# Realizing disjoint degree sequences of span two: a solvable discrete tomography problem 

Flavio Guíñez *,1<br>Departamento de Ingeniería Matemática, Universidad de Chile.

Martín Matamala ${ }^{1}$<br>Departamento de Ingeniería Matemática y Centro de Modelamiento Matemático (UMI 2807, CNRS), Universidad de Chile.

Stéphan Thomassé ${ }^{2}$<br>Université Montpellier II - LIRMM, 161 rue Ada, 34392 Montpellier, France thomasse@lirmm.fr


#### Abstract

We consider the problem of coloring a grid using $p$ colors with the requirement that each row and each column has a specific total number of entries of each color. Ryser [16], and independently Gale [8], obtained a necessary and sufficient condition for the existence of such a coloring when two colors are considered. This characterization yields a linear time algorithm for constructing the coloring when it exists. Chrobak and Dürr [5] showed that the problem is NP-hard when $p \geqslant 4$. The complexity of the case $p=3$ remains open.

The span of a function is the difference between its maximum and its minimum values. In the case $p=3$, this grid coloring problem is equivalent to find disjoint realizations of two degree sequences in a complete bipartite graph. This kind of question is well-studied when one of the degree sequence (or equivalently color) has span zero or one, see for instance [15], [12], [11], [13] and [3]. Chen and Shastri [4] showed a necessary and sufficient condition for the existence of a coloring when one color has span at most one. However, this condition fails when the span is two. We introduce a new natural condition - the saturation condition - which we prove to be necessary and sufficient when one of the colors has span at most two. Our proof yields a polynomial time algorithm which either finds the coloring or exhibits a non existence certificate.


## 1 Introduction

Discrete tomography is devoted to the reconstruction of a finite object from its projections. Since its introduction, discrete tomography has shown deep connections with some classical problems in combinatorics (see for instance [10]). One of these problems involves the coloring of a grid using $p$ colors with the requirement that each row and each column has a specific total number of entries of each color. The case $p=2$ is the well-known problem of reconstructing a matrix of zeros and ones given each row and column sum. This problem was widely studied by Ryser [16], who gave a necessary and sufficient condition for the existence of a solution. More recently, Gardner, Gritzmann and Prangenberg [9] studied the general case. They proved that this reconstruction problem is NP-hard when considering $p \geqslant 7$ colors. Later, Chrobak and Dürr [5] improved this result by showing that it remains NP-hard when $p \geqslant 4$. The complexity of the case $p=3$ is still open.

There is a natural equivalence between a $|X| \times|Y|$ grid and the complete bipartite graph $K_{X, Y}$, where each cell of the grid corresponds to an edge of the graph. Hence, each color represents a subgraph. In addition, we can represent the color restrictions in the previous grid-coloring problem by $p$ functions $d_{0}, \ldots, d_{p-1}: X \cup Y \rightarrow \mathbb{N}$, which assign to each row and column their respective color requirement. Each of these functions $d_{i}$ represent the prescribed degree sequence of the subgraph corresponding to color $i$.

Formally, the degree of a vertex $v$ of a graph $G=(V, E)$, written $d_{G}(v)$, is the number of edges incident to $v$ in $G$. We denote $d_{G}: V \rightarrow \mathbb{N}$ the function which assigns to every vertex its degree in $G$. For a subset $F$ of edges, we denote by $d_{F}$ the degree function of the graph $H=(V, F)$. The function $d: V \rightarrow \mathbb{N}$ is realizable in $G$ if there exists $F \subset E$ such that $d_{F}=d$. We refer to $F$ as a realization of $d$ in $G$. We say that $d$ is uniquely realizable in $G$ if it has only one realization.

Given $d_{0}, \ldots, d_{p-1}: V \rightarrow \mathbb{N}$, a $\left(d_{0}, \ldots, d_{p-1}\right)$-decomposition of $G$ is a partition $\left(F_{0}, \ldots, F_{p-1}\right)$ of $E$ such that $F_{i}$ is a realization of $d_{i}$, for every $i=$ $0, \ldots, p-1$. Thus the discrete tomography problem can be restated as to find a $\left(d_{0}, \ldots, d_{p-1}\right)$-decomposition of $K_{X, Y}$. In this context, the result by Chrobak and Dürr shows that deciding the existence of a $\left(d_{0}, d_{1}, d_{2}, d_{3}\right)$-decomposition of $K_{X, Y}$ is NP-hard and hence no good characterization can be expected. As for the tomography problem, the only open case is $p=3$. From now on, we

[^0]will mainly focus on $\left(d_{0}, d_{1}, d_{2}\right)$-decomposition of $K_{X, Y}$.
Being a decomposition necessarily means that $d_{0}+d_{1}+d_{2}=d_{G}$, we then only need to find disjoint realizations $F_{1}, F_{2}$ of $d_{1}, d_{2}$ in $G$ since the edge set $F_{0}=E \backslash\left(F_{1} \cup F_{2}\right)$ is indeed a realization of $d_{0}=d_{G}-d_{1}-d_{2}$. When $d_{1}, d_{2}$ have disjoint realization, they are disjointly realizable in $G$. Our main purpose in this paper is to find some necessary and sufficient conditions for $d_{1}, d_{2}$ to be disjointly realizable in $G$. First note that we need that both $d_{1}$ and $d_{2}$ are realizable in $G$. We also need that $d_{1}+d_{2} \leqslant d_{G}$, this condition being called the degree condition in $G$. Another natural necessary condition is that $d_{1}+d_{2}$ is realizable in $G$.

The conditions cited above are easy to check, and can be deduced from a well-known characterization of realizable functions in bipartite graphs which is due to Ore [14]. We denote by $G=(X, Y, E)$ the bipartite graph with parts $X$ and $Y$ and edge set $E$. For $S \subset X, T \subset Y, F \subset E$, we write $\bar{S}=X-S$, $\bar{T}=Y-T, \bar{F}=E-F$ and $F(S, T)$ the set of edges in $F$ with ends in $S$ and $T$. In addition, for $d: X \cup Y \rightarrow \mathbb{N}$ we write $d(S)=\sum_{x \in S} d(x)$ and $d(T)=\sum_{y \in T} d(y)$.

Lemma 1 Let $G=(X, Y, E)$ be a bipartite graph and $d: X \cup Y \rightarrow \mathbb{N}$. Then, $d$ is realizable in $G$ if and only if $d(X)=d(Y)$ and $d(S) \leqslant d(\bar{T})+|E(S, T)|$, for each $S \subset X$ and $T \subset Y$.

The following result is a straightforward corollary of Lemma 1 (see [2]). It will be one of the central tool of the proof of our main result.

Lemma 2 Let $G=(X, Y, E)$ be a bipartite graph and let $d: X \cup Y \rightarrow \mathbb{N}$ be realizable in $G$. Suppose there exist a realization $F_{0}$ of $d$ and $S \subset X, T \subset Y$ such that $F_{0}(S, T)=E(S, T)$ and $F_{0}(\bar{S}, \bar{T})=\emptyset$. Then every realization $F$ of $d$ satisfies $F(S, T)=E(S, T)$ and $F(\bar{S}, \bar{T})=\emptyset$.

## 2 Functions with bounded span

For every fixed integer $k$, it was conjectured by Rao and Rao [15] that if $d, d_{1}: X \rightarrow \mathbb{N}$ are realizable functions in $K_{X}$ satisfying $d(x)=d_{1}(x)+k$ for all $x$ in $X$, then there exists a realization of $d$ containing a spanning $k$-regular subgraph. In [12], Kundu solved the conjecture, showing that if $d, d_{1}$ are realizable functions in $K_{X}$ satisfying $d=d_{1}+d_{0}$, where the span of $d_{0}$ at most one, then $d$ can be realized by a graph containing a realization of $d_{0}$. An algorithmic method for finding these realizations was given by Kleitman and Wang in [11] and a very simple proof when $d_{0}(x)=1$ for every $x$, was given by Lovász in [13]. In [3], Chen noticed that when considering the integer
function $d_{2}=|X|-1-d$, an even shorter proof could be obtained. Observe that $d_{2}$ is realizable in $K_{X}$ by taking the complement in $K_{X}$ of a realization of $d$. In addition, $d_{1}+d_{2}=|X|-1-d_{0}$ clearly has span at most one. Finally, Chen's approach of Kundu's result can be stated as follows.

Theorem 3 Let $d_{1}, d_{2}: X \rightarrow \mathbb{N}$ be such that the span of $d_{1}+d_{2}$ is at most one. Then $d_{1}, d_{2}$ are disjointly realizable in $K_{X}$ if and only if $d_{1}, d_{2}$ are realizable in $K_{X}$ and $d_{1}+d_{2} \leqslant|X|-1$.

Note that the last requirement simply says that the pair $d_{1}, d_{2}$ satisfies the degree condition in $K_{X}$. Later, Chen and Shastri [4] showed that the same argument used in the proof of Theorem 3 also works for the complete bipartite graph $K_{X, Y}$.

Theorem 4 Let $d_{1}, d_{2}: X \cup Y \rightarrow \mathbb{N}$ and assume that $\left.\left(d_{1}+d_{2}\right)\right|_{Y}$ has span at most one. Then $d_{1}, d_{2}$ are disjointly realizable in $K_{X, Y}$ if and only if $d_{1}, d_{2}$ are realizable and satisfy the degree condition in $K_{X, Y}$, that is, $\left(d_{1}+d_{2}\right)_{\mid X} \leqslant|Y|$ and $\left(d_{1}+d_{2}\right)_{\mid Y} \leqslant|X|$.

The main idea of Chen's proof is the following lemma.
Lemma 5 Let $d_{1}, d_{2}: X \cup Y \rightarrow \mathbb{N}$ be realizable functions in $K_{X, Y}$. Assume that for given realizations $F_{1}, F_{2}$ of $d_{1}, d_{2}$, respectively, there exist $x, \bar{x} \in X$ and $y \in Y$ such that $x y \in F_{1} \cap F_{2}, \bar{x} y \notin F_{1} \cup F_{2}$ and $d_{1}(\bar{x})+d_{2}(\bar{x})>d_{1}(x)+d_{2}(x)-2$. Then there exist realizations $F_{1}^{\prime}, F_{2}^{\prime}$ of $d_{1}, d_{2}$ such that $\left|F_{1}^{\prime} \cap F_{2}^{\prime}\right|<\left|F_{1} \cap F_{2}\right|$.

PROOF. Let $H=\left(X, Y, F_{1}+F_{2}\right)$ be the bipartite graph with parts $X$ and $Y$, and edge set $F_{1}+F_{2}$, the disjoint union of $F_{1}$ and $F_{2}$. Observe that $F_{1} \cap F_{2}$ is exactly the set of double edges of $H$. Since $x y$ is a double edge of $H$ and there is no edge in $H$ between $\bar{x}$ and $y$, there exists a vertex $y^{\prime} \in Y$ such that the number of edges between $\bar{x}$ and $y^{\prime}$ in $H$ is strictly greater than the number of edges between $x$ and $y^{\prime}$. Without loss of generality, we assume that $\bar{x} y^{\prime} \in F_{1}$ and $x y^{\prime} \notin F_{1}$. Thus $F_{1}^{\prime}=F_{1} \cup\left\{\bar{x} y, x y^{\prime}\right\} \backslash\left\{x y, \bar{x} y^{\prime}\right\}$ is a realization of $d_{1}$ such that $\left|F_{1}^{\prime} \cap F_{2}\right|<\left|F_{1} \cap F_{2}\right|$.

Note that when the span of $\left(d_{1}+d_{2}\right)_{\mid Y}$ is at most one, the proof of Lemma 5 yields a polynomial time algorithm which starts with two realizations of $d_{1}$ and $d_{2}$ and computes two disjoint realizations. Hence Theorem 4 is a straightforward corollary of this lemma.

In [7] Costa et al. solved a particular case of disjoint realizations of two degree sequences in bipartite graphs. Furthermore, Costa et al. studied in [6] the problem when the functions $d_{1}, d_{2}$ are restricted to have values in $\{0,2\}$, hence satisfying that $d_{0}+d_{1}$ has span at most two. Unfortunately, when the function
$d_{1}+d_{2}$ has span larger than one, the realizability of $d_{1}, d_{2}$ and the degree condition are not sufficient for $d_{1}, d_{2}$ to be disjointly realizable in $K_{X, Y}$, as shown in Figure 1. Observe that even asking for $d_{1}+d_{2}$ to be realizable in $K_{X, Y}$ is still not a sufficient condition.


Fig. 1. a) Realizations of functions $d_{1}$ (continuous line) and $d_{2}$ (dashed line) in $K_{X, Y}$. b) Realization of $d_{1}+d_{2}$ in $K_{X, Y}$. Observe that $d_{1}, d_{2}$ and $d_{1}+d_{2}$ are uniquely realizablen in $K_{X, Y}$. In particular, $x_{1} y_{1}$ belongs to the unique realization of both $d_{1}$ and $d_{2}$. Hence $d_{1}, d_{2}$ are not disjointly realizable in $K_{X, Y}$. We remark that both $\left.\left(d_{1}+d_{2}\right)\right|_{X}$ and $\left.\left(d_{1}+d_{2}\right)\right|_{Y}$ have span exactly two.

Our goal is to provide a new condition which allows us to extend Theorem 4 when the span of both $\left.\left(d_{1}+d_{2}\right)\right|_{X}$ and $\left.\left(d_{1}+d_{2}\right)\right|_{Y}$ is at most two. In the following section we introduce this condition and we present our main result, namely Theorem 7. In section 4, we present the proof of Theorem 7.

## 3 The saturation condition

Let $G=(X, Y, E)$ be a bipartite graph and $d: X \cup Y \rightarrow \mathbb{N}$ be a realizable function in $G$. For $S \subset X$ and $T \subset Y$, we define $m_{d}(S, T)$ as the minimum number of edges joining $S$ and $T$ among all realizations of $d$. Let $d_{1}, d_{2}$ : $X \cup Y \rightarrow \mathbb{N}$ be realizable functions in $G$. We say that $d_{1}, d_{2}$ saturate $E(S, T)$ if $m_{d_{1}}(S, T)+m_{d_{2}}(S, T)>|E(S, T)|$. Clearly, if there exists $S$ and $T$ such that $d_{1}, d_{2}$ saturate $E(S, T)$ then $d_{1}, d_{2}$ are not disjointly realizable in $G$. We say that $d_{1}, d_{2}$ satisfy the saturation condition in $G$ if they do not saturate $E(S, T)$, for each $S \subset X$ and $T \subset Y$.

Theorem 6 Let $d: X \cup Y \rightarrow \mathbb{N}$ be a realizable function in $G=(X, Y, E)$. For fixed $S \subset X$ and $T \subset Y, m_{d}(S, T)$ can be calculated in polynomial time.

PROOF. We reduce this calculation to a minimum cost flow problem with lower and upper capacities in an auxiliary digraph $D$. Hence $m_{d}(S, T)$ is computable in polynomial time (see for instance [1]). We define $D=(V, A)$ as the
digraph with vertex set $V=X \cup Y \cup\{s, t\}$ and $\operatorname{arcs}(s, x)$ for each $x \in X$, $(y, t)$ for each $y \in Y$ and $(x, y)$ for each $x y \in E$ with $x \in X$ and $y \in Y$.

Let $u, l: A \rightarrow \mathbb{N}$ be the lower and upper capacity functions given by $u(s, x)=$ $l(s, x)=d(x)$ for each $x \in X, u(y, t)=l(y, t)=d(y)$ for each $y \in Y$, and $u=1, l=0$ otherwise. For $S \subset X$ and $T \subset Y$, we define a cost function $w=w(S, T): A \rightarrow\{0,1\}$ by $w(x, y)=1$ if and only if $(x, y)$ is an arc with both $x \in S$ and $y \in T$. The cost of an $(s, t)$-flow $z$ is defined by $w(z)=\sum_{a \in A} z(a) w(a)$.

Given a realization $F$ of $d$ in $G$ we define $z_{F}: A \rightarrow \mathbb{N}$ by $z_{F}(s, x)=d(x)$ for every $x \in X, z_{F}(y, t)=d(\underline{y})$ for $y \in Y$, and $z_{F}(x, y)$ with value 1 or 0 depending if $x y$ belongs to $F$ or $\bar{F}$. Note that $l \leqslant z_{F} \leqslant u$ and hence $z_{F}$ is a feasible $(s, t)$-flow with value $\left|z_{F}\right|=d(X)$. Moreover, $w\left(z_{F}\right)=\sum_{a \in A} z_{F}(a) w(a)=$ $|F(S, T)|$ and thus $w\left(z_{F}\right) \leqslant w\left(z_{F^{\prime}}\right)$ if and only if $|F(S, T)| \leqslant\left|F^{\prime}(S, T)\right|$.

Furthermore, since $l, u$ and $w$ are integer valued functions the integrality theorem for minimum cost flows ensures the existence of an integer minimum cost $(s, t)$-flow $z$ which is feasible with value $|z|=d(X)$. Define $F(z)=$ $\{x y:(x, y) \in A$ with $x \in X, y \in Y$ and $z(x, y)>0\}$. Note that $z$ takes only values 0 or 1 for each $(x, y) \in A$ with $x \neq s$ or $y \neq t$, since for these arcs $0 \leqslant l \leqslant u \leqslant 1$. As the value of $z$ is $d(X), F(z)$ is a realization of $d$. By our previous observation and since $z$ is a minimum cost $(s, t)-$ flow, we have $m_{d}(S, T)=|F(z)(S, T)|$.

Note that in Figure 1, the calculation for $S=\left\{x_{1}\right\}$ and $T=\left\{y_{1}\right\}$ gives $m_{d_{1}}(S, T)+m_{d_{2}}(S, T)=2>|S||T|$, thus $d_{1}, d_{2}$ do not satisfy the saturation condition in $K_{X, Y}$. Our main result is the following theorem.

Theorem 7 Let $d_{1}, d_{2}: X \cup Y \rightarrow \mathbb{N}$ such that both $\left.\left(d_{1}+d_{2}\right)\right|_{X}$ and $\left.\left(d_{1}+d_{2}\right)\right|_{Y}$ have span at most two. Then, $d_{1}, d_{2}$ are disjointly realizable in $K_{X, Y}$ if and only if $d_{1}, d_{2}$ are realizable and satisfy the saturation condition in $K_{X, Y}$.

We will see that the proof of Theorem 7 yields a polynomial time algorithm which either finds two disjoint realizations of $d_{1}$ and $d_{2}$ or exhibits two sets $S$ and $T$ which violate the saturation condition. Thus, by Theorem 6 , the pair $(S, T)$ is a non existence certificate which can be checked in polynomial time.

It would be tempting to propose the realizability and the saturation condition as a necessary and sufficient condition for the general case of two functions in $K_{X, Y}$. We do not have any example of $d_{1}, d_{2}$ which satisfy these conditions and are not disjointly realizable. We let this as an open question. A problem of independent interest would be to polynomially check if two realizable functions $d_{1}, d_{2}$ satisfy indeed the saturation condition. Let us now motivate a little bit more the introduction of the saturation condition by presenting some
particular cases in which it is indeed the required condition.
Theorem 8 illustrates how the saturation condition can provide in some cases a necessary and sufficient condition. The proof follows easily from Lemma 1.

Theorem 8 Let $d_{1}, d_{2}: X \cup Y \rightarrow \mathbb{N}$ be realizable in $G=(X, Y, E)$ and assume that $d_{1}$ is uniquely realizable. If $d_{1}, d_{2}$ satisfy the saturation condition in $G$ then they are disjointly realizable.

PROOF. For the sake of contradiction, assume that $d_{1}, d_{2}$ are not disjointly realizable in $G$ and let $F_{1} \subset E$ be the unique realization of $d_{1}$. Clearly, $d_{2}$ is not realizable in the graph $H=\left(X, Y, \overline{F_{1}}\right)$. Since $d_{2}(X)=d_{2}(Y)$, by Lemma 1, there exist $S \subset X$ and $T \subset Y$ such that $d_{2}(S)>d_{2}(\bar{T})+\left|\overline{F_{1}}(S, T)\right|$.

We consider a realization $F_{2}$ of $d_{2}$ in $G$ such that $m_{d_{2}}(S, T)=\left|F_{2}(S, T)\right|$. Then, $d_{2}(S)=\left|F_{2}(S, T)\right|+\left|F_{2}(S, \bar{T})\right| \leqslant m_{d_{2}}(S, T)+d_{2}(\bar{T})$. From the two previous inequalities we obtain $m_{d_{2}}(S, T) \geqslant d_{2}(S)-d_{2}(\bar{T})>\left|\overline{F_{1}}(S, T)\right|$. But $d_{1}$ is uniquely realizable and hence $m_{d_{1}}(S, T)=\left|F_{1}(S, T)\right|$. Finally, we obtain $m_{d_{1}}(S, T)+m_{d_{2}}(S, T)>\left|F_{1}(S, T)\right|+\left|\overline{F_{1}}(S, T)\right|=|E(S, T)|$.

Figure 1 shows that only asking for realizability is not enough, even when $d_{1}, d_{2}$ and $d_{1}+d_{2}$ are all uniquely realizable.

In Theorem 9, we show that the realizability of $d_{1}+d_{2}$ easily follows from the realizability of $d_{1}, d_{2}$ when the saturation condition holds.

Theorem 9 Let $d_{1}$ and $d_{2}$ be realizable in a bipartite graph $G$. If $d_{1}, d_{2}$ satisfy the saturation condition in $G$, then $d_{1}+d_{2}$ is realizable in $G$. In particular $d_{1}, d_{2}$ do satisfy the degree condition.

PROOF. The realizability of $d_{1}, d_{2}$ in $G$ gives $\left(d_{1}+d_{2}\right)(X)=d_{1}(X)+d_{2}(X)=$ $d_{1}(Y)+d_{2}(Y)=\left(d_{1}+d_{2}\right)(Y)$. Let $F_{i}$ be a realization of $d_{i}$ in $G$, where $i=1,2$. It is clear that $d_{i}$ is realizable in $G_{i}=\left(X, Y, F_{i}\right)$. Thus Lemma 1 shows that $d_{i}(S) \leqslant d_{i}(\bar{T})+\left|F_{i}(S, T)\right|$ for each $S \subset X$ and $T \subset Y$. Since this holds for every realization of $d_{i}$ we obtain $d_{i}(S) \leqslant d_{i}(\bar{T})+m_{d_{i}}(S, T)$. Thus,

$$
\begin{aligned}
\left(d_{1}+d_{2}\right)(S) & =d_{1}(S)+d_{2}(S) \\
& \leqslant d_{1}(\bar{T})+d_{2}(\bar{T})+m_{d_{1}}(S, T)+m_{d_{2}}(S, T) \\
& \leqslant\left(d_{1}+d_{2}\right)(\bar{T})+|E(S, T)|
\end{aligned}
$$

for each $S \subset X$ and $T \subset Y$. Again by Lemma $1, d_{1}+d_{2}$ is realizable in $G$. The last remark is straightforward.

## 4 The proof of Theorem 7

Consider $d_{1}, d_{2}: X \cup Y \rightarrow \mathbb{N}$ such that both $\left(d_{1}+d_{2}\right)_{\mid X}$ and $\left(d_{1}+d_{2}\right)_{\mid Y}$ have span at most two. From the discussion in Section 3, the realizability and the saturation condition are necessary for $d_{1}, d_{2}$ to be disjointly realizable in $K_{X, Y}=(X, Y, E)$. Conversely, assume that $d_{1}$ and $d_{2}$ are both realizable in $K_{X, Y}$ but not disjointly realizable. We will prove that there exist two sets $S \subset X$ and $T \subset Y$ such that $d_{1}, d_{2}$ saturate $E(S, T)$. As we have seen in Section 3, if $d_{1}, d_{2}$ do not satisfy the degree condition then the saturation condition does not hold. Thus, we can assume that $\max \left(d_{1}+d_{2}\right)_{\mid X} \leqslant|Y|$ and $\max \left(d_{1}+d_{2}\right)_{\mid Y} \leqslant|X|$.

Let $F_{1}, F_{2}$ be some respective realizations of $d_{1}, d_{2}$, chosen in such a way that $\left|F_{1} \cap F_{2}\right|$ is as small as possible. Such a pair of realizations is called minimal.. Since $d_{1}, d_{2}$ are not disjointly realizable, the set $F_{1} \cap F_{2}$ is not empty. We consider the bipartite graph $H=\left(X, Y, F_{1}+F_{2}\right)$, where $F_{1}+F_{2}$ denotes the disjoint union of $F_{1}$ and $F_{2}$. For $x \in X$ and $y \in Y$, we will refer to $x y$ as an $i$-edge in $H$ if $x y$ belongs to $F_{i}$, where $i=1,2$. We say that $x y$ is a double edge if it is both a 1 -edge and a 2 -edge of $H$. Note that $F_{1}$ and $F_{2}$ are disjoint if and only if $H$ is a graph without double edges. We denote $N_{H}(z)$ the set of neighbors of $z$ in $H$. In addition, we write $N_{H}^{i}(z)$ the set of neighbors of $z$ in the graph $\left(X, Y, F_{i}\right)$, for $i=1,2$. Note that $N_{H}(z)=$ $N_{H}^{1}(z) \cup N_{H}^{2}(z)$, while $\left|N_{H}(z)\right|=\left|N_{H}^{1}(z)\right|+\left|N_{H}^{2}(z)\right|-\left|N_{H}^{1}(z) \cap N_{H}^{2}(z)\right|$. Finally, we write $\bar{H}=\left(X, Y, \overline{F_{1} \cup F_{2}}\right)$, where $\overline{F_{1} \cup F_{2}}$ is the set of non edges of $H$, and $N_{\bar{H}}(z)$ accordingly.

Let $x y$ be a double edge of $H$, where $x \in X$ and $y \in Y$. Observe that $d_{H}(x)=$ $d_{1}(x)+d_{2}(x) \leqslant|Y|$ and $d_{H}(y)=d_{1}(y)+d_{2}(y) \leqslant|X|$. Then $\left|N_{H}(x)\right|<d_{H}(x) \leqslant$ $|Y|$ and $\left|N_{H}(y)\right|<d_{H}(y) \leqslant|X|$ and hence $N_{\bar{H}}(x) \neq \emptyset$ and $N_{\bar{H}}(y) \neq \emptyset$. We denote $S_{0}=N_{\bar{H}}(y)$ and $T_{0}=N_{\bar{H}}(x)$. From now on, $\bar{x}$ and $\bar{y}$ will be fixed vertices in $S_{0}$ and $T_{0}$, respectively.

Claim $10 \bar{x} \bar{y}$ is a non-edge of $H$.

PROOF. Assume for contradiction that $\bar{x} \bar{y} \in F_{1}$ and define $F_{1}^{\prime}=F_{1} \cup$ $\{x \bar{y}, \bar{x} y\} \backslash\{x y, \bar{x} \bar{y}\}$. Note that $F_{1}^{\prime}$ is a realization of $d_{1}$. If $\bar{x} \bar{y}$ is double in $H$ then $F_{1}^{\prime} \cap F_{2}=F_{1} \cap F_{2} \backslash\{x y, \bar{x} \bar{y}\}$. Otherwise $\bar{x} \bar{y}$ is a simple edge in $H$ and then $F_{1}^{\prime} \cap F_{2}=F_{1} \cap F_{2} \backslash\{x y\}$. In both cases we obtain that $\left|F_{1}^{\prime} \cap F_{2}\right|<\left|F_{1} \cap F_{2}\right|$. This contradicts the minimality of $F_{1}, F_{2}$ and hence $\bar{x} \bar{y}$ is not a 1 -edge. The same argument shows that $\bar{x} \bar{y}$ does not belong to $F_{2}$ either.

Note that Claim 10 shows that $N_{H}(\bar{x}) \subset N_{H}(x) \backslash\{y\}$. In Claims 11, 12 and 14 we only include the proof for $x$ and $\bar{x}$. The result for $y$ and $\bar{y}$ can be proved
analogously.
Claim 11 (Degree property) We both have

$$
\begin{aligned}
& \max \left(d_{1}+d_{2}\right)_{\mid X}=d_{1}(x)+d_{2}(x)=d_{1}(\bar{x})+d_{2}(\bar{x})+2=\min \left(d_{1}+d_{2}\right)_{\mid X}+2 \\
& \max \left(d_{1}+d_{2}\right)_{\mid Y}=d_{1}(y)+d_{2}(y)=d_{1}(\bar{y})+d_{2}(\bar{y})+2=\min \left(d_{1}+d_{2}\right)_{\mid Y}+2
\end{aligned}
$$

PROOF. Since $\left.\left(d_{1}+d_{2}\right)\right|_{X}$ has span at most two we have $\max \left(d_{1}+d_{2}\right)_{\mid X} \leqslant$ $\min \left(d_{1}+d_{2}\right)_{\mid X}+2$. By Lemma $5, d_{1}(x)+d_{2}(x) \geqslant d_{1}(\bar{x})+d_{2}(\bar{x})+2$; otherwise there exist realizations $F_{1}^{\prime}, F_{2}^{\prime}$ with $\left|F_{1}^{\prime} \cap F_{2}^{\prime}\right|<\left|F_{1} \cap F_{2}\right|$, which contradicts that $F_{1}, F_{2}$ is a minimal pair. Thus max $\left(d_{1}+d_{2}\right)_{\mid X} \geqslant d_{1}(x)+d_{2}(x) \geqslant d_{1}(\bar{x})+$ $d_{2}(\bar{x})+2 \geqslant \min \left(d_{1}+d_{2}\right)_{\mid X}+2$. Hence all the inequalities are equalities.

The proof of the degree property shows that both $\left.\left(d_{1}+d_{2}\right)\right|_{X}$ and $\left.\left(d_{1}+d_{2}\right)\right|_{Y}$ have span exactly two. We remark that this follows easily from Theorem 4 and our assumption that $d_{1}, d_{2}$ are not disjointly realizable. Note that the degree property shows that every vertex incident to a double edge in a minimal pair is of maximum degree in its part $(X$ or $Y)$. It also shows that no vertex in $N_{\bar{H}}(x) \cup N_{\bar{H}}(y)$ is of maximum degree in its respective part. Hence, the following property holds.

Claim $12 \bar{x}$ (resp. $\bar{y}$ ) does not have incident double edges in $H$. Therefore, $\left|N_{H}(\bar{x})\right|=d_{1}(x)+d_{2}(x)-2$ and $\left|N_{H}(\bar{y})\right|=d_{1}(y)+d_{2}(y)-2$.

Claim $13 N_{H}(\bar{x})=N_{H}(x) \backslash\{y\}$ and $N_{H}(\bar{y})=N_{H}(y) \backslash\{x\}$.

PROOF. By Claims 10 and 12 we have $N_{H}(\bar{x}) \subset N_{H}(x) \backslash\{y\}$ and $\left|N_{H}(\bar{x})\right|=$ $d_{1}(x)+d_{2}(x)-2$. Since $\left|N_{H}(x)\right|=\left|N_{H}^{1}(x)\right|+\left|N_{H}^{2}(x)\right|-\left|N_{H}^{1}(x) \cap N_{H}^{2}(x)\right| \leqslant$ $d_{1}(x)+d_{2}(x)-1$ we obtain $\left|N_{H}(x) \backslash\{y\}\right| \leqslant d_{1}(x)+d_{2}(x)-2=\left|N_{H}(\bar{x})\right|$. Therefore, $N_{H}(\bar{x})=N_{H}(x) \backslash\{y\}$.

Since $N_{\bar{H}}(\bar{x})=Y \backslash N_{H}(\bar{x})$ and $N_{\bar{H}}(x)=Y \backslash N_{H}(x)$ we get
Claim $14 N_{\bar{H}}(\bar{x})=T_{0} \cup\{y\}$ and $N_{\bar{H}}(\bar{y})=S_{0} \cup\{x\}$.
Claim 15 The set of doubles edges of $H$ forms a matching.

PROOF. From Claim 13 and the degree property we have $\left|N_{H}(x) \backslash\{y\}\right|=$ $d_{1}(x)+d_{2}(x)-2$. Hence, $\left|N_{H}(x)\right|=d_{1}(x)+d_{2}(x)-1$ which implies that exactly one double edge is incident to $x$.

Claim 16 If $x^{\prime} y^{\prime}$ is a non edge where $x^{\prime} \in N_{H}(y)$ and $y^{\prime} \in N_{H}(x)$, then $x^{\prime} \bar{y}$ is an $i$-edge and $\bar{x} y^{\prime}$ is a $j$-edge with $i \neq j$.

PROOF. By Claim 13, $x^{\prime} \in N_{H}(\bar{y})$ and $y^{\prime} \in N_{H}(\bar{x})$. Assume for contradiction that $x^{\prime} \bar{y}, \bar{x} y^{\prime}$ are $i$-edges. Then $F_{i}^{\prime}=F_{i} \cup\left\{x \bar{y}, \bar{x} y, x^{\prime} y^{\prime}\right\} \backslash\left\{x y, \bar{x} y^{\prime}, x^{\prime} \bar{y}\right\}$ and $F_{j}^{\prime}=F_{j}$ where $j \neq i$, are realizations of $d_{1}, d_{2}$ satisfying $\left|F_{1}^{\prime} \cap F_{2}^{\prime}\right|<\left|F_{1} \cap F_{2}\right|$.

Note that $\left\{N_{H}^{i}(y) \cap N_{H}^{j}(\bar{y})\right\}_{i, j=1,2}$ is a partition of $\overline{S_{0} \cup\{x\}}$ into four (possibly empty) sets. Similarly, $\left\{N_{H}^{i}(x) \cap N_{H}^{j}(\bar{x})\right\}_{i, j=1,2}$ is a partition of $\overline{T_{0} \cup\{y\}}$.

Claim 17 Let $x^{\prime} y^{\prime}$ be a non-edge of $H$, where $x^{\prime} \notin S_{0}$ and $y^{\prime} \notin T_{0}$. Then $x^{\prime} y, x^{\prime} \bar{y}$ are $i-$ edges and $x y^{\prime}, \bar{x} y^{\prime}$ are $j-$ edges, for $i \neq j$.

PROOF. Since $x^{\prime} \notin S_{0}$ and $x^{\prime} y^{\prime}$ is a non-edge, then $y^{\prime} \neq y$. Similarly, we have that $x^{\prime} \neq x$. Hence $x^{\prime}$ belongs to $N_{H}^{i_{1}}(y) \cap N_{H}^{j_{1}}(\bar{y})$ and $y^{\prime}$ to $N_{H}^{i_{2}}(x) \cap N_{H}^{j_{2}}(\bar{x})$, with $i_{1}, j_{1}, i_{2}$ and $j_{2}$ in $\{1,2\}$. Without loss of generality, we assume that $j_{2}=2$. By Claim 16, $j_{1}=1$.

For the sake of contradiction assume that $i_{1}=2$. We define $F_{1}^{\prime}=F_{1} \cup$ $\left\{x \bar{y}, x^{\prime} y\right\} \backslash\left\{x y, x^{\prime} \bar{y}\right\}$ and $F_{2}^{\prime}=F_{2} \cup\left\{\bar{x} y, x^{\prime} y^{\prime}\right\} \backslash\left\{\bar{x} y^{\prime}, x^{\prime} y\right\}$. Then $F_{1}^{\prime}$ and $F_{2}^{\prime}$ are realizations of $d_{1}$ and $d_{2}$, respectively, which satisfy $\left|F_{1}^{\prime} \cap F_{2}^{\prime}\right|<\left|F_{1} \cap F_{2}\right|$. This contradicts the choice of $F_{1}, F_{2}$ and hence $i_{1}=1$. A symmetric argument shows that $i_{2}=j_{2}=2$.

Claim 18 Let $x^{\prime} y^{\prime} \neq x y$ be a double edge in $H$. Then $x^{\prime} y, x^{\prime} \bar{y}$ are $i-$ edges and $x y^{\prime}, \bar{x} y^{\prime}$ are $j$ - edges of $H$, for $i \neq j$.

PROOF. Note that $x^{\prime} \neq x$ by Claim 15. Similarly, Claim 12 shows that $x^{\prime} \notin$ $S_{0}$. Consider $\bar{y}^{\prime} \in N_{\bar{H}}\left(x^{\prime}\right)$. We will show that $\bar{y}^{\prime} \notin T_{0}$. Assume by contradiction that $x \bar{y}^{\prime}$ is a non-edge of $H$. Then Claim 14 shows that $N_{\bar{H}}\left(\bar{y}^{\prime}\right)=S_{0} \cup\{x\}$, which is impossible since $x^{\prime} \notin S_{0}$. Analogously, we can see that $y^{\prime} \notin T_{0}$ and $\bar{x}^{\prime} \notin S_{0}$ for each $\bar{x}^{\prime} \in N_{\bar{H}}\left(y^{\prime}\right)$. Note that $\bar{x}^{\prime} \bar{y}^{\prime}$ is a non-edge of $H$ by Claim 10.

Applying Claim 17 to the non-edge $x^{\prime} \bar{y}^{\prime}$, we obtain that $x^{\prime} y, x^{\prime} \bar{y}$ are $i$-edges and $x \bar{y}^{\prime}, \overline{x y}^{\prime}$ are $j$-edges of $H$, where $i, j$ are distinct indices in $\{1,2\}$. Applying again Claim 17 to the non-edge $\bar{x}^{\prime} \bar{y}^{\prime}$, we deduce that $\bar{x}^{\prime} y, \bar{x}^{\prime} \bar{y}$ are $i$-edges. Applying finally Claim 17 to the non-edge $\bar{x}^{\prime} y^{\prime}$ shows that $x y^{\prime}, \bar{x} y^{\prime}$ are $j$-edges.

We remark that for $x^{\prime} \notin S_{0} \cup\{x\}=N_{\bar{H}}(\bar{y})$ and $y^{\prime} \notin T_{0} \cup\{y\}=N_{\bar{H}}(\bar{x})$, all $x^{\prime} y, x^{\prime} \bar{y}, x y^{\prime}$ and $\bar{x} y^{\prime}$ are simple edges of $H$. Similarly, Claim 17 and 18 show that if $x^{\prime} y^{\prime}$ is either a non-edge or a double edge of $H$ then $x^{\prime} \in N_{H}^{i}(y) \cap N_{H}^{i}(\bar{y})$ and $y^{\prime} \in N_{H}^{j}(x) \cap N_{H}^{j}(\bar{x})$, where $i \neq j$.

We define three operations which transform the realizations $F_{1}, F_{2}$ into $F_{1}^{\prime}, F_{2}^{\prime}$ :
a) Let $x y^{\prime}$ be a simple edge with $y^{\prime}$ in $N_{H}^{j}(x) \cap N_{H}^{i}(\bar{x})$, where $i \neq j$. An $\overline{\mathbf{x}}-$ switch is the operation which replaces $F_{i}$ by $F_{i}^{\prime}:=F_{i} \cup\left\{x y^{\prime}, \bar{x} y\right\} \backslash$ $\left\{x y, \bar{x} y^{\prime}\right\}$ and leaves $F_{j}$ unchanged, i.e. $F_{j}^{\prime}:=F_{j}$.
b) Let $x^{\prime} y$ be a simple edge with $x^{\prime}$ in $N_{H}^{j}(y) \cap N_{H}^{i}(\bar{y})$, where $i \neq j$. A $\overline{\mathbf{y}}-$ switch is the operation which replaces $F_{i}$ by $F_{i}^{\prime}:=F_{i} \cup\left\{x^{\prime} y, x \bar{y}\right\} \backslash$ $\left\{x y, x^{\prime} \bar{y}\right\}$ and leaves $F_{j}$ unchanged, i.e. $F_{j}^{\prime}:=F_{j}$.
c) Let $x^{\prime} y^{\prime}$ be a simple edge with $x^{\prime} \in N_{H}^{i}(\bar{y}), y^{\prime} \in N_{H}^{i}(\bar{x})$ and $x^{\prime} y^{\prime} \in F_{j}$, where $i \neq j$. An $(\overline{\mathbf{x}}, \overline{\mathbf{y}})$-switch is the operation which replaces $F_{i}$ by $F_{i}^{\prime}:=$ $F_{i} \cup\left\{x \bar{y}, \bar{x} y, x^{\prime} y^{\prime}\right\} \backslash\left\{x y, \bar{x} y^{\prime}, x^{\prime} \bar{y}\right\}$ and leaves $F_{j}$ unchanged, i.e. $F_{j}^{\prime}:=F_{j}$.

We refer to these operations as elementary switches. We also say that $x^{\prime} y^{\prime}$ is reached from $x y$ by an elementary switch.

Note that the sets $F_{1}^{\prime}$ and $F_{2}^{\prime}$ defined above are realizations of $d_{1}$ and $d_{2}$, respectively. In addition, $x^{\prime} y^{\prime}$ is a double edge, $x y$ is a simple edge and both $\bar{x} y^{\prime}$ and $x^{\prime} \bar{y}$ are non-edges of $H^{\prime}=\left(X, Y, F_{1}^{\prime}+F_{2}^{\prime}\right)$. Thus, the total number of doubles edges in $H^{\prime}$ and $H$ is the same. That is, an elementary switch in $H$ "changes the position" of a double edge and hence it preserves the minimality of the pair of realizations. Consequently $F_{1}^{\prime}, F_{2}^{\prime}$ is also a minimal pair.

We say that $x^{\prime} y^{\prime}$ is reached from $x y$ if either $x^{\prime} y^{\prime}=x y$ or there exists vertices $x_{0}, x_{1} \ldots, x_{t} \in X, y_{0}, y_{1} \ldots, y_{t} \in Y$ and realizations $F_{1}^{k}, F_{2}^{k}$ of $d_{1}, d_{2}$, respectively, for $k=1, \ldots, t$, satisfying $x_{0} y_{0}=x y, x_{t} y_{t}=x^{\prime} y^{\prime}$ and $F_{1}^{0}=F_{1}, F_{2}^{0}=F_{2}$ and such that $x_{k} y_{k}$ is reached from $x_{k-1} y_{k-1}$ by an elementary switch in $H_{k-1}=\left(X, Y, F_{1}^{k-1}+F_{2}^{k-1}\right)$. Note that $F_{1}^{k}, F_{2}^{k}$ is a minimal pair for every $k$. We will refer to the realizations $F_{1}^{\prime}=F_{1}^{t}$ and $F_{2}^{\prime}=F_{2}^{t}$ as a minimal pair associated to $x^{\prime} y^{\prime}$.

Claim 19 Let $x^{\prime} y^{\prime}$ be reached from $x y$ and $F_{1}^{\prime}, F_{2}^{\prime}$ be a minimal pair associated to $x^{\prime} y^{\prime}$. Then $x^{\prime} y^{\prime}$ is a double edge and $\bar{x} y^{\prime}, x^{\prime} \bar{y}$ are non-edges of $H^{\prime}=\left(X, Y, F_{1}^{\prime}+F_{2}^{\prime}\right)$.

PROOF. This follows from the definition of the elementary switches (see Figure 2).

Let $S$ be the set of vertices $x^{\prime}$ in $X$ for which there exists $y^{\prime}$ in $Y$ such that $x^{\prime} y^{\prime}$ is reached from $x y$. In the same way, let $T$ be the set of vertices $y$ in $Y$


Fig. 2. The three elementary switches. We have represented 1,2 and non-edges by continuous, dashed and dotted lines, respectively. a) $y^{\prime} \in N_{H}^{2}(x) \cap N_{H}^{1}(\bar{x})$ and then $x y^{\prime}$ is reached from $x y$ by an $\bar{x}$-switch; b) $x^{\prime} \in N_{H}^{2}(y) \cap N_{H}^{1}(\bar{y})$ and then $x^{\prime} y$ is reached from $x y$ by a $\bar{y}$-switch; c) $x^{\prime} \in N_{H}^{1}(\bar{y}), y^{\prime} \in N_{H}^{1}(\bar{x})$ and $x^{\prime} y^{\prime} \in F_{2}$. Thus $x^{\prime} y^{\prime}$ is reached from $x y$ by an $(\bar{x}, \bar{y})-$ switch. For simplicity we have not drawn the non-edge $\bar{x} \bar{y}$ and the simples edges $x y^{\prime}$ and $x^{\prime} y$.
for which there exists $x^{\prime}$ in $X$ such that $x^{\prime} y^{\prime}$ is reached from $x y$.

Claim $20 S \cap S_{0}=T \cap T_{0}=\emptyset$

PROOF. By the degree condition, no vertex of $S_{0}$ has maximum degree in $X$ and no vertex of $T_{0}$ has maximum degree in $Y$. Moreover, by Claim 19 and the degree condition, every vertex of $S$ has maximum degree in $X$ and every vertex of $T$ has maximum degree in $Y$.

Claim 21 Let $F_{1}^{\prime}, F_{2}^{\prime}$ be a minimal pair associated to $x^{\prime} y^{\prime}$. Then $F_{i}^{\prime}$ can only differ from $F_{i}$ on the edges between $S \cup\{\bar{x}\}$ and $T \cup\{\bar{y}\}$, for $i=1,2$.

PROOF. Consider $x_{0}, x_{1} \ldots, x_{t} \in X$ and $y_{0}, y_{1} \ldots, y_{t} \in Y$ as above. Note that $F_{i}^{k}$ can only differ from $F_{i}$ on the edges connecting $\left\{\bar{x}, x_{0} \ldots, x_{k}\right\}$ and
$\left\{\bar{y}, y_{0}, \ldots, y_{k}\right\}$, for every $k$. Then the result follows by noting that $x_{i} \in S$ and $y_{i} \in T$, for each $i=0, \ldots, t$.

From Claim 21 we know that for each $u \notin T \cup\{\bar{y}\}$, an edge incident to $u$ belongs to $H$ if and only if it belongs to $H^{\prime}$. Similarly, for each $v \notin S \cup\{\bar{x}\}$, an edge incident to $v$ belongs to $H$ if and only if it belongs to $H^{\prime}$.

Claim 22 There are no edges of $H$ between $S$ and $T_{0} \backslash\{\bar{y}\}$. Similarly, there are no edges of $H$ between $T$ and $S_{0} \backslash\{\bar{x}\}$.

PROOF. Let $x^{\prime} \in S$ and $y^{\prime}$ be such that $x^{\prime} y^{\prime}$ is reached from $x y$. Let $F_{1}^{\prime}, F_{2}^{\prime}$ be a minimal pair associated to $x^{\prime} y^{\prime}$ and define $H^{\prime}=\left(X, Y, F_{1}^{\prime}+F_{2}^{\prime}\right)$. For sake of contradiction, let us assume that there exists a vertex $u$ of $T_{0} \backslash\{\bar{y}\}$ such that $x^{\prime} u$ is an edge of $H$. Since $u \notin T \cup\{\bar{y}\}$ we obtain by Claim 21 that $x^{\prime} u$ is an edge of $H^{\prime}$. From Claim 13 applied to $H^{\prime}$ we get $N_{H^{\prime}}(\bar{x})=N_{H^{\prime}}\left(x^{\prime}\right) \backslash\left\{y^{\prime}\right\}$. Hence, $u \bar{x}$ is an edge of $H^{\prime}$, since $y^{\prime} \in T$. But then, $u \bar{x}$ is an edge of $H$ which contradicts the fact that $u \in T_{0}$. The other part is proved analogously.

Claim 23 We have $S=\{x\}$ or $T_{0}=\{\bar{y}\}$.

PROOF. For the sake of contradiction, let us assume that there are $x^{\prime} \neq x$ in $S$ and $u \neq \bar{y}$ in $T_{0}$. By Claim 22, $x^{\prime} u$ is a non-edge of $H$. By definition, $x u$ is also a non-edge of $H$. Then Claim 14 shows that $N_{\bar{H}}(u) \backslash\{x\}=S_{0}$. We obtain that $x^{\prime} \in S_{0}$ and hence $x^{\prime} \in S \cap S_{0}$. This contradicts Claim 20.

We define $S_{i}=N_{H}^{i}(\bar{y}) \backslash S$ and $T_{i}=N_{H}^{i}(\bar{x}) \backslash T$, for $i=1,2$. Recall that $d_{1}(x)+d_{2}(x)=\left|N_{H}^{1}(x)\right|+\left|N_{H}^{2}(x)\right|=\left|N_{H}(x)\right|+1$. Thus, $\max \left(d_{1}+d_{2}\right)_{\mid X}=$ $|Y|-\left|T_{0}\right|+1$. Similarly, $\max \left(d_{1}+d_{2}\right)_{\mid Y}=|X|-\left|S_{0}\right|+1$.

Claim 24 For $i=1,2, S_{i}$ and $T_{0}$ (resp. $T_{i}$ and $S_{0}$ ) are completely connected by $i-e d g e s$.

PROOF. For the vertex $\bar{y}$ of $T_{0}$, the result follows from the definition of $S_{1}$ and $S_{2}$. Consider now $u \neq \bar{y}$ in $T_{0}$ and $x_{i}$ in $S_{i}$. Note that in this case $\left|T_{0}\right|>1$ and hence $\max \left(d_{1}+d_{2}\right)_{\mid X}=|Y|-\left|T_{0}\right|+1<|Y|$. Thus $x_{i}$ is incident to a nonedge $x_{i} y^{\prime}$ of $H$. Assume that $x y^{\prime}$ is a non-edge of $H$. Then $N_{\bar{H}}\left(y^{\prime}\right)=S_{0} \cup\{x\}$ by Claim 14. Since $x_{i} \neq x$, we have $x_{i} \in S_{0}$. This contradicts that $S_{0} \cap S_{i}=\emptyset$ and hence $y^{\prime} \notin T_{0}$.

Thus, we can apply Claim 17 to the non-edge $x_{i} y^{\prime}$. Since $x_{i} \bar{y}$ is an $i$-edge, we have that $x_{i} y$ is also an $i$-edge. Applying again Claim 17 with $u \in T_{0}$ in
place of $\bar{y}$, we obtain that both $x_{i} u$ and $x_{i} y$ are $i$-edges, which concludes the proof.

Claim 25 For distinct $i, j$ in $\{1,2\}, S_{i}$ and $\overline{T_{j}}$ (resp. $T_{i}$ and $\overline{S_{j}}$ ) are completely connected with $i-$ edges and not connected with $j$-edges of $H$ (see Fig. 3).

PROOF. We will only prove that $S_{1}$ and $\overline{T_{2}}$ are completely connected with simple 1-edges in $H$. The other cases can be obtained by a similar argument.

Consider $x_{1} \in S_{1}$ and $y^{\prime} \in \overline{T_{2}}$. By Claim 20 and the definition of $T_{1},\left\{T, T_{0}, T_{1}\right\}$ is a partition of $\overline{T_{2}}$ and then we consider three cases.

- If $y^{\prime} \in T_{0}$, Claim 24 shows that $x_{1} y^{\prime}$ is a 1 -edge. Then, by Claim 12, $x_{1} y^{\prime}$ is not a 2 -edge of $H$.
- If $y^{\prime} \in T_{1}$, Claim 17 asserts that $x_{1} y^{\prime}$ is not a non-edge of $H$ since $x_{1} \bar{y}$ and $\bar{x} y^{\prime}$ are both 1-edges. Moreover, Claim 18 asserts that $x_{1} y^{\prime}$ is neither a double edge of $H$. By contradiction assume that $x_{1} y^{\prime}$ is a $2-$ edge. But then $x_{1} y^{\prime}$ is reached from $x y$ by an $(\bar{x}, \bar{y})-$ switch in $H$. This contradicts the fact that $x_{1} \notin S$.
- If $y^{\prime} \in T$, consider $x^{\prime} \in S$ such that $x^{\prime} y^{\prime}$ is reached from $x y$. Let $F_{1}^{\prime}, F_{2}^{\prime}$ be a minimal pair associated to $x^{\prime} y^{\prime}$ and define $H^{\prime}=\left(X, Y, F_{1}^{\prime}+F_{2}^{\prime}\right)$. Since $x^{\prime} y^{\prime}$ is a double edge of $H^{\prime}$, Claim 15 implies that $x_{1} y^{\prime}$ is not a double edge of $H^{\prime}$. Then by Claim 19, $x^{\prime} \bar{y}$ is a non-edge of $H^{\prime}$. In addition, $H^{\prime}$ can only differ from $H$ on the edges with ends in $S \cup\{\bar{x}\}$ and $T \cup\{\bar{y}\}$. Hence $x_{1} \bar{y}$ is a 1-edge of $H^{\prime}$. Since $N_{H^{\prime}}(\bar{y}) \subseteq N_{H^{\prime}}\left(y^{\prime}\right)$, we obtain that $x_{1} y^{\prime}$ is an edge in $H^{\prime}$. Assume that $x_{1} y^{\prime}$ is a $2-$ edge in $H^{\prime}$. Then $x_{1}$ belongs to $N_{H^{\prime}}^{2}\left(y^{\prime}\right) \cap N_{H^{\prime}}^{1}(\bar{y})$ and hence $x_{1} y^{\prime}$ is reached from $x^{\prime} y^{\prime}$ by a $\bar{y}$-switch in $H^{\prime}$. This contradicts that $x_{1} \notin S$. Then $x_{1} y^{\prime}$ is a 1 -edge of $H^{\prime}$. Finally, Claim 19 shows that $x_{1} y^{\prime}$ is also a 1 -edge of $H$.

Claim 26 Let $F_{1}^{\prime}, F_{2}^{\prime}$ be realizations of $d_{1}, d_{2}$, respectively. Then for distinct $i, j$ in $\{1,2\}, S_{i}$ and $\overline{T_{j}}$ (resp. $\overline{S_{j}}$ and $T_{i}$ ) are completely connected with $i-$ edges and not connecting with $j$-edges of $H^{\prime}=\left(X, Y, F_{1}^{\prime}+F_{2}^{\prime}\right)$.

PROOF. By Claim 25, $F_{i}\left(S_{i}, \overline{T_{j}}\right)=E\left(S_{i}, \overline{T_{j}}\right)$ and $F_{i}\left(\overline{S_{i}}, T_{j}\right)=\emptyset$. Then Lemma 2 implies that $F_{i}^{\prime}\left(S_{i}, \overline{T_{j}}\right)=E\left(S_{i}, \overline{T_{j}}\right)$ and $F_{i}^{\prime}\left(\overline{S_{i}}, T_{j}\right)=\emptyset$. The other part is analogous.

Claim 27 Let $F_{1}^{\prime}, F_{2}^{\prime}$ be realizations of $d_{1}, d_{2}$, respectively. Then the total number of edges in $H^{\prime}=\left(X, Y, F_{1}^{\prime}+F_{2}^{\prime}\right)$ between $S$ and $T_{0}$ is less than $|S|$.


Fig. 3. The edges of $F_{1}$ and $F_{2}$ connecting the different subsets of $X$ and $Y$. A continuous line (resp. a dashed line) between two sets means that all the edges connecting them are 1 -edges of $H$ (resp. 2 -edges). Note that all the edges connecting $S_{1}$ and $\overline{T_{2}}=T \cup T_{0} \cup T_{1}$ are 1-edges and there is no 1-edge connecting $\overline{S_{1}}=S \cup S_{0} \cup S_{2}$ and $T_{2}$ (all of them are 2-edges of $H$ ).
PROOF. It is clear that $\left|F_{i}^{\prime}\left(S, T_{0}\right)\right| \leqslant d_{i}\left(T_{0}\right)-\left|F_{i}^{\prime}\left(S_{1} \cup S_{2}, T_{0}\right)\right|$, for $i=1,2$. By Claim 26, $\left|F_{i}^{\prime}\left(S_{1} \cup S_{2}, T_{0}\right)\right|=\left|S_{i}\right|\left|T_{0}\right|$ and hence $\left|F_{i}^{\prime}\left(S, T_{0}\right)\right| \leqslant d_{i}\left(T_{0}\right)-\left|S_{i}\right|\left|T_{0}\right|$. By the degree property, $d_{1}\left(\bar{y}^{\prime}\right)+d_{2}\left(\bar{y}^{\prime}\right)=\min \left(d_{1}+d_{2}\right)_{\mid Y}=|X|-\left|S_{0}\right|-1$ for each $\bar{y}^{\prime} \in T_{0}$. Then

$$
\begin{aligned}
\left|F_{1}^{\prime}\left(S, T_{0}\right)\right|+\left|F_{2}^{\prime}\left(S, T_{0}\right)\right| & \leqslant d_{1}\left(T_{0}\right)+d_{2}\left(T_{0}\right)-\left|S_{1}\right|\left|T_{0}\right|-\left|S_{2}\right|\left|T_{0}\right| \\
& =\left(|X|-\left|S_{0}\right|-\left|S_{1}\right|-\left|S_{2}\right|-1\right)\left|T_{0}\right| \\
& =(|S|-1)\left|T_{0}\right|
\end{aligned}
$$

Thus, it is sufficient to show that $(|S|-1)\left|T_{0}\right|<|S|$. But this is straightforward since $|S|=1$ or $\left|T_{0}\right|=1$ by Claim 23 .

We are now ready to prove that $S$ and $T$ violate the saturation condition. Let $F_{1}^{\prime}$ and $F_{2}^{\prime}$ be realizations of $d_{1}$ and $d_{2}$, respectively. Note that by Claim $26,\left|F_{i}^{\prime}\left(S, T_{1} \cup T_{2}\right)\right|=|S|\left|T_{i}\right|$. Then $\left|F_{i}^{\prime}(S, T)\right|=d_{i}(S)-\left|F_{i}^{\prime}\left(S, T_{1} \cup T_{2}\right)\right|-$ $\left|F_{i}^{\prime}\left(S, T_{0}\right)\right|=d_{i}(S)-|S|\left|T_{i}\right|-\left|F_{i}^{\prime}\left(S, T_{0}\right)\right|$. Furthermore, $d_{1}\left(x^{\prime}\right)+d_{2}\left(x^{\prime}\right)=|Y|-$ $\left|T_{0}\right|+1$ for each $x^{\prime} \in S$. Then

$$
\begin{aligned}
\left|F_{1}^{\prime}(S, T)\right|+\left|F_{2}^{\prime}(S, T)\right| & =d_{1}(S)+d_{2}(S)-|S|\left|T_{1}\right|-|S|\left|T_{2}\right|-\left|F_{1}\left(S, T_{0}\right)\right|-\left|F_{2}\left(S, T_{0}\right)\right| \\
& =|S|\left(|Y|-\left|T_{0}\right|+1\right)-|S|\left|T_{1}\right|-|S|\left|T_{2}\right|-\left|F_{1}\left(S, T_{0}\right)\right|-\left|F_{2}\left(S, T_{0}\right)\right| \\
& >|S|\left(|Y|-\left|T_{0}\right|-\left|T_{1}\right|-\left|T_{2}\right|+1\right)-|S| \\
& =|S||T|,
\end{aligned}
$$

where the inequality follows from Claim 27. Since this holds for each realization of $d_{1}$ and $d_{2}$ we conclude that $m_{d_{1}}(S, T)+m_{d_{2}}(S, T)>|S||T|$.

We remark that the proof of Theorem 7 yields an algorithm which starts with two realizations of $d_{1}, d_{2}$, respectively, and either finds in polynomial time two realizations with smaller intersection or finds two sets $S \subset X, T \subset Y$ which violate the saturation condition.

## References

[1] J. Bang-Jensen and G. Gutin. Digraphs. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, 2001. Theory, algorithms and applications.
[2] R. A. Brualdi. Matrices of zeros and ones with fixed row and column sum vectors. Linear Algebra Appl., 33:159-231, 1980.
[3] Y. C. Chen. A short proof of Kundu's $k$-factor theorem. Discrete Math., 71(2):177-179, 1988.
[4] Y. C. Chen and A. Shastri. On joint realization of $(0,1)$ matrices. Linear Algebra Appl., 112:75-85, 1989.
[5] M. Chrobak and C. Dürr. Reconstructing polyatomic structures from discrete X-rays: NP-completeness proof for three atoms. Theoret. Comput. Sci., 259(1-2):81-98, 2001.
[6] M.-C. Costa, D. de Werra, and C. Picouleau. Using graphs for some discrete tomography problems. Discrete Appl. Math., 154(1):35-46, 2006.
[7] M. C. Costa, D. de Werra, C. Picouleau, and D. Schindl. A solvable case of image reconstruction in discrete tomography. Discrete Appl. Math., 148(3):240245, 2005.
[8] D. Gale. A theorem on flows in networks. Pacific J. Math., 7:1073-1082, 1957.
[9] R. J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational complexity of determining polyatomic structures by X-rays. Theoret. Comput. Sci., 233(1-2):91-106, 2000.
[10] G. T. Herman and A. Kuba, editors. Discrete tomography. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA, 1999. Foundations, algorithms, and applications.
[11] D. J. Kleitman and D. L. Wang. Algorithms for constructing graphs and digraphs with given valences and factors. Discrete Math., 6:79-88, 1973.
[12] S. Kundu. The $k$-factor conjecture is true. Discrete Math., 6:367-376, 1973.
[13] L. Lovász. Valencies of graphs with 1-factors. Period. Math. Hungar., 5:149151, 1974.
[14] O. Ore. Studies on directed graphs. I. Ann. of Math. (2), 63:383-406, 1956.
[15] A. R. Rao and S. B. Rao. On factorable degree sequences. J. Combinatorial Theory Ser. B, 13:185-191, 1972.
[16] H. J. Ryser. Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 9:371-377, 1957.


[^0]:    * Corresponding author.
    ${ }^{1}$ This work was partially supported by CONICYT through grants Anillo en Redes ACT08, Grant "Beca de Doctorado Conicyt", Fondap and BASAL-CMM.
    ${ }^{2}$ Research supported by the french ANR-project "Graph decompositions and algorithms (GRAAL)"

