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Abstract

A relation R is p-divisible if for any partition of its basis into p + 1 subsets, R is embedded into
the union of p of them. We prove that any countable p-divisible relation embeds two copies of itself
intersecting in at most p− 1 elements.

A relation R is indivisible if for any partition of its set of vertices into two subsets V1 and V2, there
exists i ∈ {1, 2} such that R is embedded into R(Vi), where R(Vi) denotes the restriction of R to Vi.
Clearly, there is no finite indivisible relation with more than one vertex. In the infinite case, in addition
to some trivial examples of indivisible relations such that complete graphs or the order type of natural
numbers, one can easily check that Rado’s graph and the order type of the rationals are also indivisible.
The starting point of this work is the following conjecture of Fräıssé : if R is indivisible, there exist two
disjoint embeddings from R into itself. This conjecture has been proved true in the countable case by
Pouzet [6] : a countable counterexample would give a non-principal analytic ultrafilter on ω, contrary to
a result of Sierpinski. For recent developments on Fräıssé’s conjecture in the general case, see Bishop’s
work on ultrafilters [1].

One possible generalization of indivisibility is to increase the number of blocks of the partition, thus,
a relation is p-divisible if for any partition of its basis into p + 1 subsets {V1, V2, . . . , Vp+1} there exists i
such that R is embedded into R \ Vi (clearly, 1-divisible is indivisible). Answering a question of Hajnal,
Laver proved in [5] that for any countable linear ordering L there exists a p such that L is p-divisible.
We prove in this paper a generalization of Pouzet’s theorem : if R is a countable p-divisible relation, one
can find two copies of R into itself intersecting in at most p− 1 vertices (p = 1 gives Pouzet’s theorem).

We give a purely combinatorial proof of this theorem which is based on the notion of α-morphism
(the key idea of Ehrenfeucht-Fräıssé games). A 0-morphism from R into R′ is a local isomorphism (an
isomorphism from a finite restriction of R into a finite restriction of R′). An α + 1-morphism is a local
isomorphism from R into R′ which can be extended on any finite subset of R as an α-morphism. Lastly, if
α is a limit ordinal, an α-morphism is a β-morphism for any β < α. According to this definition, a relation
R α-embeds a relation R′ if the empty morphism is an α-morphism from R′ into R. The fundamental
theorem of Fräıssé asserts that if R and R′ are countable and R ω1-embeds R′ then R embeds R′. In
this paper, we use this notion in order to construct inductively the disjoint (resp. nearly disjoint) copies
of an indivisible (resp. p-divisible) relation. Here are the two steps of the proof, when R is an indivisible
relation :

First we prove that if for any countable α, one can find two disjoint subsets V α
1 and V α

2 such that R
is α-embedded into R(V α

1 ) and into R(V α
2 ), then R embeds two disjoint copies of itself. We then prove

that if R is indivisible, one can always find such subsets V α
1 and V α

2 for any countable α.
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The easy step is the first one - we just have to define inductively the notion of disjoint α-morphisms.
We prove the second step by induction. To initialize the induction, we have to find V 1

1 and V 1
2 (each of

these subsets must contain all the finite isomorphism types of R). This can be done easily, as any finite
restriction of an indivisible relation R is disjointly embedded into R infinitely many times. The next stage
of the proof contains the whole difficulty of the problem : here we have to consider infinite families of
finite extensions. The tool we use to handle these families is the notion of ∆-system. We make extensive
use of a lemma asserting that any infinite family of finite sets either contains an infinite ∆-system or is
”nested” in a sense to be made precise.

Of more note than our slight extension of the indivisibility theorem is the main idea of this paper,
that given an α-morphism, either we can extend it in only one direction or we can extend it in infinitely
many ”disjoint” directions.

1 Disjoint Alpha-Morphisms.

In this part, we recall the main results about α-morphisms. Furthermore, we state the first step of our
proof : given two countable relations R and R′, if for any countable ordinal α, there is a partition of R′

into two subsets such that each one α-embeds R, then one can find two disjoint embeddings from R into
R′.

Definition 1 (Fräıssé [3])
- An n-ary relation is a pair R = (V,E) where V is a set and E a subset of V n. The elements of V

are vertices, those of E are edges. A n-ary relation R = (V,E) is embedded into another n-ary relation
R′ = (V ′, E′) if there is an injective mapping f from V into V ′ such that (v1, ..., vn) ∈ E if and only if
(f(v1), ..., f(vn)) ∈ E′. If f is a 1 − 1 mapping, then R is isomorphic to R′. Let Y be a subset of V ,
R(Y ) = (Y, V n ∩ E) is the induced subrelation on Y . Hence, the relation R is embedded into R′ if and
only if R is isomorphic to an induced subrelation of R′.

- A local isomorphism from R into R′ is an isomorphism f from R(F ) into R′(F ′) where F and F ′

are finite subsets of V and V ′, we denote F by Dom(f) and F ′ by Im(f). If D is a subset of F , the
restriction of f to D is denoted by fD. If G is a finite subset containing F , we will usually denote an
extension of f to G by fG.

- For any ordinal α, we define by induction the notion of α-morphism from R into R′ :
i) Any local isomorphism is a 0-morphism.
ii) Let f be a local isomorphism from R into R′. If for any finite subset F of V containing Dom(f),

we can extend f to F as an α-morphism, then f is an (α + 1)-morphism.
iii) If α is a limit ordinal and f is a β-morphism for any β < α then f is an α-morphism.
- We say that R′ α-embeds R if the empty local isomorphism is an α-morphism from R into R′.

Example 1 - If f is an embedding from R into R′, then for any finite F ⊆ V and any ordinal α, the
restriction fF is an α-morphism.

- The ordinal ω does not 2-embed ω + 1. More generally, for any countable ordinal α, ωα does not
(α + 1)-embed ωα + 1.

- In the class of countable locally finite connected graphs, if G 2-embeds G′ then G embeds G′. (If
f is a 1-morphism from G′ into G such that Dom(f) is not empty, there are only finitely many ways to
extend f to the neighbourhood of Dom(f). By König’s infinitary lemma, one of these extensions is also
a 1-morphism.)

Throughout this section, R = (V,E) and R′ = (V ′, E′) are countable n-ary relations, f is an α-
morphism from R into R′ which domain is F and image is F ′.

Lemma 1 If β < α, then f is a β-morphism.
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Lemma 2 Let D be a subset of F , the restriction of f to D is an α-morphism.

Proof. By induction on α.
- Trivial if α is limit or equal to 0.
- If α = β + 1, for any finite G containing D we just have to prove that we can extend fD to G as a

β-morphism. We consider an extension fF∪G which is a β-morphism, thus, by the induction hypothesis,
(fF∪G)D = fD is a β-morphism. 2

Theorem 1 (Fräıssé [3]) If R′ ω1-embeds R then R′ embeds R.

Proof. We enumerate the vertices of R, thus V = {vi}i∈ω. For any countable α, as the empty morphism
is an (α + 1)-morphism, there exists a vertex xα of V ′ such that the local isomorphism which maps v0

into xα is an α-morphism. Thus, there is an element y0 which is cofinal in the sequence {xα}α<ω1 . Then,
the local isomorphism f0 which maps v0 into y0 is an ω1-morphism. Similarly, we can extend f0 to the
domain {v0, v1} in another ω1-morphism f1. This process gives a sequence of local isomorphisms {fi}i∈ω

the union of which is an embedding from R into R′. 2

Our purpose is to find disjoint copies of a relation, so we need an extension of this theorem.

Definition 2 - Let f and g be two local isomorphisms from R into R′ defined on the same domain and
let A be a finite subset of V ′. We give by induction the definition of disjoint α-morphisms relative to A.

i) If Im(f) ∩ Im(g) ⊆ A then f and g are disjoint 0-morphisms relative to A.
ii) If f and g are both (α+1)-morphisms then they are disjoint relative to A if for any finite subset F

extending their domain, one can find two extensions fF and gF which are disjoint α-morphisms relative
to A.

iii) If α is limit, disjoint α-morphisms relative to A means disjoint β-morphisms relative to A for any
β < α.

- Now we use the definition for f = g. If f and f are disjoint α-morphisms relative to Im(f) then we
will simply say that f is a disjoint α-morphism from R into R′.

Example 2 - Any local isomorphism from the Rado countable universal graph into itself is a disjoint
ω1-morphism.

- Any 2-morphism from the infinite path into the infinite binary tree is a disjoint ω1-morphism.

Theorem 2 If f is a disjoint ω1-morphism from R into R′, then there exists two embeddings g and h
from R into R′, both extending f , such that g(V ) ∩ h(V ) = Im(f).

Proof. Same as theorem 1. We enumerate the vertices which do not belong to Dom(f), thus V \
Dom(f) = {vi}i∈ω. Now, for any countable α, as f is a disjoint (α+1)-morphism, there are two different
vertices (xα, yα) of V ′ \ Im(f) such that the extension of f which maps v0 into xα and the extension of f
which maps v0 into yα are disjoint α-morphisms relative to Im(f). There exists a cofinal (x0, y0) in the
sequence {(xα, yα)}α<ω1 , thus, the following extensions of f : g0 which maps v0 into x0 and h0 which
maps v0 into y0, are disjoint ω1-morphisms relative to Im(f). Similarly, we can extend g0 and h0 to the
domain Dom(f) ∪ {v0, v1} in another couple of disjoint ω1-morphisms relative to Im(f). This process
gives a sequence of pair of local isomorphisms {(gi, hi)}i∈ω and the unions of these g = ∪gi, h = ∪hi

have the required properties. 2

Now, to prove the indivisibility theorem, we just have to check that the empty morphism from a
countable indivisible relation into itself is an α-disjoint morphism for all α < ω1. The case α = 1 is easy
since any finite restriction of an indivisible relation R can be embedded into R in countably many (and
hence two) disjoint ways. In fact, the whole difficulty of the proof is for the case α = 2. Here we have to
handle infinite families of finite subsets in order to extract disjoint families. This is the aim of the next
part :
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2 Duality Lemmas on Delta-Systems.

Definition 3 - A ∆-system F is a family of sets such that the intersection of any two distinct elements
of F is a given set F . The set F is the center of F . A ∆-system is disjoint if its center is empty.

- If F is a family and X is a set, F \X (resp. F ∪X) is the family of sets Y \X (resp. Y ∪X) where
Y belongs to F .

In this paper, ”countable” means ”countably infinite”. All the families are finite or countable families
of finite sets. Unless stated otherwise, the ∆-systems are always countable families of finite sets.

Lemma 3 Let F be a countable family. One and only one of the following cases occurs :
i) F contains a ∆-system.
ii) There is a disjoint ∆-system D such that any element of D intersects all but a finite number of

elements of F .

Proof. Clearly i) and ii) are mutually exclusive. Suppose i) is false. Inductively define finite families
Fn so that Fn is a maximal disjoint subfamily of F \

⋃
{F : F ∈

⋃
{Fi}i<n}. Then ii) holds with

D = {
⋃
Fn : n < ω}. 2

Corollary 1 If the size of the elements of F is bounded, only case i) occurs.

Definition 4 - A countable family which satisfies condition i) of lemma 3 is called wide otherwise it is
narrow.

- Let F be a wide family, if F is a center of a ∆-system included in F and F is minimal by inclusion
for this property, it is called kernel of F . The set of kernels of F is denoted by K(F).

Lemma 4 Let F be a wide family such that K(F) is infinite, then K(F) is a narrow family.

Proof. Suppose for contradiction that K(F) is wide, then any of its kernels is a kernel of F , against the
minimality. 2

The two following lemmas are immediate from the definitions.

Lemma 5 Let F be a wide family partitioned into finitely many subfamilies, namely F =
⋃
{Fi}i<n.

Then there exists an i such that Fi is wide, each kernel of it contains a kernel of F . Moreover, each
kernel of F is the kernel of some Fj.

Lemma 6 Let F be a wide family and F a finite set. Then the family F \ F is wide, moreover for any
kernel K of F \ F there is a kernel K ′ of F such that K = K ′ \ F .

The following lemma is an extension of lemma 3, in order to check it, one just have to choose an
injective rank.

Lemma 7 Let F be a family and r, a mapping from F into the natural numbers called rank. One and
only one of the following cases occurs :

i) F contains a ∆-system D which has the following property : for any n one can find D ∈ D such
that r(D) > n.

ii) There is a disjoint ∆-system D which has the following property : for any D ∈ D there is a n such
that any element of F with rank greater than n intersects D.
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Proof. Here again, we check easily that those two cases exclude each other.
Now we suppose that ii) does not hold. One can possibly find a finite set F0 which intersects any

element of F greater than a given rank. Again, one can possibly find a finite set F1, disjoint from F0 which
intersects any element of F greater than a given rank. Iterating this process, we construct a sequence
F0, F1, F2,... which stops on one Fn. Now let F =

⋃
{Fi}0≤i≤n , for any finite set F ′ disjoint from F

there is an element H of F with arbitrarily high rank such that H ∩ F ′ = ∅.
We denote by Fi, the subfamily of F which contains all the elements with rank greater than i. As ii)

does not hold, all of the Fi are wide. Moreover, for any i, the family Fi \ F has an empty kernel. Thus,
following lemma 6, each Fi has a kernel included in F .

We now consider a subset F ′ of F which is a kernel of infinitely many Fi. Then any of those Fi

contains a ∆-system which center is F ′. By a diagonal argument on this collection of ∆-systems, we
extract a ∆-system which satisfies i). 2

Here we have the basic tools to start the discussion. We will show in the following section that an
analog of lemma 3 can be stated for α-morphisms. This property is a way of measuring how disjoint
are the extensions of local isomorphisms. This tool will give the impartibility theorem : either local
isomorphisms are not very disjoint and one can divide the relation, or they are very disjoint and one can
find two copies thanks to theorem 2.

3 Wide and Narrow Alpha-Morphisms.

Throughout this section, R = (V,E) and R′ = (V ′, E′) are countable n-ary relations, f is a local
isomorphism from R into R′ with domain F and image F ′. Moreover, all the ∆-systems are countable
families of finite subsets of V ′.

Definition 5 - A realization of a ∆-system is the union of any infinite subfamily.
- f is α-narrow if there is a disjoint ∆-system D, called an α-narrow system of f , which has the

following property : for any realization Y of D, f is not an α-morphism from R into R′(V ′ \ Y ).
- f is α-wide if there is a ∆-system D which has the following property : for any realization Y of D,

f is an α-morphism from R into R′(Y ). Such a ∆-system is called an α-wide system of f . We denote
by Dα(f) the set of α-wide systems of f , and Cα(f) is the set of centers of the elements of Dα(f). The
elements of Cα(f) which are minimal for inclusion are called α-kernels of f , we denote the set of α-kernels
of f by Kα(f). Clearly, any α-kernel of f contains Im(f).

Example 3 - Any local isomorphism f is 0-wide (consider any ∆-system with center Im(f)). Trivially,
if f is not an α-morphism, it is α-narrow.

- The empty isomorphism from the infinite path into itself is 2-narrow.
- Any α-morphism from the infinite path into the ω-tree (the acyclic connected graph such that any

vertex has countable degree) is α-wide.
- This definition gives us some examples of disjoint α-morphisms : namely, if f is α-wide and Kα(f) =

{Im(f)} then f is a disjoint α-morphism.

Lemma 8 Let D be a finite or countable set of disjoint ∆-systems. There exists a disjoint ∆-system D′

such that any realization of D′ contains a realization of any of the ∆-systems of D. We will call such a
D′ a diagonal ∆-system of D.

Proof. Direct diagonal argument : let D = {Di}i∈ω, the Di are not necessarily different. Let D0 be
an element of D0. Now let F0 and F1 be some elements of D0 and D1 disjoint from D0, we choose
D1 = F0 ∪ F1. We construct in a similar way D2, D3,... Now D′ = {Di}i∈ω. 2

Corollary 2 If f is α-wide and Kα(f) is infinite, then Kα(f) is narrow.
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Proof. Suppose for contradiction that Kα(f) contains a ∆-system D = {Di}i∈ω centered in F . Any Di

is the center of an α-wide system Fi of f . We apply lemma 8 to the set {D \ F,F0 \D0, ...,Fi \Di, ...},
we denote one of its diagonal ∆-system by D′, now D′ ∪ F is an α-wide system of f centered in F , thus
F contains an α-kernel of f , against minimality. 2

Now, we prove the central theorem.

Theorem 3 For any countable α, f is either α-narrow or α-wide.

Proof. Clearly, f cannot be both α-narrow and α-wide.
We prove the result by induction on ω1. We have already observed (example 3) that f is 0-wide. Note

that, if f is β-narrow then it is α-narrow for all α > β. So assume that f is β-wide for all β < α. We
have to show that f is either α-narrow or α-wide. We may assume that f is an α-morphism, otherwise
it is α-narrow.

- If α is a limit ordinal, let {βi}i∈ω be a cofinal sequence in α. We denote by K the union of all the
Kβi

(f). Two cases may occur :
a) There is some F which belongs to infinitely many Kβi

(f). This means that one can find a sequence
{Dj}j∈ω, each Dj is a βj-wide system of f centered in F , and {βj}j∈ω is cofinal in α. By lemma 8, one
can find a diagonal disjoint ∆-system D of the set {Dj \ F}j∈ω. Now F ∪ D is an α-wide system of f
centered in F . Then f is α-wide.

b) If a) does not hold, for any F ∈ K we consider r(F ) = max{i ∈ ω : F ∈ Kβi
(f)}. Now, we have a

ranked family on which we can apply lemma 7.
Suppose that (K, r) satisfies condition i) of lemma 7, then K contains a ∆-system D which has the

following property : for any n, one can find Dn ∈ D such that Dn is the kernel of a γ-wide system
Fn of f with γ > βn. Let C be the center of D, then, by a diagonal argument on {{Di \ C : i ∈
ω},F1 \D1, . . . ,Fi \Di, . . .}, C is the center of a βi-wide system of f for infinitely many i. So, we can
find a kernel included in C which belongs to infinitely many Kβi

(f), then a) holds. This is a contradiction.
Therefore (K, r) satisfies condition ii) of lemma 7. Then there is a disjoint ∆-system D = {Di}i∈ω

which has the following property : for any i there is an n such that any element of K with rank greater
than n intersects Di. This means that f cannot be βn-wide from R into R′(V ′ \ Di), otherwise there
would be a kernel disjoint from Di. By the induction hypothesis, f is therefore βn-narrow from R
into R′(V ′ \ Di), let Fi be one of its βn-narrow systems. We consider a diagonal disjoint ∆-system of
{D,F0, ...,Fi, ...}, this is an α-narrow system of f . Thus f is α-narrow.

- The next case is α = β + 1. If there is a finite set F ⊇ Dom(f) such that every extension fF is
β-narrow, then f is α-narrow. For there are only countably many different extensions of f to F and each
of them has a β-narrow system. Then a diagonal system of these is an α-narrow system. (Let fi (i ∈ ω)
be the different extensions to F , and let Fi be a witness that fi is β-narrow. Consider any realization Y
of the diagonal system of the Fi. If f is an α-morphism from R into R′(V ′−Y ), then it has an extension
fi to F which is a β-morphism, and this is a contradiction since Y is also a realization of Fi.) So we can
assume, for each finite set F , there is a β-wide extension of f to F .

Let {Fi : i ∈ ω} be an increasing sequence of finite sets such that F0 = Dom(f) and V =
⋃
{Fi : i ∈ ω}.

Now, for any Fi, there is an extension fFi which is β-wide, we denote by Ei the set of β-wide extensions
of f to Fi. Moreover, let Ki =

⋃
{Kβ(g) : g ∈ Ei} and K =

⋃
{Ki}i∈ω. Each element of Ki contains an

image of Fi, and so has size at least |Fi|. Thus, for any F ∈ K, one can define r(F ) = max{i ∈ ω : F ∈ Ki}.
Now we have our ranked family (K, r). We apply lemma 7, two cases may occur :

i) Either K contains a ∆-system D which has the following property : for any n one can find Dn ∈ D
such that Dn is the kernel of a β-wide system Fn of an extension of f to Fn. Let C be the center of D,
by a diagonal argument on {{Di \ C : i ∈ ω},F1 \D1, . . . ,Fi \Di, . . .}, f is α-wide.

ii) Or there is a disjoint ∆-system D which has the following property : for any D ∈ D there is an
n such that any kernel of a β-wide extension of f to Fn intersects D. Then, there is no extension of f
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to Fn which is β-wide from R into R′(V ′ \ D). We conclude as in the last part of the limit case : f is
α-narrow. 2

Corollary 3 If f is α-wide and Im(f) is not an α-kernel of f , then there exists a finite set A disjoint
from Im(f) such that f is α-narrow from R into R′(V ′ \A).

Proof. If Kα(f) is finite, then we just choose A = (
⋃
Kα(f))\ Im(f). Now if Kα(f) is infinite, following

corollary 2, it is narrow. Thus one can find a finite set A, disjoint from Im(f) and intersecting all the
elements of Kα(f). 2

And what about the ω1 case? The problem here is not to find an ω1-kernel, we just have to extract a
constant cofinal sequence of α-kernels. But we do not know how to extract an ω1-wide system. A positive
answer to the following conjecture would help to solve the problem.

Conjecture 1 (Fräıssé [3]) For any countable relation R, there is a countable α such that, given any
relation R′ embedded into R, if R′ α-embeds R then R′ embeds R.

4 An Extension of the Indivisibility Theorem

In this section, R = (V,E) is a relation.

Definition 6 - R is indivisible if for any partition of V into two subsets V1 and V2, R is embedded into
R(V1) or into R(V2).

- R is p-divisible if for any partition of V into p+1 subsets V1, V2,..., Vp+1, there is one i ∈ {1, ..., p+1}
such that R is embedded into R(V \ Vi). Clearly 1-divisible is indivisible.

- A critical vertex of R is an element v ∈ V such that R is not embedded into R(V \ {v}). The kernel
of R is its set of critical vertices.

Example 4 - Any infinite empty graph, Rado’s graph and the order type of the rationals are indivisible
relations.

- The order types ω + n and ω.(n + 1) are (n+1)-divisible.

Theorem 4 (El-Zahar, Sauer [2]) The homogeneous Kn-free graphs are indivisible.

Theorem 5 (Laver [5]) For any countable linear ordering L, there exists a p such that L is p-divisible.

Conjecture 2 For any countable homogeneous relation R, there exists a p such that R is p-divisible.

Following the characterization of the homogeneous graphs (Lachlan, Woodrow [4]) and theorem 4,
this conjecture holds for the class of homogeneous graphs. It is also true for homogeneous partial orders,
the only homogeneous tournament which is not trivially p-divisible for some p is the following :

Example 5 We consider the tournament T = (V,E) constructed on a dense countable set V of the unit
circle, provided that if x ∈ V then x + π /∈ V . The set E is constructed as follows : (x, y) ∈ E if and
only if 0 < (y − x) mod π. This tournament is 2-divisible. Indeed, another way of constructing this
tournament is to consider a linear ordering < on V isomorphic to the rationals. Now let l be a mapping
from V into {0, 1} such that l−1(0) and l−1(1) are dense in (V,<). The set of edges E is constructed
in the following way : (x, y) ∈ E if and only if (l(x) = l(y) and x < y) or (l(x) 6= l(y) and x > y). In
Fräıssé’s terminology, the tournament T is freely interpretable by the rational order type and one unary
relation. As (V,<, l) is 2-divisible, T is also 2-divisible.
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Lemma 9 Suppose the kernel K of R is finite. Then :
i) For any embedding f from R into R, f(K) = K.
ii) For any finite subset A disjoint from K, there is an embedding f from R into R(V \A).

Proof. Let v ∈ K, by definition of the kernel, v ∈ Im(f) so there is an x such that f(x) = v. The vertex
x is also critical, otherwise, there would be an embedding g such that x /∈ g(V ), and finally v /∈ f(g(V )).
As K is finite, f(K) = K.

We prove now ii) by induction on card(A), this is true if A is the empty set. Now let y ∈ A, as y
is not a critical element of R there exists an embedding g such that y /∈ Im(g). Now we use induction
hypothesis on R(g(V )). 2

Theorem 6 (Pouzet [6]) If R is indivisible and countable, there are two disjoint subsets V1 and V2 of V
such that R is isomorphic to R(V1) and to R(V2).

As a generalization of this last result, we state :

Theorem 7 If R is p-divisible and countable, there are two subsets V1 and V2 of V which satisfy the
following properties :

i) R is isomorphic to R(V1) and to R(V2).
ii) card(V1 ∩ V2) < p.

Proof. We denote by K the kernel of R. As R is p-divisible, K has at most p − 1 elements. Suppose
for contradiction that any local isomorphism from K into K is α-narrow for one countable α. Thus, for
any local isomorphism f from K into K, there is a disjoint ∆-system Df such that for any realization
Y of Df , f is not an α-morphism and then cannot be extended to an embedding from R into R(V \ Y ).
Let D be a diagonal disjoint ∆-system of the finite set {Df : f ∈ Aut(K). Now, following lemma 9 i),
for any realization Y of D, R is not embedded into R(V \ Y ). At last, we consider a partition of V into
p + 1 subsets, each of them contains a realization of D : this partition does not satisfy the p-divisibility
property.

Suppose for contradiction that for any f from K into K which is α-wide for any countable α, there
is a particular βf such that Kβf

(f) 6= {K}. Then, for any f ∈ Aut(K), following corollary 3, there
exists a finite set Af disjoint from K such that f is βf -narrow from R into R(V \ Af ). We denote by
A the (finite) union of the Af . Now, all the local isomorphisms on domain K are α-narrow from R into
R(V \ A) for a suitably large α < ω1. But following lemma 9 ii), there is one embedding g from R into
R(V \ A), moreover we proved in the previous paragraph that there exists a local isomorphism h from
K into K which is α-wide for any countable α. Now, goh is a local isomorphism from R into R(V \ A)
which is α-wide for any countable α. Contradiction.

At last, there is a local isomorphism f on domain K which is α-wide from R into R and such that
Kα(f) = Im(f) = {K} for any countable α. Thus, following the last remark in example 3, f is a disjoint
α-morphism for any countable α.

So, following theorem 2, we finally have two copies of R intersecting on K, with card(K) < p. 2

When we started this work about α-morphisms and indivisibility, our purpose was to prove the
following conjecture of Pouzet[6].

Conjecture 3 Let R and S be countable relations. If in any bipartition of R, S is embedded into one
side of the partition, then there exists two disjoint copies of S in R.

We are still blocked in this case : for any countable α, the empty morphism from S into R is α-wide
with non-empty α-kernel. We cannot even prove that the 2-kernel is empty. But as for the proof of
p-divisibility, the whole difficulty (or maybe the falsity) seems to be in this case.
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