Covering a Strong Digraph by $\alpha-1$ Disjoint Paths. A proof of Las Vergnas' Conjecture.

Stéphan Thomassé
Laboratoire LaPCS, UFR de Mathématiques, Université Claude Bernard 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
email : thomasse@jonas.univ-lyon1.fr

Abstract

The Gallai-Milgram theorem states that every directed graph D is spanned by $\alpha(D)$ disjoint directed paths, where $\alpha(D)$ is the size of a largest stable set of D. When $\alpha(D)>1$ and D is strongly connected, it has been conjectured by Las Vergnas (cited in [1] and [2]) that D is spanned by an arborescence with $\alpha(D)-1$ leaves. The case $\alpha=2$ follows from a result of Chen and Manalastas [5] (see also Bondy [3]). We give a proof of this conjecture in the general case.

In this paper, loops, cycles of length two and multiple arcs are allowed. We denote by $\alpha(D)$ the stability number (or independence number) of D, that is, the cardinality of a largest stable set of D. A k-path partition \mathcal{P} of a digraph D is a partition of the vertex set of D into k directed paths. A functional digraph is a digraph in which every vertex has indegree one. An arborescence is a connected digraph in which every vertex has indegree one except the root, which has indegree zero. The vertices of an arborescence (or a functional digraph) with outdegree zero are the leaves. An arborescence forest F is a disjoint union of arborescences. We denote by $R(F)$ the set of roots of the arborescences of F, and by $L(F)$ the set of its leaves. A strong component of D is a maximal strongly connected subgraph of D. A strong component C of D is maximal (resp. minimal) if no vertex of C has an out-neighbour (resp. in-neighbour) in $D \backslash C$.

Theorem 1 (Las Vergnas [7], see also Berge [1]) Let D be a digraph, m_{1}, \ldots, m_{l} the minimal strong components of D and x_{1}, \ldots, x_{l} vertices of m_{1}, \ldots, m_{l}, respectively. There exists a spanning arborescence forest F of D with $R(F)=\left\{x_{1}, \ldots, x_{l}\right\}$ and $|L(F)| \leq \alpha(D)$.

Proof. First observe that there exists a spanning arborescence forest F of D with $R(F)=\left\{x_{1}, \ldots, x_{l}\right\}$. Now let us prove that if a spanning arborescence forest F of D with $R(F)=\left\{x_{1}, \ldots, x_{l}\right\}$ has more than $\alpha(D)$ leaves, there exists a spanning arborescence forest F^{\prime} of D with $R\left(F^{\prime}\right)=\left\{x_{1}, \ldots, x_{l}\right\},\left|L\left(F^{\prime}\right)\right|=$ $|L(F)|-1$ and $L\left(F^{\prime}\right) \subset L(F)$. Such a forest F^{\prime} is a reduction of F. This statement is easily proved by induction on D : Since $|L(F)|>\alpha(D)$, there exist two leaves x, y of F such that $x y \in E(D)$. Apply a reduction to $D \backslash y$ and $F \backslash y$, and add y to this reduction in order to conclude. To prove Theorem 1, apply successive reductions to a spanning arborescence forest F of D with $R(F)=\left\{x_{1}, \ldots, x_{l}\right\}$.

Corollary 1.1 (Gallai and Milgram [6]) Every digraph D admits an $\alpha(D)$-path partition.
We now prove that every strong digraph with stability number $\alpha>1$ is spanned by an arborescence with $\alpha-1$ leaves. This answers a question of Las Vergnas (cited in [1] and [2]) and extends a result of

Chen and Manalastas [5] asserting that every strongly connected digraph with stability number two has a hamiltonian path.

Theorem 2 Every strong digraph D is spanned by a connected functional digraph with at most $\alpha(D)-1$ leaves.

Proof. A disconnecting path of D is a path Q such that $D \backslash Q$ is not strongly connected. We first prove that either such a path exists or we easily conclude. Consider for this a longest path $Q=u_{1}, \ldots, u_{j}$ of D. If $D \backslash Q$ is not empty, since there is no arc from u_{j} to $D \backslash Q$, the path u_{1}, \ldots, u_{j-1} is certainly a disconnecting path. If $D \backslash Q$ is empty and $u_{j} u_{1} \notin E(D)$, the path u_{2}, \ldots, u_{j-1} is again a disconnecting path. At last, if $D \backslash Q$ is empty and $u_{j} u_{1} \in E(D)$, the digraph D has a hamiltonian circuit and we have our conclusion. A good path of D is a disconnecting path $P=v_{1}, \ldots, v_{k}$ with the following properties: v_{1} has an in-neighbour f in a maximal strong component M of $D^{\prime}=D \backslash P$ and v_{k} has an out-neighbour in a minimal strong component $m \neq M$ of D^{\prime}. It is routine to check that a shortest disconnecting path is a good path (indeed, in this case, v_{1} has an in-neighbour in every maximal strong component and v_{k} has an out-neighbour in every minimal strong component). Now, let $P=v_{1}, \ldots, v_{k}$ be a longest good path of D. Adopting the above notation, we claim that $M=\{f\}$, since if not the path $P=f, v_{1}, \ldots, v_{k}$, together with a maximal component M^{\prime} of $M \backslash f$ would be a good path of D. Let $\left\{m=m_{1}, \ldots, m_{l}\right\}$ be the minimal strong components of D. Let x_{i} be a vertex of m_{i} which has an in-neighbour y_{i} on P, $1 \leq i \leq l$, where $y_{1}=v_{k}$. We apply Theorem 1 in order to span $D^{\prime}=D \backslash P$ by an arborescence forest F^{\prime} with $R\left(F^{\prime}\right)=\left\{x_{1}, \ldots, x_{l}\right\}$ and $\left|L\left(F^{\prime}\right)\right| \leq \alpha\left(D^{\prime}\right) \leq \alpha(D)$. Note that f is a leaf of this forest. The spanning subgraph of D with edge set $E\left(F^{\prime}\right) \cup\left\{y_{1} x_{1}, \ldots, y_{l} x_{l}\right\} \cup\left\{f v_{1}\right\} \cup E(P)$ is the functional digraph we are looking for.
Corollary 2.1 Every strong digraph D with $\alpha(D)>1$ is spanned by an arborescence with at most $\alpha(D)-1$ leaves.

Corollary 2.2 Every strong digraph D with $\alpha(D)>1$ has an $(\alpha(D)-1)$-path partition.
Remark 1 The case $\alpha(D)=1$ of Theorem 2 is Camion's Theorem [4]: every strong tournament has a directed hamiltonian cycle.

I gratefully thank J.A. Bondy for helpful discussions during the preparation of this paper.

References

[1] C. Berge, Path partitions in directed graphs, Ann. Discrete Math., 17 (1983), 59-63.
[2] J.A. Bondy, Basic graph theory: paths and circuits, Handbook of Combinatorics, Vol. 1, 2, 3-110, Elsevier, Amsterdam, 1995.
[3] J.A. Bondy, A short proof of the Chen-Manalastas theorem, Discrete Math., 146 (1995), 289-292.
[4] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci., 249 (1959), 2151-2152.
[5] C.C. Chen and P. Manalastas, Every finite strongly connected digraph of stability 2 has a Hamiltonian path, Discrete Math., 44 (1983), 243-250.
[6] T. Gallai and A.N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged), 21 (1960), 181-186.
[7] M. Las Vergnas, Sur les arborescences dans un graphe orienté, Discrete Math., 15 (1976), 27-29.

