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Abstract

The Gallai-Milgram theorem states that every directed graph D is spanned by α(D) disjoint
directed paths, where α(D) is the size of a largest stable set of D. When α(D) > 1 and D is strongly
connected, it has been conjectured by Las Vergnas (cited in [1] and [2]) that D is spanned by an
arborescence with α(D)− 1 leaves. The case α = 2 follows from a result of Chen and Manalastas [5]
(see also Bondy [3]). We give a proof of this conjecture in the general case.

In this paper, loops, cycles of length two and multiple arcs are allowed. We denote by α(D) the
stability number (or independence number) of D, that is, the cardinality of a largest stable set of D. A
k-path partition P of a digraph D is a partition of the vertex set of D into k directed paths. A functional
digraph is a digraph in which every vertex has indegree one. An arborescence is a connected digraph
in which every vertex has indegree one except the root, which has indegree zero. The vertices of an
arborescence (or a functional digraph) with outdegree zero are the leaves. An arborescence forest F is a
disjoint union of arborescences. We denote by R(F ) the set of roots of the arborescences of F , and by
L(F ) the set of its leaves. A strong component of D is a maximal strongly connected subgraph of D.
A strong component C of D is maximal (resp. minimal) if no vertex of C has an out-neighbour (resp.
in-neighbour) in D \ C.

Theorem 1 (Las Vergnas [7], see also Berge [1]) Let D be a digraph, m1, . . . ,ml the minimal strong
components of D and x1, . . . , xl vertices of m1, . . . ,ml, respectively. There exists a spanning arborescence
forest F of D with R(F ) = {x1, . . . , xl} and |L(F )| ≤ α(D).

Proof. First observe that there exists a spanning arborescence forest F of D with R(F ) = {x1, . . . , xl}.
Now let us prove that if a spanning arborescence forest F of D with R(F ) = {x1, . . . , xl} has more than
α(D) leaves, there exists a spanning arborescence forest F ′ of D with R(F ′) = {x1, . . . , xl}, |L(F ′)| =
|L(F )| − 1 and L(F ′) ⊂ L(F ). Such a forest F ′ is a reduction of F . This statement is easily proved by
induction on D: Since |L(F )| > α(D), there exist two leaves x, y of F such that xy ∈ E(D). Apply a
reduction to D \ y and F \ y, and add y to this reduction in order to conclude. To prove Theorem 1,
apply successive reductions to a spanning arborescence forest F of D with R(F ) = {x1, . . . , xl}. �

Corollary 1.1 (Gallai and Milgram [6]) Every digraph D admits an α(D)-path partition.

We now prove that every strong digraph with stability number α > 1 is spanned by an arborescence
with α − 1 leaves. This answers a question of Las Vergnas (cited in [1] and [2]) and extends a result of
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Chen and Manalastas [5] asserting that every strongly connected digraph with stability number two has
a hamiltonian path.

Theorem 2 Every strong digraph D is spanned by a connected functional digraph with at most α(D)−1
leaves.

Proof. A disconnecting path of D is a path Q such that D \Q is not strongly connected. We first prove
that either such a path exists or we easily conclude. Consider for this a longest path Q = u1, . . . , uj of
D. If D \ Q is not empty, since there is no arc from uj to D \ Q, the path u1, . . . , uj−1 is certainly a
disconnecting path. If D \Q is empty and uju1 /∈ E(D), the path u2, . . . , uj−1 is again a disconnecting
path. At last, if D \Q is empty and uju1 ∈ E(D), the digraph D has a hamiltonian circuit and we have
our conclusion. A good path of D is a disconnecting path P = v1, . . . , vk with the following properties:
v1 has an in-neighbour f in a maximal strong component M of D′ = D \P and vk has an out-neighbour
in a minimal strong component m 6= M of D′. It is routine to check that a shortest disconnecting path
is a good path (indeed, in this case, v1 has an in-neighbour in every maximal strong component and vk

has an out-neighbour in every minimal strong component). Now, let P = v1, . . . , vk be a longest good
path of D. Adopting the above notation, we claim that M = {f}, since if not the path P = f, v1, . . . , vk,
together with a maximal component M ′ of M \ f would be a good path of D. Let {m = m1, . . . ,ml}
be the minimal strong components of D. Let xi be a vertex of mi which has an in-neighbour yi on P ,
1 ≤ i ≤ l, where y1 = vk. We apply Theorem 1 in order to span D′ = D \ P by an arborescence forest
F ′ with R(F ′) = {x1, . . . , xl} and |L(F ′)| ≤ α(D′) ≤ α(D). Note that f is a leaf of this forest. The
spanning subgraph of D with edge set E(F ′)∪ {y1x1, . . . , ylxl} ∪ {fv1} ∪E(P ) is the functional digraph
we are looking for. �

Corollary 2.1 Every strong digraph D with α(D) > 1 is spanned by an arborescence with at most
α(D)− 1 leaves.

Corollary 2.2 Every strong digraph D with α(D) > 1 has an (α(D)− 1)-path partition.

Remark 1 The case α(D) = 1 of Theorem 2 is Camion’s Theorem [4]: every strong tournament has a
directed hamiltonian cycle.
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