Covering a Strong Digraph by $\alpha - 1$ Disjoint Paths. A proof of Las Vergnas' Conjecture.

Stéphan Thomassé

Laboratoire LaPCS, UFR de Mathématiques, Université Claude Bernard 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France email : thomasse@jonas.univ-lyon1.fr

Abstract

The Gallai-Milgram theorem states that every directed graph D is spanned by $\alpha(D)$ disjoint directed paths, where $\alpha(D)$ is the size of a largest stable set of D. When $\alpha(D) > 1$ and D is strongly connected, it has been conjectured by Las Vergnas (cited in [1] and [2]) that D is spanned by an arborescence with $\alpha(D) - 1$ leaves. The case $\alpha = 2$ follows from a result of Chen and Manalastas [5] (see also Bondy [3]). We give a proof of this conjecture in the general case.

In this paper, loops, cycles of length two and multiple arcs are allowed. We denote by $\alpha(D)$ the stability number (or independence number) of D, that is, the cardinality of a largest stable set of D. A *k*-path partition \mathcal{P} of a digraph D is a partition of the vertex set of D into k directed paths. A functional digraph is a digraph in which every vertex has indegree one. An arborescence is a connected digraph in which every vertex has indegree one except the root, which has indegree zero. The vertices of an arborescence (or a functional digraph) with outdegree zero are the leaves. An arborescence forest F is a disjoint union of arborescences. We denote by R(F) the set of roots of the arborescences of F, and by L(F) the set of its leaves. A strong component of D is a maximal strongly connected subgraph of D. A strong component C of D is maximal (resp. minimal) if no vertex of C has an out-neighbour (resp. in-neighbour) in $D \setminus C$.

Theorem 1 (Las Vergnas [7], see also Berge [1]) Let D be a digraph, m_1, \ldots, m_l the minimal strong components of D and x_1, \ldots, x_l vertices of m_1, \ldots, m_l , respectively. There exists a spanning arborescence forest F of D with $R(F) = \{x_1, \ldots, x_l\}$ and $|L(F)| \leq \alpha(D)$.

Proof. First observe that there exists a spanning arborescence forest F of D with $R(F) = \{x_1, \ldots, x_l\}$. Now let us prove that if a spanning arborescence forest F of D with $R(F) = \{x_1, \ldots, x_l\}$ has more than $\alpha(D)$ leaves, there exists a spanning arborescence forest F' of D with $R(F') = \{x_1, \ldots, x_l\}$, |L(F')| = |L(F)| - 1 and $L(F') \subset L(F)$. Such a forest F' is a *reduction* of F. This statement is easily proved by induction on D: Since $|L(F)| > \alpha(D)$, there exist two leaves x, y of F such that $xy \in E(D)$. Apply a reduction to $D \setminus y$ and $F \setminus y$, and add y to this reduction in order to conclude. To prove Theorem 1, apply successive reductions to a spanning arborescence forest F of D with $R(F) = \{x_1, \ldots, x_l\}$. \Box

Corollary 1.1 (Gallai and Milgram [6]) Every digraph D admits an $\alpha(D)$ -path partition.

We now prove that every strong digraph with stability number $\alpha > 1$ is spanned by an arborescence with $\alpha - 1$ leaves. This answers a question of Las Vergnas (cited in [1] and [2]) and extends a result of Chen and Manalastas [5] asserting that every strongly connected digraph with stability number two has a hamiltonian path.

Theorem 2 Every strong digraph D is spanned by a connected functional digraph with at most $\alpha(D) - 1$ leaves.

Proof. A disconnecting path of D is a path Q such that $D \setminus Q$ is not strongly connected. We first prove that either such a path exists or we easily conclude. Consider for this a longest path $Q = u_1, \ldots, u_i$ of D. If $D \setminus Q$ is not empty, since there is no arc from u_j to $D \setminus Q$, the path u_1, \ldots, u_{j-1} is certainly a disconnecting path. If $D \setminus Q$ is empty and $u_j u_1 \notin E(D)$, the path u_2, \ldots, u_{j-1} is again a disconnecting path. At last, if $D \setminus Q$ is empty and $u_j u_1 \in E(D)$, the digraph D has a hamiltonian circuit and we have our conclusion. A good path of D is a disconnecting path $P = v_1, \ldots, v_k$ with the following properties: v_1 has an in-neighbour f in a maximal strong component M of $D' = D \setminus P$ and v_k has an out-neighbour in a minimal strong component $m \neq M$ of D'. It is routine to check that a shortest disconnecting path is a good path (indeed, in this case, v_1 has an in-neighbour in every maximal strong component and v_k has an out-neighbour in every minimal strong component). Now, let $P = v_1, \ldots, v_k$ be a longest good path of D. Adopting the above notation, we claim that $M = \{f\}$, since if not the path $P = f, v_1, \ldots, v_k$, together with a maximal component M' of $M \setminus f$ would be a good path of D. Let $\{m = m_1, \ldots, m_l\}$ be the minimal strong components of D. Let x_i be a vertex of m_i which has an in-neighbour y_i on P, $1 \leq i \leq l$, where $y_1 = v_k$. We apply Theorem 1 in order to span $D' = D \setminus P$ by an arborescence forest F' with $R(F') = \{x_1, \ldots, x_l\}$ and $|L(F')| \leq \alpha(D') \leq \alpha(D)$. Note that f is a leaf of this forest. The spanning subgraph of D with edge set $E(F') \cup \{y_1x_1, \ldots, y_lx_l\} \cup \{fv_1\} \cup E(P)$ is the functional digraph we are looking for. \Box

Corollary 2.1 Every strong digraph D with $\alpha(D) > 1$ is spanned by an arborescence with at most $\alpha(D) - 1$ leaves.

Corollary 2.2 Every strong digraph D with $\alpha(D) > 1$ has an $(\alpha(D) - 1)$ -path partition.

Remark 1 The case $\alpha(D) = 1$ of Theorem 2 is Camion's Theorem [4]: every strong tournament has a directed hamiltonian cycle.

I gratefully thank J.A. Bondy for helpful discussions during the preparation of this paper.

References

- [1] C. Berge, Path partitions in directed graphs, Ann. Discrete Math., 17 (1983), 59–63.
- [2] J.A. Bondy, Basic graph theory: paths and circuits, Handbook of Combinatorics, Vol. 1, 2, 3–110, Elsevier, Amsterdam, 1995.
- [3] J.A. Bondy, A short proof of the Chen-Manalastas theorem, *Discrete Math.*, **146** (1995), 289–292.
- [4] P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci., 249 (1959), 2151–2152.
- [5] C.C. Chen and P. Manalastas, Every finite strongly connected digraph of stability 2 has a Hamiltonian path, *Discrete Math.*, 44 (1983), 243–250.
- [6] T. Gallai and A.N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged), 21 (1960), 181–186.
- [7] M. Las Vergnas, Sur les arborescences dans un graphe orienté, Discrete Math., 15 (1976), 27–29.