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Abstract

We consider the problem of coloring a grid using p colors with the requirement that
each row and each column has a specific total number of entries of each color. Ryser
[16], and independently Gale [8], obtained a necessary and sufficient condition for the
existence of such a coloring when two colors are considered. This characterization
yields a linear time algorithm for constructing the coloring when it exists. Chrobak
and Dürr [5] showed that the problem is NP-hard when p > 4. The complexity of
the case p = 3 remains open.

The span of a function is the difference between its maximum and its minimum
values. In the case p = 3, this grid coloring problem is equivalent to find disjoint
realizations of two degree sequences in a complete bipartite graph. This kind of
question is well-studied when one of the degree sequence (or equivalently color) has
span zero or one, see for instance [15], [12], [11], [13] and [3]. Chen and Shastri [4]
showed a necessary and sufficient condition for the existence of a coloring when one
color has span at most one. However, this condition fails when the span is two.

We introduce a new natural condition - the saturation condition - which we prove
to be necessary and sufficient when one of the colors has span at most two. Our
proof yields a polynomial time algorithm which either finds the coloring or exhibits
a non existence certificate.

Preprint submitted to Discrete Applied Mathematics 20 August 2008



1 Introduction

Discrete tomography is devoted to the reconstruction of a finite object from
its projections. Since its introduction, discrete tomography has shown deep
connections with some classical problems in combinatorics (see for instance
[10]). One of these problems involves the coloring of a grid using p colors
with the requirement that each row and each column has a specific total
number of entries of each color. The case p = 2 is the well-known problem of
reconstructing a matrix of zeros and ones given each row and column sum.
This problem was widely studied by Ryser [16], who gave a necessary and
sufficient condition for the existence of a solution. More recently, Gardner,
Gritzmann and Prangenberg [9] studied the general case. They proved that
this reconstruction problem is NP-hard when considering p > 7 colors. Later,
Chrobak and Dürr [5] improved this result by showing that it remains NP-hard
when p > 4. The complexity of the case p = 3 is still open.

There is a natural equivalence between a |X| × |Y | grid and the complete
bipartite graph KX,Y , where each cell of the grid corresponds to an edge
of the graph. Hence, each color represents a subgraph. In addition, we can
represent the color restrictions in the previous grid-coloring problem by p
functions d0, . . . , dp−1 : X ∪ Y → N, which assign to each row and column
their respective color requirement. Each of these functions di represent the
prescribed degree sequence of the subgraph corresponding to color i.

Formally, the degree of a vertex v of a graph G = (V, E), written dG(v), is the
number of edges incident to v in G. We denote dG : V → N the function which
assigns to every vertex its degree in G. For a subset F of edges, we denote by
dF the degree function of the graph H = (V, F ). The function d : V → N is
realizable in G if there exists F ⊂ E such that dF = d. We refer to F as a
realization of d in G. We say that d is uniquely realizable in G if it has only
one realization.

Given d0, . . . , dp−1 : V → N, a (d0, . . . , dp−1)-decomposition of G is a par-
tition (F0, . . . , Fp−1) of E such that Fi is a realization of di, for every i =
0, . . . , p− 1. Thus the discrete tomography problem can be restated as to find
a (d0, . . . , dp−1)−decomposition of KX,Y . In this context, the result by Chrobak
and Dürr shows that deciding the existence of a (d0, d1, d2, d3)−decomposition
of KX,Y is NP-hard and hence no good characterization can be expected. As
for the tomography problem, the only open case is p = 3. From now on, we
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will mainly focus on (d0, d1, d2)−decomposition of KX,Y .

Being a decomposition necessarily means that d0 + d1 + d2 = dG, we then
only need to find disjoint realizations F1, F2 of d1, d2 in G since the edge set
F0 = E \ (F1 ∪ F2) is indeed a realization of d0 = dG − d1 − d2. When d1, d2

have disjoint realization, they are disjointly realizable in G. Our main purpose
in this paper is to find some necessary and sufficient conditions for d1, d2 to
be disjointly realizable in G. First note that we need that both d1 and d2 are
realizable in G. We also need that d1 + d2 6 dG, this condition being called
the degree condition in G. Another natural necessary condition is that d1 + d2

is realizable in G.

The conditions cited above are easy to check, and can be deduced from a
well-known characterization of realizable functions in bipartite graphs which
is due to Ore [14]. We denote by G = (X,Y, E) the bipartite graph with parts
X and Y and edge set E. For S ⊂ X, T ⊂ Y, F ⊂ E, we write S = X − S,
T = Y − T , F = E − F and F (S, T ) the set of edges in F with ends in
S and T . In addition, for d : X ∪ Y → N we write d(S) =

∑
x∈S d(x) and

d(T ) =
∑

y∈T d(y).

Lemma 1 Let G = (X, Y, E) be a bipartite graph and d : X ∪ Y → N. Then,
d is realizable in G if and only if d(X) = d(Y ) and d(S) 6 d(T ) + |E(S, T )|,
for each S ⊂ X and T ⊂ Y .

The following result is a straightforward corollary of Lemma 1 (see [2]). It will
be one of the central tool of the proof of our main result.

Lemma 2 Let G = (X,Y, E) be a bipartite graph and let d : X ∪ Y → N be
realizable in G. Suppose there exist a realization F0 of d and S ⊂ X, T ⊂ Y
such that F0(S, T ) = E(S, T ) and F0(S, T ) = ∅. Then every realization F of
d satisfies F (S, T ) = E(S, T ) and F (S, T ) = ∅.

2 Functions with bounded span

For every fixed integer k, it was conjectured by Rao and Rao [15] that if
d, d1 : X → N are realizable functions in KX satisfying d(x) = d1(x) + k
for all x in X, then there exists a realization of d containing a spanning
k−regular subgraph. In [12], Kundu solved the conjecture, showing that if
d, d1 are realizable functions in KX satisfying d = d1 + d0, where the span of
d0 at most one, then d can be realized by a graph containing a realization of d0.
An algorithmic method for finding these realizations was given by Kleitman
and Wang in [11] and a very simple proof when d0(x) = 1 for every x, was
given by Lovász in [13]. In [3], Chen noticed that when considering the integer
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function d2 = |X| − 1 − d, an even shorter proof could be obtained. Observe
that d2 is realizable in KX by taking the complement in KX of a realization
of d. In addition, d1 + d2 = |X| − 1− d0 clearly has span at most one. Finally,
Chen’s approach of Kundu’s result can be stated as follows.

Theorem 3 Let d1, d2 : X → N be such that the span of d1+d2 is at most one.
Then d1, d2 are disjointly realizable in KX if and only if d1, d2 are realizable
in KX and d1 + d2 6 |X| − 1.

Note that the last requirement simply says that the pair d1, d2 satisfies the
degree condition in KX . Later, Chen and Shastri [4] showed that the same
argument used in the proof of Theorem 3 also works for the complete bipartite
graph KX,Y .

Theorem 4 Let d1, d2 : X ∪ Y → N and assume that (d1 + d2)|Y has span at
most one. Then d1, d2 are disjointly realizable in KX,Y if and only if d1, d2 are
realizable and satisfy the degree condition in KX,Y , that is, (d1 + d2)|X 6 |Y |
and (d1 + d2)|Y 6 |X|.

The main idea of Chen’s proof is the following lemma.

Lemma 5 Let d1, d2 : X ∪ Y → N be realizable functions in KX,Y . Assume
that for given realizations F1, F2 of d1, d2, respectively, there exist x, x ∈ X and
y ∈ Y such that xy ∈ F1∩F2, xy /∈ F1∪F2 and d1(x)+d2(x) > d1(x)+d2(x)−2.
Then there exist realizations F ′

1, F
′
2 of d1, d2 such that |F ′

1 ∩ F ′
2| < |F1 ∩ F2|.

PROOF. Let H = (X, Y, F1 + F2) be the bipartite graph with parts X and
Y , and edge set F1 +F2, the disjoint union of F1 and F2. Observe that F1∩F2

is exactly the set of double edges of H. Since xy is a double edge of H and
there is no edge in H between x and y, there exists a vertex y′ ∈ Y such that
the number of edges between x and y′ in H is strictly greater than the number
of edges between x and y′. Without loss of generality, we assume that xy′ ∈ F1

and xy′ /∈ F1. Thus F ′
1 = F1 ∪ {xy, xy′} \ {xy, xy′} is a realization of d1 such

that |F ′
1 ∩ F2| < |F1 ∩ F2|. 2

Note that when the span of (d1 + d2)|Y is at most one, the proof of Lemma
5 yields a polynomial time algorithm which starts with two realizations of d1

and d2 and computes two disjoint realizations. Hence Theorem 4 is a straight-
forward corollary of this lemma.

In [7] Costa et al. solved a particular case of disjoint realizations of two degree
sequences in bipartite graphs. Furthermore, Costa et al. studied in [6] the
problem when the functions d1, d2 are restricted to have values in {0, 2}, hence
satisfying that d0 +d1 has span at most two. Unfortunately, when the function
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d1 + d2 has span larger than one, the realizability of d1, d2 and the degree
condition are not sufficient for d1, d2 to be disjointly realizable in KX,Y , as
shown in Figure 1. Observe that even asking for d1 + d2 to be realizable in
KX,Y is still not a sufficient condition.

a)

y3

x1 x2 x3

y1 y2

X

Y b)

y3

Y

x1 x2 x3

y1 y2

X

Fig. 1. a) Realizations of functions d1 (continuous line) and d2 (dashed line) in KX,Y .
b) Realization of d1 + d2 in KX,Y . Observe that d1, d2 and d1 + d2 are uniquely
realizablen in KX,Y . In particular, x1y1 belongs to the unique realization of both
d1 and d2. Hence d1, d2 are not disjointly realizable in KX,Y . We remark that both
(d1 + d2)|X and (d1 + d2)|Y have span exactly two.

Our goal is to provide a new condition which allows us to extend Theorem
4 when the span of both (d1 + d2)|X and (d1 + d2)|Y is at most two. In the
following section we introduce this condition and we present our main result,
namely Theorem 7. In section 4, we present the proof of Theorem 7.

3 The saturation condition

Let G = (X, Y, E) be a bipartite graph and d : X ∪ Y → N be a realizable
function in G. For S ⊂ X and T ⊂ Y , we define md(S, T ) as the minimum
number of edges joining S and T among all realizations of d. Let d1, d2 :
X ∪ Y → N be realizable functions in G. We say that d1, d2 saturate E(S, T )
if md1(S, T ) + md2(S, T ) > |E(S, T )|. Clearly, if there exists S and T such
that d1, d2 saturate E(S, T ) then d1, d2 are not disjointly realizable in G. We
say that d1, d2 satisfy the saturation condition in G if they do not saturate
E(S, T ), for each S ⊂ X and T ⊂ Y .

Theorem 6 Let d : X ∪ Y → N be a realizable function in G = (X,Y, E).
For fixed S ⊂ X and T ⊂ Y , md(S, T ) can be calculated in polynomial time.

PROOF. We reduce this calculation to a minimum cost flow problem with
lower and upper capacities in an auxiliary digraph D. Hence md(S, T ) is com-
putable in polynomial time (see for instance [1]). We define D = (V, A) as the
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digraph with vertex set V = X ∪ Y ∪ {s, t} and arcs (s, x) for each x ∈ X,
(y, t) for each y ∈ Y and (x, y) for each xy ∈ E with x ∈ X and y ∈ Y .

Let u, l : A → N be the lower and upper capacity functions given by u(s, x) =
l(s, x) = d(x) for each x ∈ X, u(y, t) = l(y, t) = d(y) for each y ∈ Y , and
u = 1, l = 0 otherwise. For S ⊂ X and T ⊂ Y , we define a cost function
w = w(S, T ) : A → {0, 1} by w(x, y) = 1 if and only if (x, y) is an arc
with both x ∈ S and y ∈ T . The cost of an (s, t)−flow z is defined by
w(z) =

∑
a∈A z(a)w(a).

Given a realization F of d in G we define zF : A → N by zF (s, x) = d(x) for
every x ∈ X, zF (y, t) = d(y) for y ∈ Y , and zF (x, y) with value 1 or 0 depend-
ing if xy belongs to F or F . Note that l 6 zF 6 u and hence zF is a feasible
(s, t)−flow with value |zF | = d(X). Moreover, w(zF ) =

∑
a∈A zF (a)w(a) =

|F (S, T )| and thus w(zF ) 6 w(zF ′) if and only if |F (S, T )| 6 |F ′(S, T )|.

Furthermore, since l, u and w are integer valued functions the integrality
theorem for minimum cost flows ensures the existence of an integer minimum
cost (s, t)−flow z which is feasible with value |z| = d(X). Define F (z) =
{xy : (x, y) ∈ A with x ∈ X, y ∈ Y and z(x, y) > 0}. Note that z takes only
values 0 or 1 for each (x, y) ∈ A with x 6= s or y 6= t, since for these arcs
0 6 l 6 u 6 1. As the value of z is d(X), F (z) is a realization of d. By
our previous observation and since z is a minimum cost (s, t)−flow, we have
md(S, T ) = |F (z)(S, T )|. 2

Note that in Figure 1, the calculation for S = {x1} and T = {y1} gives
md1(S, T ) + md2(S, T ) = 2 > |S||T |, thus d1, d2 do not satisfy the saturation
condition in KX,Y . Our main result is the following theorem.

Theorem 7 Let d1, d2 : X∪Y → N such that both (d1 +d2)|X and (d1 +d2)|Y
have span at most two. Then, d1, d2 are disjointly realizable in KX,Y if and
only if d1, d2 are realizable and satisfy the saturation condition in KX,Y .

We will see that the proof of Theorem 7 yields a polynomial time algorithm
which either finds two disjoint realizations of d1 and d2 or exhibits two sets S
and T which violate the saturation condition. Thus, by Theorem 6, the pair
(S, T ) is a non existence certificate which can be checked in polynomial time.

It would be tempting to propose the realizability and the saturation condition
as a necessary and sufficient condition for the general case of two functions
in KX,Y . We do not have any example of d1, d2 which satisfy these conditions
and are not disjointly realizable. We let this as an open question. A prob-
lem of independent interest would be to polynomially check if two realizable
functions d1, d2 satisfy indeed the saturation condition. Let us now motivate a
little bit more the introduction of the saturation condition by presenting some
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particular cases in which it is indeed the required condition.

Theorem 8 illustrates how the saturation condition can provide in some cases
a necessary and sufficient condition. The proof follows easily from Lemma 1.

Theorem 8 Let d1, d2 : X ∪ Y → N be realizable in G = (X, Y, E) and
assume that d1 is uniquely realizable. If d1, d2 satisfy the saturation condition
in G then they are disjointly realizable.

PROOF. For the sake of contradiction, assume that d1, d2 are not disjointly
realizable in G and let F1 ⊂ E be the unique realization of d1. Clearly, d2 is
not realizable in the graph H = (X, Y, F1). Since d2(X) = d2(Y ), by Lemma
1, there exist S ⊂ X and T ⊂ Y such that d2(S) > d2(T ) + |F1(S, T )|.

We consider a realization F2 of d2 in G such that md2(S, T ) = |F2(S, T )|.
Then, d2(S) = |F2(S, T )| + |F2(S, T )| 6 md2(S, T ) + d2(T ). From the two
previous inequalities we obtain md2(S, T ) > d2(S) − d2(T ) > |F1(S, T )|. But
d1 is uniquely realizable and hence md1(S, T ) = |F1(S, T )|. Finally, we obtain
md1(S, T ) + md2(S, T ) > |F1(S, T )|+ |F1(S, T )| = |E(S, T )|. 2

Figure 1 shows that only asking for realizability is not enough, even when
d1, d2 and d1 + d2 are all uniquely realizable.

In Theorem 9, we show that the realizability of d1 + d2 easily follows from the
realizability of d1, d2 when the saturation condition holds.

Theorem 9 Let d1 and d2 be realizable in a bipartite graph G. If d1, d2 satisfy
the saturation condition in G, then d1 + d2 is realizable in G. In particular
d1, d2 do satisfy the degree condition.

PROOF. The realizability of d1, d2 in G gives (d1+d2)(X) = d1(X)+d2(X) =
d1(Y )+d2(Y ) = (d1+d2)(Y ). Let Fi be a realization of di in G, where i = 1, 2.
It is clear that di is realizable in Gi = (X, Y, Fi). Thus Lemma 1 shows that
di(S) 6 di(T ) + |Fi(S, T )| for each S ⊂ X and T ⊂ Y . Since this holds for
every realization of di we obtain di(S) 6 di(T ) + mdi

(S, T ). Thus,

(d1 + d2)(S) = d1(S) + d2(S)

6 d1(T ) + d2(T ) + md1(S, T ) + md2(S, T )

6 (d1 + d2)(T ) + |E(S, T )|

for each S ⊂ X and T ⊂ Y . Again by Lemma 1, d1 + d2 is realizable in G.
The last remark is straightforward. 2
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4 The proof of Theorem 7

Consider d1, d2 : X ∪ Y → N such that both (d1 + d2)|X and (d1 + d2)|Y
have span at most two. From the discussion in Section 3, the realizability and
the saturation condition are necessary for d1, d2 to be disjointly realizable in
KX,Y = (X, Y, E). Conversely, assume that d1 and d2 are both realizable in
KX,Y but not disjointly realizable. We will prove that there exist two sets
S ⊂ X and T ⊂ Y such that d1, d2 saturate E(S, T ). As we have seen in
Section 3, if d1, d2 do not satisfy the degree condition then the saturation
condition does not hold. Thus, we can assume that max(d1 + d2)|X 6 |Y | and
max(d1 + d2)|Y 6 |X|.

Let F1, F2 be some respective realizations of d1, d2, chosen in such a way that
|F1 ∩ F2| is as small as possible. Such a pair of realizations is called minimal..
Since d1, d2 are not disjointly realizable, the set F1 ∩ F2 is not empty. We
consider the bipartite graph H = (X, Y, F1 + F2), where F1 + F2 denotes
the disjoint union of F1 and F2. For x ∈ X and y ∈ Y , we will refer to
xy as an i−edge in H if xy belongs to Fi, where i = 1, 2. We say that xy
is a double edge if it is both a 1−edge and a 2−edge of H. Note that F1

and F2 are disjoint if and only if H is a graph without double edges. We
denote NH(z) the set of neighbors of z in H. In addition, we write N i

H(z) the
set of neighbors of z in the graph (X, Y, Fi), for i = 1, 2. Note that NH(z) =
N1

H(z)∪N2
H(z), while |NH(z)| = |N1

H(z)|+ |N2
H(z)|−|N1

H(z)∩N2
H(z)|. Finally,

we write H = (X, Y, F1 ∪ F2), where F1 ∪ F2 is the set of non edges of H, and
NH(z) accordingly.

Let xy be a double edge of H, where x ∈ X and y ∈ Y . Observe that dH(x) =
d1(x)+d2(x) 6 |Y | and dH(y) = d1(y)+d2(y) 6 |X|. Then |NH(x)| < dH(x) 6
|Y | and |NH(y)| < dH(y) 6 |X| and hence NH(x) 6= ∅ and NH(y) 6= ∅. We
denote S0 = NH(y) and T0 = NH(x). From now on, x and y will be fixed
vertices in S0 and T0, respectively.

Claim 10 x y is a non-edge of H.

PROOF. Assume for contradiction that x y ∈ F1 and define F ′
1 = F1 ∪

{xy, xy} \ {xy, x y}. Note that F ′
1 is a realization of d1. If x y is double in H

then F ′
1∩F2 = F1∩F2\{xy, x y}. Otherwise x y is a simple edge in H and then

F ′
1 ∩ F2 = F1 ∩ F2 \ {xy}. In both cases we obtain that |F ′

1 ∩ F2| < |F1 ∩ F2|.
This contradicts the minimality of F1, F2 and hence x y is not a 1−edge. The
same argument shows that x y does not belong to F2 either. 2

Note that Claim 10 shows that NH(x) ⊂ NH(x) \ {y}. In Claims 11, 12 and
14 we only include the proof for x and x. The result for y and y can be proved
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analogously.

Claim 11 (Degree property) We both have

max(d1 + d2)|X = d1(x) + d2(x) = d1(x) + d2(x) + 2 = min(d1 + d2)|X + 2

max(d1 + d2)|Y = d1(y) + d2(y) = d1(y) + d2(y) + 2 = min(d1 + d2)|Y + 2

PROOF. Since (d1 + d2)|X has span at most two we have max(d1 + d2)|X 6
min(d1 + d2)|X + 2. By Lemma 5, d1(x) + d2(x) > d1(x) + d2(x) + 2; otherwise
there exist realizations F ′

1, F
′
2 with |F ′

1 ∩ F ′
2| < |F1 ∩ F2|, which contradicts

that F1, F2 is a minimal pair. Thus max(d1 + d2)|X > d1(x) + d2(x) > d1(x) +
d2(x) + 2 > min(d1 + d2)|X + 2. Hence all the inequalities are equalities. 2

The proof of the degree property shows that both (d1 + d2)|X and (d1 + d2)|Y
have span exactly two. We remark that this follows easily from Theorem 4 and
our assumption that d1, d2 are not disjointly realizable. Note that the degree
property shows that every vertex incident to a double edge in a minimal pair
is of maximum degree in its part (X or Y ). It also shows that no vertex
in NH(x) ∪ NH(y) is of maximum degree in its respective part. Hence, the
following property holds.

Claim 12 x (resp. y) does not have incident double edges in H. Therefore,
|NH(x)| = d1(x) + d2(x)− 2 and |NH(y)| = d1(y) + d2(y)− 2.

Claim 13 NH(x) = NH(x) \ {y} and NH(y) = NH(y) \ {x}.

PROOF. By Claims 10 and 12 we have NH(x) ⊂ NH(x)\{y} and |NH(x)| =
d1(x) + d2(x) − 2. Since |NH(x)| = |N1

H(x)| + |N2
H(x)| − |N1

H(x) ∩ N2
H(x)| 6

d1(x) + d2(x) − 1 we obtain |NH(x) \ {y}| 6 d1(x) + d2(x) − 2 = |NH(x)|.
Therefore, NH(x) = NH(x) \ {y}. 2

Since NH(x) = Y \NH(x) and NH(x) = Y \NH(x) we get

Claim 14 NH(x) = T0 ∪ {y} and NH(y) = S0 ∪ {x}.

Claim 15 The set of doubles edges of H forms a matching.

PROOF. From Claim 13 and the degree property we have |NH(x) \ {y}| =
d1(x) + d2(x) − 2. Hence, |NH(x)| = d1(x) + d2(x) − 1 which implies that
exactly one double edge is incident to x. 2
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Claim 16 If x′y′ is a non edge where x′ ∈ NH(y) and y′ ∈ NH(x), then x′y
is an i−edge and xy′ is a j−edge with i 6= j.

PROOF. By Claim 13, x′ ∈ NH(y) and y′ ∈ NH(x). Assume for contradiction
that x′y, xy′ are i−edges. Then F ′

i = Fi ∪ {xy, xy, x′y′} \ {xy, xy′, x′y} and
F ′

j = Fj where j 6= i, are realizations of d1, d2 satisfying |F ′
1 ∩ F ′

2| < |F1 ∩ F2|.
2

Note that {N i
H(y)∩N j

H(y)}i,j=1,2 is a partition of S0 ∪ {x} into four (possibly
empty) sets. Similarly, {N i

H(x) ∩N j
H(x)}i,j=1,2 is a partition of T0 ∪ {y}.

Claim 17 Let x′y′ be a non-edge of H, where x′ /∈ S0 and y′ /∈ T0. Then
x′y, x′y are i−edges and xy′, xy′ are j−edges, for i 6= j.

PROOF. Since x′ /∈ S0 and x′y′ is a non-edge, then y′ 6= y. Similarly, we have
that x′ 6= x. Hence x′ belongs to N i1

H (y)∩N j1
H (y) and y′ to N i2

H (x)∩N j2
H (x), with

i1, j1, i2 and j2 in {1, 2}. Without loss of generality, we assume that j2 = 2.
By Claim 16, j1 = 1.

For the sake of contradiction assume that i1 = 2. We define F ′
1 = F1 ∪

{xy, x′y} \ {xy, x′y} and F ′
2 = F2 ∪ {xy, x′y′} \ {xy′, x′y}. Then F ′

1 and F ′
2

are realizations of d1 and d2, respectively, which satisfy |F ′
1 ∩ F ′

2| < |F1 ∩ F2|.
This contradicts the choice of F1, F2 and hence i1 = 1. A symmetric argument
shows that i2 = j2 = 2. 2

Claim 18 Let x′y′ 6= xy be a double edge in H. Then x′y, x′y are i−edges and
xy′, xy′ are j− edges of H, for i 6= j.

PROOF. Note that x′ 6= x by Claim 15. Similarly, Claim 12 shows that x′ /∈
S0. Consider y′ ∈ NH(x′). We will show that y′ /∈ T0. Assume by contradiction
that xy′ is a non-edge of H. Then Claim 14 shows that NH(y′) = S0 ∪ {x},
which is impossible since x′ /∈ S0. Analogously, we can see that y′ /∈ T0 and
x′ /∈ S0 for each x′ ∈ NH(y′). Note that x′y′ is a non-edge of H by Claim 10.

Applying Claim 17 to the non-edge x′y′, we obtain that x′y, x′y are i−edges
and xy′, xy′ are j−edges of H, where i, j are distinct indices in {1, 2}. Applying
again Claim 17 to the non-edge x′y′, we deduce that x′y, x′y are i−edges.
Applying finally Claim 17 to the non-edge x′y′ shows that xy′, xy′ are j−edges.

2
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We remark that for x′ /∈ S0 ∪ {x} = NH(y) and y′ /∈ T0 ∪ {y} = NH(x), all
x′y, x′y, xy′ and xy′ are simple edges of H. Similarly, Claim 17 and 18 show
that if x′y′ is either a non-edge or a double edge of H then x′ ∈ N i

H(y)∩N i
H(y)

and y′ ∈ N j
H(x) ∩N j

H(x), where i 6= j.

We define three operations which transform the realizations F1, F2 into F ′
1, F

′
2:

a) Let xy′ be a simple edge with y′ in N j
H(x) ∩ N i

H(x), where i 6= j. An
x−switch is the operation which replaces Fi by F ′

i := Fi ∪ {xy′, xy} \
{xy, xy′} and leaves Fj unchanged, i.e. F ′

j := Fj.

b) Let x′y be a simple edge with x′ in N j
H(y) ∩ N i

H(y), where i 6= j. A
y−switch is the operation which replaces Fi by F ′

i := Fi ∪ {x′y, xy} \
{xy, x′y} and leaves Fj unchanged, i.e. F ′

j := Fj.
c) Let x′y′ be a simple edge with x′ ∈ N i

H(y), y′ ∈ N i
H(x) and x′y′ ∈ Fj,

where i 6= j. An (x,y)−switch is the operation which replaces Fi by F ′
i :=

Fi ∪ {xy, xy, x′y′} \ {xy, xy′, x′y} and leaves Fj unchanged, i.e. F ′
j := Fj.

We refer to these operations as elementary switches. We also say that x′y′ is
reached from xy by an elementary switch.

Note that the sets F ′
1 and F ′

2 defined above are realizations of d1 and d2,
respectively. In addition, x′y′ is a double edge, xy is a simple edge and both
xy′ and x′y are non-edges of H ′ = (X, Y, F ′

1 + F ′
2). Thus, the total number of

doubles edges in H ′ and H is the same. That is, an elementary switch in H
“changes the position” of a double edge and hence it preserves the minimality
of the pair of realizations. Consequently F ′

1, F
′
2 is also a minimal pair.

We say that x′y′ is reached from xy if either x′y′ = xy or there exists vertices
x0, x1 . . . , xt ∈ X, y0, y1 . . . , yt ∈ Y and realizations F k

1 , F k
2 of d1, d2, respec-

tively, for k = 1, . . . , t, satisfying x0y0 = xy, xtyt = x′y′ and F 0
1 = F1, F

0
2 = F2

and such that xkyk is reached from xk−1yk−1 by an elementary switch in
Hk−1 = (X, Y, F k−1

1 + F k−1
2 ). Note that F k

1 , F k
2 is a minimal pair for every

k. We will refer to the realizations F ′
1 = F t

1 and F ′
2 = F t

2 as a minimal pair
associated to x′y′.

Claim 19 Let x′y′ be reached from xy and F ′
1, F

′
2 be a minimal pair as-

sociated to x′y′. Then x′y′ is a double edge and xy′, x′y are non-edges of
H ′ = (X,Y, F ′

1 + F ′
2).

PROOF. This follows from the definition of the elementary switches (see
Figure 2). 2

Let S be the set of vertices x′ in X for which there exists y′ in Y such that
x′y′ is reached from xy. In the same way, let T be the set of vertices y in Y

11



a) b)

y′

x x

yy y′

x x

y

x x′

y y

x x′

y

c)

y y′

x′

y

xxx

y

x x′

y y′

Fig. 2. The three elementary switches. We have represented 1, 2 and non-edges by
continuous, dashed and dotted lines, respectively. a) y′ ∈ N2

H(x) ∩N1
H(x) and then

xy′ is reached from xy by an x−switch; b) x′ ∈ N2
H(y) ∩ N1

H(y) and then x′y is
reached from xy by a y−switch; c) x′ ∈ N1

H(y), y′ ∈ N1
H(x) and x′y′ ∈ F2. Thus

x′y′ is reached from xy by an (x, y)−switch. For simplicity we have not drawn the
non-edge x y and the simples edges xy′ and x′y.

for which there exists x′ in X such that x′y′ is reached from xy.

Claim 20 S ∩ S0 = T ∩ T0 = ∅

PROOF. By the degree condition, no vertex of S0 has maximum degree in
X and no vertex of T0 has maximum degree in Y . Moreover, by Claim 19 and
the degree condition, every vertex of S has maximum degree in X and every
vertex of T has maximum degree in Y . 2

Claim 21 Let F ′
1, F

′
2 be a minimal pair associated to x′y′. Then F ′

i can only
differ from Fi on the edges between S ∪ {x} and T ∪ {y}, for i = 1, 2.

PROOF. Consider x0, x1 . . . , xt ∈ X and y0, y1 . . . , yt ∈ Y as above. Note
that F k

i can only differ from Fi on the edges connecting {x, x0 . . . , xk} and

12



{y, y0, . . . , yk}, for every k. Then the result follows by noting that xi ∈ S and
yi ∈ T , for each i = 0, . . . , t. 2

From Claim 21 we know that for each u /∈ T ∪ {y}, an edge incident to u
belongs to H if and only if it belongs to H ′. Similarly, for each v /∈ S ∪ {x},
an edge incident to v belongs to H if and only if it belongs to H ′.

Claim 22 There are no edges of H between S and T0 \ {y}. Similarly, there
are no edges of H between T and S0 \ {x}.

PROOF. Let x′ ∈ S and y′ be such that x′y′ is reached from xy. Let F ′
1, F

′
2

be a minimal pair associated to x′y′ and define H ′ = (X, Y, F ′
1 + F ′

2). For sake
of contradiction, let us assume that there exists a vertex u of T0 \ {y} such
that x′u is an edge of H. Since u /∈ T ∪{y} we obtain by Claim 21 that x′u is
an edge of H ′. From Claim 13 applied to H ′ we get NH′(x) = NH′(x′) \ {y′}.
Hence, ux is an edge of H ′, since y′ ∈ T . But then, ux is an edge of H which
contradicts the fact that u ∈ T0. The other part is proved analogously. 2

Claim 23 We have S = {x} or T0 = {y}.

PROOF. For the sake of contradiction, let us assume that there are x′ 6= x
in S and u 6= y in T0. By Claim 22, x′u is a non-edge of H. By definition, xu
is also a non-edge of H. Then Claim 14 shows that NH(u) \ {x} = S0. We
obtain that x′ ∈ S0 and hence x′ ∈ S ∩ S0. This contradicts Claim 20. 2

We define Si = N i
H(y) \ S and Ti = N i

H(x) \ T , for i = 1, 2. Recall that
d1(x) + d2(x) = |N1

H(x)| + |N2
H(x)| = |NH(x)| + 1. Thus, max(d1 + d2)|X =

|Y | − |T0|+ 1. Similarly, max(d1 + d2)|Y = |X| − |S0|+ 1.

Claim 24 For i = 1, 2, Si and T0 (resp. Ti and S0) are completely connected
by i−edges.

PROOF. For the vertex y of T0, the result follows from the definition of S1

and S2. Consider now u 6= y in T0 and xi in Si. Note that in this case |T0| > 1
and hence max(d1 +d2)|X = |Y |− |T0|+1 < |Y |. Thus xi is incident to a non-
edge xiy

′ of H. Assume that xy′ is a non-edge of H. Then NH(y′) = S0 ∪ {x}
by Claim 14. Since xi 6= x, we have xi ∈ S0. This contradicts that S0 ∩ Si = ∅
and hence y′ /∈ T0.

Thus, we can apply Claim 17 to the non-edge xiy
′. Since xiy is an i−edge,

we have that xiy is also an i−edge. Applying again Claim 17 with u ∈ T0 in
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place of y, we obtain that both xiu and xiy are i−edges, which concludes the
proof. 2

Claim 25 For distinct i, j in {1, 2}, Si and Tj (resp. Ti and Sj) are completely
connected with i−edges and not connected with j−edges of H (see Fig. 3).

PROOF. We will only prove that S1 and T2 are completely connected with
simple 1−edges in H. The other cases can be obtained by a similar argument.

Consider x1 ∈ S1 and y′ ∈ T2. By Claim 20 and the definition of T1, {T, T0, T1}
is a partition of T2 and then we consider three cases.

• If y′ ∈ T0, Claim 24 shows that x1y
′ is a 1−edge. Then, by Claim 12, x1y

′

is not a 2−edge of H.
• If y′ ∈ T1, Claim 17 asserts that x1y

′ is not a non-edge of H since x1y
and xy′ are both 1-edges. Moreover, Claim 18 asserts that x1y

′ is neither a
double edge of H. By contradiction assume that x1y

′ is a 2−edge. But then
x1y

′ is reached from xy by an (x, y)−switch in H. This contradicts the fact
that x1 /∈ S.

• If y′ ∈ T , consider x′ ∈ S such that x′y′ is reached from xy. Let F ′
1, F

′
2 be a

minimal pair associated to x′y′ and define H ′ = (X, Y, F ′
1 + F ′

2). Since x′y′

is a double edge of H ′, Claim 15 implies that x1y
′ is not a double edge of

H ′. Then by Claim 19, x′y is a non-edge of H ′. In addition, H ′ can only
differ from H on the edges with ends in S∪{x} and T ∪{y}. Hence x1y is a
1−edge of H ′. Since NH′(y) ⊆ NH′(y′), we obtain that x1y

′ is an edge in H ′.
Assume that x1y

′ is a 2−edge in H ′. Then x1 belongs to N2
H′(y′) ∩ N1

H′(y)
and hence x1y

′ is reached from x′y′ by a y−switch in H ′. This contradicts
that x1 /∈ S. Then x1y

′ is a 1−edge of H ′. Finally, Claim 19 shows that x1y
′

is also a 1−edge of H.

2

Claim 26 Let F ′
1,F

′
2 be realizations of d1,d2, respectively. Then for distinct i, j

in {1, 2}, Si and Tj (resp. Sj and Ti) are completely connected with i−edges
and not connecting with j−edges of H ′ = (X, Y, F ′

1 + F ′
2).

PROOF. By Claim 25, Fi(Si, Tj) = E(Si, Tj) and Fi(Si, Tj) = ∅. Then
Lemma 2 implies that F ′

i (Si, Tj) = E(Si, Tj) and F ′
i (Si, Tj) = ∅. The other

part is analogous. 2

Claim 27 Let F ′
1,F

′
2 be realizations of d1,d2, respectively. Then the total num-

ber of edges in H ′ = (X, Y, F ′
1 + F ′

2) between S and T0 is less than |S|.

14



T2

S S0 S1 S2

T T1T0

Fig. 3. The edges of F1 and F2 connecting the different subsets of X and Y . A
continuous line (resp. a dashed line) between two sets means that all the edges
connecting them are 1−edges of H (resp. 2−edges). Note that all the edges con-
necting S1 and T2 = T ∪ T0 ∪ T1 are 1−edges and there is no 1−edge connecting
S1 = S ∪ S0 ∪ S2 and T2 (all of them are 2−edges of H).

PROOF. It is clear that |F ′
i (S, T0)| 6 di(T0)−|F ′

i (S1∪S2, T0)|, for i = 1, 2. By
Claim 26, |F ′

i (S1 ∪ S2, T0)| = |Si||T0| and hence |F ′
i (S, T0)| 6 di(T0)− |Si||T0|.

By the degree property, d1(y
′) + d2(y

′) = min(d1 + d2)|Y = |X| − |S0| − 1 for
each y′ ∈ T0. Then

|F ′
1(S, T0)|+ |F ′

2(S, T0)| 6 d1(T0) + d2(T0)− |S1||T0| − |S2||T0|
= (|X| − |S0| − |S1| − |S2| − 1) |T0|
= (|S| − 1)|T0|.

Thus, it is sufficient to show that (|S|−1)|T0| < |S|. But this is straightforward
since |S| = 1 or |T0| = 1 by Claim 23. 2

We are now ready to prove that S and T violate the saturation condition.
Let F ′

1 and F ′
2 be realizations of d1 and d2, respectively. Note that by Claim

26, |F ′
i (S, T1 ∪ T2)| = |S||Ti|. Then |F ′

i (S, T )| = di(S) − |F ′
i (S, T1 ∪ T2)| −

|F ′
i (S, T0)| = di(S)−|S||Ti|− |F ′

i (S, T0)|. Furthermore, d1(x
′)+d2(x

′) = |Y |−
|T0|+ 1 for each x′ ∈ S. Then

|F ′
1(S, T )|+ |F ′

2(S, T )| = d1(S) + d2(S)− |S||T1| − |S||T2| − |F1(S, T0)| − |F2(S, T0)|
= |S|(|Y | − |T0|+ 1)− |S||T1| − |S||T2| − |F1(S, T0)| − |F2(S, T0)|
> |S|(|Y | − |T0| − |T1| − |T2|+ 1)− |S|
= |S||T |,

where the inequality follows from Claim 27. Since this holds for each realization
of d1 and d2 we conclude that md1(S, T ) + md2(S, T ) > |S||T |. 2

We remark that the proof of Theorem 7 yields an algorithm which starts with
two realizations of d1, d2, respectively, and either finds in polynomial time two
realizations with smaller intersection or finds two sets S ⊂ X, T ⊂ Y which
violate the saturation condition.
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