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Abstract. In 1963, Tibor Gallai [9] asked whether every strongly con-
nected directed graph D is spanned by « directed circuits, where « is
the stability of D. We give a proof of this conjecture using a new struc-
ture for digraphs called cyclic orders. Three min-max theorems for cyclic
orders are derived.

1 A conjecture of Gallai.

In this paper, circuits of length two are allowed. Since loops and multiple arcs
play no role in this topic, we will simply assume that our digraphs are loopless
and simple. A directed graph (digraph) is strongly connected, or simply strong,
if for all vertices x,y, there exists a directed path from = to y. A stable set of a
directed graph D is a subset of vertices which are not pairwise joined by arcs.
The stability of D, denoted by a(D), is the number of vertices of a maximum
stable set of D. It is well-known, by the Gallai-Milgram theorem [10] (see also [1]
p. 234 and [3] p. 44), that D admits a vertex-partition into a(D) disjoint paths.
We shall use in our proof a particular case of this result, known as Dilworth’s
theorem [8]: a partial order P admits a vertex-partition into a(P) chains (linear
orders). Here a(P) is the size of a maximal antichain. In [9], Gallai raised the
problem, when D is strongly connected, of spanning D by a union of circuits.
Precisely, he made the following conjecture (also formulated in [1] p. 330, [2] and
[3] p. 45):

Conjecture 1 FEvery strong digraph with stability o is spanned by the union of
a circuits.

The case a = 1 is Camion’s theorem [6]: Every strong tournament has a
hamilton circuit. The case a = 2 is a corollary of a result of Chen and Manalas-
tas [7] (see also Bondy [4]): Every strong digraph with stability two is spanned
by two circuits intersecting each other on a (possibly empty) path. In [11] was
proved the case a = 3. In the next section of this paper, we will give a proof of
Gallai’s conjecture for every a.



2 Cyclic orders.

An enumeration E of a digraph D on the vertex set V with |V| = n is a bijection
of V into the n-gon {1,..,n}. If E(z) = k for a vertex x of D we simply denote x
by v and write E = v1,...,v,. An arc v;v; of D is a forward arc for E if ¢ < j,
otherwise it is a backward arc for E. A forward path for E is a directed path of
D which only contains forward arcs.

Given a circuit C of the digraph D, the index of C' for E is the number of
turns of E(C) (winding number), that is to say, the number of backward arcs
for E contained in C. We denote this index by ig(C).

Clearly, cyclic permutations of vi,...,v, leave the index of every circuit of
D unchanged. This is also the case when one permute two consecutive vertices
of vy, ...,v, which are not joined by an arc of D.

We say that two enumerations of D are equivalent if we can obtain one
from the other by applying a sequence of the two previous operations. Finally, a
cyclic order of D is an equivalence class of enumerations. For a circuit C of D,
by construction, the index of C' in any enumeration of a fixed cyclic order C is
the same and we denote it by ic(C). A circuit of D with index 1 in C is called
simple in C.

A cyclic order C is coherent if every arc of D belongs to a simple circuit, or
equivalently, if for every enumeration E of C and every backward arc v;v; for E,
there exists a forward path for E from v; to v;. We denote by cir(D) the set of
all directed circuits of D, and for a set of circuits S we simply denote by ic(S)
the sum of the index of the circuits of S.

Lemma 1 FEvery strong digraph has a coherent cyclic order.

Proof. Let us consider a cyclic order C which is minimum with respect to
ic(cir(D)). We suppose for contradiction that C is not coherent. There exists
an enumeration £ = vq,...,v, and a backward arc a = v;v; which is not in a
simple circuit. Assume moreover that E and a are chosen in order to minimize
j —i. Let k be the largest integer ¢ < k < j such that there exists a forward
path from v; to v,. Observe that v, has no out-neighbour in Jug,v;]. If k # 1,
by the minimality of j — i, vy has no in-neighbour in Jv,v;]. In particular the
enumeration E' = vi,...,05—1,Vk41,-..,Vj, Uk, Vjt+1,--.,Up is equivalent to E,
and contradicts the minimality of j — ¢. Thus k& = 4, and by the minimality of
J —1i, there is no in-neighbour of v; in Jv;, v;[. In particular the enumeration E' =
Uiy ey Vi1, Vitl, - - -, Vj—1, Vi, Vj, - - ., Up i equivalent to E. Observe now that in
E" =wvy,...,0i-1,Vi41,---,Vj—1, 0V, Vi, . . ., Un, every circuit C satisfies i g (C) <
i (C), and the inequality is strict if the arc a belongs to C, a contradiction. O

A direct corollary of Lemma 1 is that every strong tournament has a hamil-
ton circuit, just consider for this any coherent cyclic order.



3 Three min-max theorems.

In this section, we will translate different invariants of graph theory in terms of
cyclic order. From now on, C will be a given coherent cyclic order of some strong
digraph D.

The cyclic stability of C is the maximum k for which there exists an enumer-
ation vy,...,v, of C such that {v,...,v;} is a stable set of D. We denote it by
a(C), observe that we clearly have a(C) < a(D).

Lemma 2 For a fixed enumeration of C, let X be a subset of vertices of D such
that there is no forward path for this enumeration between two distinct vertices
of X. Then | X| < a(C).

Proof. We consider an enumeration £ = vq,...,v, of C such that there is no
forward path between two distinct vertices of X, and chosen in such a way that
j — ¢ is minimum, where v; is the first element of X in the enumeration, and
v; is the last element of X in the enumeration. Suppose for contradiction that
X # {vi,...,v;}. There exists vy ¢ X for some ¢ < k < j. There cannot exist
both a forward path from X N {v;,...,vk—1} to vr and a forward path from vy,
to X N {vg41,...,v;}. Without loss of generality, we assume that there is no
forward path from X N{v;,...,vg—1} to vr. Suppose moreover that vy, is chosen
with minimum index k. Clearly, v, has no in-neighbour in {v;,...,v;_1}, and
since C is coherent, vy has no out-neighbour in {v;, ..., v;_1}. Thus the enumer-
ation vi,...,%i—1,Vk,Viy...,V—1,Vk+1,---,VUn belongs to C, contradicting the
minimality of j —i. Consequently, X = {v;,...,v;}, and there is no forward
arcs, and then no backward arcs, between the vertices of X. Considering now
the enumeration v;, ..., Vn,v1,...,0;—1, we conclude that | X| < a(C). O

Let P = x1,...,x be a directed path, we call z; the head of P and zj the
tail of P. We denote the restriction of P to {x;,...,z;} by Plz;, z;].
The min vertex cover by circuits is the minimum index of a family of circuits
which spans V. We denote it by vspan(C).

Theorem 1 «.(C) = vspan(C).

Proof. Denote by k the cyclic stability of C and let E = vq,...,v, be an
enumeration of C such that S = {v1,..., v} is a stable set of D. Clearly, if a
circuit C' contains g vertices of S, the index of C' is at least ¢. In particular the
inequality ic(S) > k is satisfied for every spanning set of circuits of D and thus,
vspan(C) > a.(C). To prove that equality holds, we will provide a spanning set
S of circuits of D with index a.(C). Consider the auxiliary acyclic digraph D’ on
vertex set V' U {v],...,v,} which arc set consists of every forward arc of £ and
every arc viv; for which v;v; is an arc of D. We call T” the transitive closure of
D'. Let us prove that the size of a maximal antichain in the partial order T" is
exactly k. Consider such an antichain A, and set A; := AN {vy,..., v}, 4g =
AN{Vk41,---,vn} and Az := AN{vy,...,v}}. Since one can arbitrarily permute



the vertices of S in the enumeration E and still remain in C, we may assume that
Az = {vi,...,v}} for some 0 < j < k. Since every vertex is in a simple circuit,
there is a directed path in D' from v; to v}, and consequently we cannot both
have v; € A and v} € A. Clearly, the enumeration E' = vji1,...,0p,01,...,0;
belongs to C. By the fact that A is an antichain of T", there is no forward path
joining two elements of (AN V) U {vy,...,v;} in E', and thus, by Lemma 2,
|A| = [(ANV)U{v1,...,v;}| < k. Observe also that {vq,...,v,} are the sources
of T" and {v},...,v,} are the sinks of 7", and both are maximal antichains of
T'. We apply Dilworth’s theorem in order to partition 7" into k chains (thus
starting in the set {v1,...,v;} and ending in the set {v],...,v}}), and by this,
there exists a spanning set Pi,..., Py of directed paths of D' with heads in
{vi,..., v} and tails in {v],...,v}}. We can assume without loss of generality
that the head of P; is exactly v;, for all i = 1,..., k. Let us now denote by o the
permutation of {1,...,k} such that v/ (i) 18 the tail of P;, for all . Assume that
among all spanning sets of paths, we have chosen Py,..., P, (with respective
heads v1,...,v,) in such a way that the permutation ¢ has a maximum number
of cycles. We claim that if (41,...,ip) is a cycle of ¢ (meaning that o(i;) =
ij4+1 and o(ip) = 41), then the paths P;,...,P;, are pairwise vertex-disjoint.
If not, suppose that v is a common vertex of P;, and P;_, and replace F;
by P;[vi,v] U Pi,, [v,9,(,,)] and P; by P; [vi,,v] U P;[v,v,3,)]. This is a
contradiction to the maximality of the number of cycles of o. Now, in the set
of paths Pi,..., P, contract all the pairs {v;,v}}, for i = 1,..., k. This gives a
spanning set S of circuits of D which satisfies i¢(S) = k. O

Corollary 11 FEvery strong digraph D is spanned by a(D) circuits.

Proof. By Lemma 1, D has a coherent cyclic order C. By Theorem 1, D is
spanned by a set S of circuits such that |S| <i¢(S) = a(C) < (D). O

We now establish the arc-cover analogue of Theorem 1. Again, a minimax
result holds.
We denote by 3(C) the maximum k for which there exists an enumeration of C
with k& backward arcs. We call k the mazimal feedback arc set of C. The min arc
cover by circuits is the minimum index of a family of circuits which spans the
arc set of D. We denote it by aspan(C).

Corollary 12 3(C) = aspan(C).
Proof. Apply Theorem 1 to the line digraph of D. O

The last min-max theorem consists of a fractional version of a theorem of
J.A. Bondy ([5]). Our proof is similar to the classical proof on the circular chro-
matic number in the non-oriented case, see X. Zhu ([12]) for a survey.

The cyclic chromatic number of C, denoted by x(C), is the minimum k& for which
there exists an enumeration E = v1,...,Vi,, Vi 41, - -« »Vig, Vigt1,- - -, Vi, Of C for
which vy, 41,...,vs,, is a stable set for all j = 0,...,k —1 (with i¢ := 0).



Under the same hypothesis, the circular chromatic number of C, denoted by
Xc(C) is the infimum of the numbers r > 1 for which C admits an r-circular col-
oration. A mapping f: V — [0,r[ is called an r-circular coloration if f verifies:

1) If z and y are linked in D, then 1 < |f(z) — f(y)| <r —1.
2) If0 < f(n1) < f(v2) <+ < f(vy) <r, then vy,...,v, must be an
enumeration of C. Such an enumeration is called related to f.

As usual, it is convenient to represent such an application as a mapping from V
into a circle of the euclidean plane with circumference r. Condition 1) asserts
then that two linked vertices have distance at least 1 on this circle. And by con-
dition 2), the vertices of D are placed on the circle according to an enumeration
of the cyclic order C. By compactness of this representation, the infimum used in
the definition of x. is a minimum, that is to say that there exists a x.(C)-circular
coloration of C.

Note that the enumeration given by 2) is possibly not unique. Indeed, two ver-
tices of V' may have the same image by f. In this case, these two vertices are
not linked in D (because of 1)) and so, the two enumerations are equivalent.
Moreover, two enumerations related to f have same sets of forward arcs and
backward arcs.

Lemma 3 For D a strong digraph and C a coherent cyclic order of D, we have

Xe(€)] = x(C)-

The following Lemma gives a criterion to decide whether an r-circular col-
oration f is best possible or not. We define an auxiliary digraph Dy with vertex
set V and arc set {zy € E(D) : f(y)— f(z) =1 or f(z)— f(y) = r—1}. Observe
that the arcs zy of Dy with f(y) — f(z) = 1 (resp. f(z) — f(y) = r — 1) are
forward (resp. backward) in any enumeration related to f.

Lemma 4 If f is an r-circular coloration of C with v > 2 for which Dy is an
acyclic digraph, then we can provide a real number r' < r such that C admits an
r'-circular coloration.

Proof. First of all, if a vertex « of D has an out-neighbour y with f(z)—f(y) =1,
by property 1) of f and coherence of C, the arc yz must be also in D, and simi-
larly if = has an out-neighbour y with f(y) — f(z) = r —1, the arc yz must be in
D. So, a vertex z with in-degree 0 (resp. out-degree 0) in Dy has no neighbour
z with f(z) — f(2) = 1 modulo r (resp. f(2) — f(z) = 1 modulo r). Then, if
E(Dy) = 0, it is easy to provide an r'-circular coloration f' of C with ' < r.
Just multiply f by a factor 1 — e with € > 0 and € small enough.

Now, amongst the r-circular colorations f of C for which Dy is acyclic, choose
one with minimal number of arcs for Dy. Assume that E(Dys) # (. We can
choose a vertex  of Dy with in-degree 0 and out-degree at least 1. Denote by
Y1,...,Yp the out-neighbours of z in Dy, we have for all i, f(y;) = f(z) + 1
modulo r. By definition of f, z has no neighbour z such that f(z) — f(z) < 1or



f(2) — f(z) > r — 1 and, moreover, since z has in-degree 0 in Dy, by the previ-
ous remark, z has no neighbour z with f(z) — f(z) =1or f(z) — f(z) =r — 1.
Observe that none of the y; verifies this, because » > 2. So, we can provide
an r-circular coloration f' derived from f just by changing the value of f(z):
choose f'(z) = f(x) — € modulo r with € > 0 and such that no neighbour of
z has an image by f in [f'(z) — 1, f'()]U[r — 1 + f'(x),r[. We check that
E(Dy) = E(Df)\ {zy; : i =1,...,p}, which contradicts the choice of f.

So, E(Dy) = § and we provide an r'-circular coloration of C with ' < r as
previously. O

Finally, we can state a third min-max theorem about cyclic orders. For this,
we define, for a fixed cyclic order C, the cyclic length of a circuit C of D, denoted
by Ic(C), as the number of vertices of C' in D, divided by the index of C in C.
The maz circuit length in C is the maximum l¢(C) for a circuit C' of D. We
denote it by I.(C).

Theorem 2 x.(C) =1.(C).

Proof. Consider an r-circular coloration f of C with r = x.(C) and E =
v1,...,U, an enumeration of C related to f. For a circuit C' in D, we compute
the length [ of the image of C by f:

L= ) (f@—f@)+ Y (+fl) - @)

zyeE(C) zyeE(C)
zy forward in E zy backward in E

A straighforward simplification of the sum gives | = r.i¢(C). Furthermore,
condition 1) of the definition of f implies that f(y) — f(z) > 1if zy € E(C) and
zy is forward in E (i.e. f(z) < f(y)) and r + f(y) — f(z) > 1if zy € E(C) and
zy is backward in E (i.e. f(y) < f(x)). So, we have ¢ = r.i¢c(C) > [(C), hence
r > 1¢c(C), and the inequality x.(C) > max{l¢(C) : C circuit of D} holds.

To get the equality, we have to find a circuit C of D such that I¢(C) = r.
First of all, since C is coherent, it has a circuit of index 1 and then, its cyclic
length is greater or equal to 2. Thus, the previous inequality gives r > 2 and
so, states the case r = 2. From now on, assume that r > 2, Lemma 4 asserts
that there exists a circuit C' in the digraph Dy. So, the inequalities provided in
the direct sens of the proof are equalities: the image of every arc of C by f has
length 1 if the arc is forward or r —1 if the arc is backward. So, we have | = [(C),
and l¢(C) = 1(C) /ic(C) = r, which achieves the bound. O

A corollary of Theorem 2 is an earlier result of J.A. Bondy, known since 1976.
The chromatic number of a digraph D, denoted by x(D), is the minimal number
k such that the vertices of D admit a partition into &k stable sets of D. Clearly,

x(D) < x.(C).

Corollary 21 (Bondy [5]) Every strong digraph D has a circuit with length at
least x (D).



Proof. Consider a coherent cyclic order C for D and apply Theorem 2 to provide
a circuit C' with l¢(C) = x.(C). Since by Lemma 3 [lc(C)] = [x.(C)] = x(C),
we get x(D) < x(C) = [le(C)] <1(C). O

We gratefully thank J.A. Bondy who told us that a link could exist between
[5] and Gallai’s problem.

A full version of the paper will appear in Combinatorica.
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