradiction. So d},, (z) > % for all
x € Q, as |V1| is odd.

Let G1 denote the bipartite graph with partite sets @ and Vi — Qy, and with E(Gy) = {uv | u €
Qr, v € Vi — Qp, uv € E(D)}. Note that the following now holds by the above.

@l < 5 a0 - () + mG) )
UEQK

This implies that [E(Gy)| > [Qel@AIZIQD 40,1 which by Corollary 1 implies that there is a
component in G of size at least |V3]/2 4 /2[Qx] > |V1|/2+ /2. As the size of the maximum component
in G is an integer it is at least |V1]/2 + 3/2. Two cases can now occur:

o If |Qr—1| > 1 or Qr_o € Vi (or both). If |Qr—1| > 1 then let Z = {z1,22} be any two distinct
vertices in Q;_1 otherwise let Z be any two distinct vertices in Qx_1 U Qx_2. By the definition of
the Q;’s we note that ZNV; = () and there are all arcs from (V; — Q) to Z and from Z to Q. We
let X =Y be the vertices of a component in Gy of size at least (|V1]|+3)/2 and use Lemma 2 to find
a triangle C in T', such that the three disjoint triangle-trees, 77, T» and T35, of T'— E(C) all intersect



X (as X =Y). As X are the vertices of a component in G there are edges, u1v1 and ugvs, from
G such that the following holds. The edge u;v; connects T3 and T, where usvo connects T5_; and
T; UT5. generality assume that uq, ug € Q) and v1,v2 € Vi — Qg. Now T — E(C') together with the
vertices z; and z5 as well as the 3-circuits vy zyuyv, and vazousvs is a triangle-tree in D with more
triangles than T', a contradiction.

o If |Qr—1]| =1 and Qr_2 C V;. Note that k > 3, as otherwise |V (D) \ V(T)| = 1 and we have a
contradiction to our asumption. This implies that k£ > 4 as @1 C V7, which implies that Qo € V4.
Now let Qr—1 = {21} and let 2o € Qr_3 be arbitrary. Let G5 denote the bipartite graph with
partite sets A = Qr UQr—2 and B=V; — A, and with E(G2) = {uv | u € A, v € B, uwv € E(D)}.
Recall that d};, (z) > W for all x € Q. Analogously we get that df,(y) > % — 1 for all
Y € Qr—2 (as |Qr—1]| = 1). This implies the following.

|A|‘V1|T+1 —|Qr_a| < Z di.(u) = (?) + |E(G2)| (2)

ucA

This implies that |E(G2)| > W + |A| — |Qg—2|, which by Corollary 1 implies that there is

a component in Go of size at least |V1|/2 + 1/2|Qk/|, as |A| — |Qk—2] = |Qk|. Note that |Qx| > 1,
as otherwise the vertex in QQ;_; only has out-degree one, a contradiction. Therefore there is a
component in G of size at least |V1|/2 + 2 and so at least |V1|/2+45/2 as V; is odd.

Let X be the vertices of a component in G of size at least |V1|/2 + 3/2 and let Y be the vertices
in a connected component of Gy of size at least |V1]/2 + 5/2. Now use Lemma 2 to find a triangle
C in T, such that the three disjoint triangle-trees, T1, 7o and T3, of T — E(C') have the following
property. The set Y intersects 77 and 75 and the set X intersects T5 and 73. Due to the definition
of X and Y there exists edges, ujv; € E(G1) and usvy € E(G2), such that the following holds.
The edge uivy connects T3 and T, where j € {1,2} and ugvs connects T5_; and T; U T3. Without
loss of generality assume that uy,us € Qr and vy,ve € Vi — Q. Now T — E(C) together with the
vertices z; and 25 as well as the 3-circuits vy z1u1v1 and vazousvs is a triangle-tree in D with more
triangles than T, a contradiction. This completes the proof.
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