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Abstract

We give a short constructive proof of a theorem of Fisher: every tournament
contains a vertex whose second outneighbourhood is as large as its first outneigh-
bourhood. Moreover, we exhibit two such vertices provided that the tournament
has no dominated vertex. The proof makes use of median orders. A second appli-
cation of median orders is that every tournament of order 2n − 2 contains every
arborescence of order n > 1. This is a particular case of Sumner’s conjecture: every
tournament of order 2n− 2 contains every oriented tree of order n > 1. Using our
method, we prove that every tournament of order (7n−5)/2 contains every oriented
tree of order n.

A median order of a tournament T is a linear extension of an acyclic subdigraph of T ,
maximal with respect to its number of arcs. This concept arises naturally in voting theory,
and many articles deal with the computation of such orders. Determining a median order
of a digraph is NP-hard, and the complexity for tournaments is still unknown (see [1]).
Surprisingly, the notion of median order, well-studied for its own sake, has been seldom
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used as a tool in tournament theory. It appears that median orders provide a very powerful
inductive method. In this paper, we apply them to two questions. The first one is finding
a vertex whose first neighbourhood is no greater than its second neighbourhood. This
was known as Dean’s conjecture [2] until Fisher [3] proved it. We give, in Theorem 1,
a short constructive proof of this fact. Actually, our method affords a slight extension
(Theorem 2): if a tournament has no dominated vertex, there exist two vertices which
satisfy Dean’s property. The second question is Sumner’s conjecture (see [8]), posed
around 1972, asserting that for n > 1, every tournament of order 2n − 2 contains every
oriented tree of order n. In 1982, Wormald [8] proved that, for n ≥ 4, every tournament
of order n log2(2n/e) contains every oriented n-tree. A year later, Reid and Wormald [7]
showed that every near-regular (2n − 2)-tournament contains every oriented n-tree. In
addition, they proved that every orientation of a caterpillar of order n and diameter at
most 4 is contained in every (2n − 2)-tournament. The first linear bound was given
by Häggkvist and Thomason [5] in 1991. They obtained 12n in place of 2n − 2, and
determined an asymptotic bound of (4 + o(1))n. Their method, based on the notion of
k-heart of a tree, was later used by Havet [6] to reduce the bound to 7.6n. By means of
median orders, we prove in Theorem 3 that Sumner’s conjecture holds for arborescences
(trees oriented from a root); also, by the same short argument, that the bound of 4n− 6
holds for all trees (Theorem 4). In the last section of this paper, we show in Theorem 5
that this bound can be improved to (7n− 5)/2. But the calculation is more involved and
the argument no longer simple.

1 The feedback property.

In this paper, digraphs are understood to be orientations of finite simple graphs, that
is, loopless and without multiple arcs or circuits of length two. Let D = (V, E) be a
digraph with vertex set V and arc set E. The induced restriction of D to a subset S of
V is denoted by D|S. Let v be a vertex of D. The outneighbourhood of v in D is the set
N+

D (v) = {x ∈ V (D) : v → x} and the second outneighbourhood of v in D is the set
N++

D (v) = (∪x∈N+
D(v)N

+
D (x)) \ N+

D (v). The outdegree of v is the number of elements of

N+
D (v); we denote it by d+

D(v). The dual notions of indegree, inneighbourhood and second
inneighbourhood are denoted by d−D(v), N−

D (v) and N−−
D (v), respectively. Since we always

deal with a tournament T , the notations N+(v), d+(v), . . . refer to N+
T (v), d+

T (v), . . . A
vertex v of T is dominating (resp. dominated) if d−(v) = 0 (resp. d+(v) = 0). Let
T = (V, E) be a finite tournament. An order of T is a total order L = (V, E ′) of the
vertices of T . We shall often regard the order L as an enumeration (x1, . . . , xn) of the
vertices of T , or as a tournament on V with arc set E ′ = {xi → xj : i < j}. The
pair (T, L) always denotes a tournament T together with an order L of T . We denote by
T ∩ L the acyclic directed graph (V, E ∩ E ′). The interval [xi, xj], for i ≤ j, of (T, L) is
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the subset of vertices {xi, xi+1, . . . , xj}. An order L of T which maximizes the number of
arcs of T ∩ L is a median order of T . Note that every median order L of T satisfies the
feedback property : for every i, j such that 1 ≤ i ≤ j ≤ n, both the outdegree of xi and
the indegree of xj in (T ∩ L)|[xi,xj ] are at least (j − i)/2; that is:

d+
T|[xi,xj ]

(xi) ≥ d−T|[xi,xj ]
(xi) and d−T|[xi,xj ]

(xj) ≥ d+
T|[xi,xj ]

(xj).

Indeed, assume for instance that this property does not hold for xi. Then inserting xi

just after xj would increase the number of arcs of T ∩ L. A local median order of T is
an order of T which satisfies the feedback property. Note that, by the feedback property,
x1, . . . , xn is a Hamiltonian path whenever L = (x1, . . . , xn) is a local median order of T .
Let T be a tournament of order n. A vertex v of T is a feed vertex (resp. a back vertex) if
there exists a local median order L of T such that v is maximal in L (resp. minimal in L).
We recall that a vertex x in a tournament T is a king if {x} ∪N+(x) ∪N++(x) = V (T ).

There is obviously a significant difference between median orders and local median
orders since one can construct easily a local median order of a given tournament of order
n (in time O(n4), for instance, by means of a greedy algorithm), whereas finding a median
order is NP -hard. The crucial property of (local) median orders is the following: if I is
an interval of a (local) median order L of T , then L|I is a (local) median order of T|I . This
easy observation provides a very powerful inductive tool, as we shall see in the following
sections. In order to introduce the notion of local median orders, we use it to prove the
following classical (easy) result:

Proposition 1 Every tournament has a king. Moreover, a tournament with no domi-
nating vertex has at least three kings.

Proof. We prove first that every back vertex of a tournament T is a king. Let x1 be
a back vertex of T and L = (x1, . . . , xn) be a local median order of T . Now pick any
vertex xi. By the feedback property, both the outdegree of x1 and the indegree of xi in
(T ∩ L)|[x1,xi] are at least (i − 1)/2. So, either x1 dominates xi, or there is 1 < k < i for
which x1 dominates xk, which in turn dominates xi. Thus, x1 is a king of T . Now suppose
that T has no dominating vertex, let xi be the inneighbour of x1 which is minimal with
respect to its index in L and let xj be the inneighbour of xi which is minimal with respect
to its index in L. We claim that both xi and xj are kings of T . First, observe that xj

belongs to [x1, xi]. Now, xi is a back vertex, hence a king, of T|[xi,xn], and, via x1, is also
a king of T|[x1,xi]. Moreover, xj is a back vertex, hence a king, of T|[xj ,xn], and, via xi, is
at distance at most two from the vertices of [x1, xj−1]. �
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2 Median orders and second neighbourhoods.

One of the (apparently) simplest open questions concerning digraphs is Seymour’s second
neighbourhood conjecture, asserting that one can always find, in a finite digraph D =
(V, E), a vertex x such that |N+

D (x)| ≤ |N++
D (x)| (to avoid this notation, we will say that x

has a large second neighbourhood in D). Very surprisingly, this question remained unsolved
even for tournaments (it was known as Dean’s conjecture [2]) until Fisher [3] proved
the existence of such a vertex as follows: Fisher and Ryan [4] exhibited a probability
distribution p on V such that p(N+(v)) is greater than or equal to p(N−(v)) for every
vertex v. Subsequently, Fisher proved that, for tournaments, this probability also satisfies
p(N−(v)) ≤ p(N−−(v)) for all vertices v. Thus, by an averaging argument and a sum
inversion, at least one vertex x has a large second neighbourhood. In Theorem 1, we
give an explicit construction of such a vertex x. We first need some definitions. Let
L = (x1, . . . , xn) be a local median order of a tournament T . We distinguish two types of
vertices of N−(xn): a vertex xj ∈ N−(xn) is good if there exists xi ∈ N+(xn), with i < j,
such that xi → xj; otherwise xj is bad. We denote the set of good vertices of (T, L) by
GL.

Theorem 1 Every feed vertex of a tournament has a large second neighbourhood.

Proof. We prove here a stronger result. Let L = (x1, . . . , xn) be a local median order
of a tournament T . We prove by induction on n that xn satisfies |N+(xn)| ≤ |GL|.
The case n = 1 holds vacuously. Assume now that n is greater than one. If there is
no bad vertex, we have GL = N−(xn). Moreover the feedback property ensures that
|N+(xn)| ≤ |N−(xn)|, so the conclusion holds. Now we assume that there exists a bad
vertex xi, and we choose it minimal with respect to its index i. Denote by Gu

L the set
GL∩ [xi+1, xn], by Gd

L the set GL∩ [x1, xi], by N+(xn)u the set N+(xn)∩ [xi+1, xn] and by
N+(xn)d the set N+(xn) ∩ [x1, xi]. Applying the induction hypothesis to the restriction
of (T, L) to [xi+1, xn] gives directly that |Gu

L| ≥ |N+(xn)u|, since every good vertex of this
restriction is, a fortiori, a good vertex of (T, L). By the minimality of the index of xi,
every vertex of [x1, xi−1] is either in Gd

L or in N+(xn)d. Moreover, since xi is bad, we have
N+(xn)d ⊆ N+(xi) ∩ [x1, xi] and (equivalently), Gd

L ⊇ N−(xi) ∩ [x1, xi]. The feedback
property applied to [x1, xi] gives:

|Gd
L| ≥ |N−(xi) ∩ [x1, xi]| ≥ |N+(xi) ∩ [x1, xi]| ≥ |N+(xn)d|. (1)

Thus |Gd
L| ≥ |N+(xn)d| and |Gu

L| ≥ |N+(xn)u|, so our induction hypothesis holds for
every non-negative integer n. �

A natural question is to seek another vertex with large second neighbourhood. Obvi-
ously, this is not always possible: consider for instance a regular tournament dominating
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a single vertex, or simply, a transitive tournament. In both cases, the sole vertex with
large second neighbourhood is the dominated vertex. We prove now that a tournament
always has two vertices with large second neighbourhood, provided that every vertex has
outdegree at least 1. The notion of local median orders turns out to be too weak for that
purpose, so we use median orders.

We introduce the notion of sedimentation of a median order L = (x1, . . . , xn) of T ,
denoted by Sed(L). We recall that, by the proof of Theorem 1, |N+(xn)| ≤ |GL|. If
|N+(xn)| < |GL|, then Sed(L) = L. If |N+(xn)| = |GL|, we denote by b1, ..., bk the bad
vertices of (T, L) and by v1, ..., vn−1−k the vertices of N+(xn) ∪ GL, both enumerated
in increasing order with respect to their index in L. In this case, Sed(L) is the order
(b1, . . . , bk, xn, v1, . . . , vn−1−k) of T .

Lemma 1 The order Sed(L) is a median order of T .

Proof. If Sed(L) = L, there is nothing to prove. Otherwise, we assume that |N+(xn)| =
|GL|. The proof is by induction on k, the number of bad vertices. If k = 0, all the vertices
are good or in N+(xn), in particular N−(xn) = GL. Thus, |N+(xn)| = |N−(xn)| and the
order Sed(L) = (xn, x1, . . . , xn−1) is a median order of T . (Note that this is not true for
local median orders.) Now, assume that k is a positive integer. Let i be the index of
the vertex b1 in L (that is b1 = xi). As before, denote by Gu

L the set GL ∩ [xi+1, xn], by
Gd

L the set GL ∩ [x1, xi], by N+(xn)u the set N+(xn) ∩ [xi+1, xn] and by N+(xn)d the set
N+(xn) ∩ [x1, xi]. By (1), |Gd

L| ≥ |N+(xn)d|. Since |Gu
L| ≥ |N+(xn)u| and |Gd

L| + |Gu
L| =

|N+(xn)d| + |N+(xn)u|, we have |Gu
L| = |N+(xn)u|, |Gd

L| = |N+(xn)d| and again by (1)
|N+(xi) ∩ [x1, xi]| = |N−(xi) ∩ [x1, xi]|; in particular L′ = (b1, x1, . . . , xi−1, xi+1, . . . , xn)
is a median order of T . Observe also that the bad vertices of (T, L′) are exactly the bad
vertices of (T, L). To conclude, apply the induction hypothesis to the restriction of (T, L)
to [x1, . . . , xi−1, xi+1, . . . , xn]. �

Define now inductively Sed0(L) = L and Sedq+1(L) = Sed(Sedq(L)). If the process
reaches a rank q such that Sedq(L) = (y1, . . . , yn) and |N+(yn)| < |GSedq(L)|, call the order
L stable. Otherwise, call L periodic.

Theorem 2 A tournament with no dominated vertex has at least two vertices with large
second neighbourhood.

Proof. Let L = (x1, . . . , xn) be a median order of T . By Theorem 1, xn has a large
second neighbourhood, so we need to find another vertex with this property. Consider
the restriction of (T, L) to the interval [x1, . . . , xn−1], and denote it by (T d, Ld). Suppose
first that Ld is stable, and consider an integer q for which Sedq(Ld) = (y1, . . . , yn−1)
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and |N+
T d(yn−1)| < |GSedq(Ld)|. Note that (y1, . . . , yn−1, xn) is a median order of T , and

consequently yn−1 → xn. Thus,

|N+(yn−1)| = |N+
T d(yn−1)|+ 1 ≤ |GSedq(Ld)| ≤ |N++(yn−1)|.

So yn−1 has a large second neighbourhood in T . Now assume that Ld is periodic. Since
T has no dominated vertex, xn has an outneighbour xj. Note that, for every integer q,
the feed vertex of Sedq(Ld) dominates xn. So xj is not the feed vertex of any Sedq(Ld).
Observe also that, since Ld is periodic, xj must be a bad vertex of some Sedq(Ld), oth-
erwise the index of xj would always increase during the sedimentation process. Now fix
this value of q. Let Sedq(Ld) = (y1, . . . , yn−1). We claim that yn−1 has a large second
neighbourhood in T : on the one hand we have

|N+(yn−1)| = |N+
T d(yn−1)|+ 1 = |GSedq(Ld)|+ 1

and on the other hand we have yn−1 → xn → xj, so the second neighbourhood of yn−1

has at least |GSedq(Ld)|+ 1 elements. �

It appears that the limitation of the use of median orders for the second neighbourhood
conjecture are roughly the same as those of Fisher’s proof. For instance, the following
statement can easily be proved using both approaches. Here, a quasi-transitive digraph
satisfies the property (x→ y and y → z)⇒(x→ z or z → x).

Lemma 2 Let D = (V, E) be a quasi-transitive digraph and p be a probability distribution
on V . There exists a vertex x of D such that p(N+

D (x)) ≤ p(N++
D (x)).

Proof. Consider an order L on D which maximizes the sum of the probabilities of the
arcs of D ∩ L (here the probability of an arc is the product of the probabilities of its two
endvertices). The maximal vertex of L is the vertex x we are looking for. �

However, the feedback method fails dramatically for digraphs in general, as one can
check in the following example: consider the circuit on four elements a→ b→ c→ d→ a,
and the probability distribution p(a) = 3/10, p(b) = 2/10, p(c) = 4/10 and p(d) = 1/10.
Here the (weighted) median order is (a, b, c, d), but, alas, d does not have a large second
neighbourhood.

3 Median orders and Sumner’s conjecture.

An oriented tree (or simply tree) is an orientation of an acyclic connected graph. An
arborescence is an oriented tree in which one vertex called the root has indegree zero and
the remaining vertices have indegree one. An outleaf (resp. inleaf) of a tree A is a vertex
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x such that d+
A(x) = 0 and d−A(x) = 1 (resp. d−A(x) = 0 and d+

A(x) = 1). Let A be a
tree, T a tournament and L a local median order of T . An embedding of A into T is an
injective mapping f : V (A)→ V (T ) such that f(x)→ f(y) whenever x→ y. A digraph
D is m-unavoidable if, for every tournament T of order m, there exists an embedding of
D into T .

Conjecture 1 (Sumner) Every tree of order n > 1 is (2n− 2)-unavoidable.

An embedding f of A into T is an L-embedding if, for every vertex x ∈ T , the following
two conditions hold:

|N+
L (x) ∩ f(A)| ≤ |N+

L (x) \ f(A)|+ 1

|N−
L (x) ∩ f(A)| ≤ |N−

L (x) \ f(A)|+ 1.

If f only satisfies the first inequality (resp. the second inequality), we speak of L-
up-embedding (resp. L-down-embedding). A tree is L-embeddable into T (resp. L-up-
embeddable into T ) if there exists an L-embedding of A into T (resp. L-up-embedding
of A into T ). A tree A is m-well-embeddable (resp. m-well-up-embeddable) if for every
tournament T of order m and every local median order L of T , A is L-embeddable (resp.
L-up-embeddable) into T .

Theorem 3 Every arborescence of order n > 1 is (2n− 2)-unavoidable.

Proof. We prove by induction on n the following stronger statement: every arborescence
A of order n > 1 is (2n − 2)-well-up-embeddable. This is true if A is an arc. If n > 2,
consider a tournament T on 2n− 2 vertices and L = (x1, . . . , x2n−2) a local median order
of T . Denote by (T ′, L′) the restriction of (T, L) to [x1, x2n−4]. Let x be an outleaf of
A, y the inneighbour of x and denote by A′ the arborescence A \ {x}. By the induction
hypothesis, there is an L′-up-embedding f of A′ into T ′. Denote by xi the vertex f(y).
We have

|N+
L (xi) ∩ f(A′)| = |N+

L′(xi) ∩ f(A′)| ≤ |N+
L′(xi) \ f(A′)|+ 1 = |N+

L (xi) \ f(A′)| − 1.

In particular, |N+
L (xi) ∩ f(A′)| < |N+

L (xi) \ f(A′)|. The feedback property applied to
the interval [xi, x2n−2] of L ensures that at least one vertex xj of N+

L (xi) \ f(A′) belongs
to N+(xi). Extend now f by letting f(x) = xj. It is routine to check that this extension
of f is an L-up-embedding of A into T (indeed, we add two new vertices to the top of L′

whereas f(A′) only increases by one vertex). �

Observe that, for arborescences, the same proof gives a little more than Sumner’s
conjecture: in every tournament of order 2n − 2, there is a particular vertex x and an
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acyclic subdigraph D for which every arborescence on n vertices is contained in D and
rooted at x. Consider for this any back vertex x of a local median order L and take
D = L ∩ T .

Theorem 4 Every tree of order n > 1 is (4n− 6)-unavoidable.

Proof. We prove, again by induction on n, that every tree A of order n > 1 is (4n− 6)-
well-embeddable. This is true when A is an arc. If n > 2, consider T a tournament on
4n − 6 vertices and L = (x1, . . . , x4n−6) a local median order of T . Denote by (T ′, L′)
the restriction of (T, L) to [x3, x4n−8]. Let x be an outleaf, if any, of A. Let y be the
inneighbour of x and denote by A′ the tree A \ {x}. By the induction hypothesis, there
is an L′-embedding f of A′ into T ′. Denote the vertex f(y) by xi. Note that |N+

L′(xi) ∩
f(A′)| ≤ |N+

L′(xi)\f(A′)|+1, and the vertices x4n−7, x4n−6 ensure that |N+
L (xi)∩f(A′)| <

|N+
L (xi) \ f(A′)|. The feedback property applied to the interval [xi, x4n−6] of L provides

at least one vertex xj in (N+
L (xi) \ f(A′)) ∩N+(xi). Now extend f by letting f(x) = xj.

It is routine to check that this extension of f is an L-embedding of A into T , indeed we
add two new vertices to both ends of L′. A similar argument works for an inleaf of A. �

Observe again that, given a tournament T of order 4n − 6, there exists an acyclic
digraph D of T and a particular vertex x of T such that for every tree A of order n with
a fixed vertex v, there is an embedding f of A into D such that f(v) = x. Unfortunately,
we do not see how the proof of Theorem 4 could naturally be improved to give the bound
2n− 2. Indeed, 4n is really a critical value for this problem, and it is easy to understand:
we have, a priori, no way to decide if a given vertex of T will be considered as an outleaf
or as an inleaf in the inductive construction of the tree A. So, to be sure that we will
complete the tree, we need to have available twice as many vertices as necessary. This is
also the reason why the asymptotic bound obtained by Häggkvist and Thomason was 4n.
However, this is by no means the end of the road. We prove in the following section that
the bound can be reduced to 7n/2. But this entails case analysis and counting arguments.

4 Beyond 4n, a bound in 7n/2.

To obtain a better bound, we need a construction of trees which is a little bit more
elaborate than just adding one leaf at a time. Indeed, the operations involved here use
paths of length 3. To describe this method, let us introduce some notation: let A be an
oriented tree and a1, . . . , ak an oriented path. When we write A∪a1, . . . , ak, it is implicitly
assumed that the sole vertex of intersection of A and a1, . . . , ak is a1, and hence that, the
resulting digraph is always a tree. Note that since the choice of a1 in A is free, the tree
is not unique.
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Lemma 3 If A is m-well-up-embeddable, then A ∪ a→ b is (m + 2)-well-up-embeddable.
If A is m-well-embeddable, then A ∪ a→ b is (m + 4)-well-embeddable.

The proof of Lemma 3 is contained in the proofs of Theorems 3 and 4.

Lemma 4 Let A′ be a tree of order n and A = A′∪a→ b→ c. If A′ is m-well-embeddable
with m ≥ 10n−12

3
, then A is (m + 6)-well-embeddable.

Proof. Let L = (x1, . . . , xm+6) be a local median order of a tournament T . Denote by
L′ and T ′ the restrictions of L and T to the interval [x3, xm+2]. By the hypothesis of the
lemma, there exists an L′-embedding f of A′ into T ′; let xi = f(a). By the feedback
property and since f is an L′-embedding, at least one vertex xj of [xi+1, xm+4] \ f(A′) is
an outneighbour of xi; we choose such an xj with maximal index. Again note that xj has
an outneighbour xk (also chosen with maximal index) in [xj+1, xm+6] \ f(A′). We now
extend f by setting f(b) = xj and f(c) = xk; for convenience we still call this extension
f . We claim that f is an L-embedding of A into T . One part of the proof is routine:
since we added four vertices to the top of L′, f is clearly an L-up-embedding. The critical
point is to prove that f is also an L-down-embedding. Assume, by way of contradiction,
that this is not the case, so there exists a vertex xl such that

|[x1, xl] ∩ f(A)| > |[x1, xl] \ f(A)|+ 1.

Recall that we added the vertices x1 and x2 to L′, and by construction these vertices
do not belong to f(A). For this reason we have necessarily that l ≥ 3. Note also that
since m ≥ 2n− 1 (because A′ is m-well-embeddable), we have l ≤ m + 2. Thus:

|[x3, xl] ∩ f(A)| ≥ |[x3, xl] \ f(A)|+ 4.

However, since f is an L′-embedding of A′ into T ′, we have:

|[x3, xl] ∩ f(A′)| ≤ |[x3, xl] \ f(A′)|+ 1.

These two inequalities imply that k ≤ l and:

|[x3, xl] ∩ f(A′)| ≥ |[x3, xl] \ f(A′)|. (2)

Set
A1 = [x3, xi] ∩ f(A′) , D1 = [x3, xi] \ f(A′)

A2 = [xi+1, xj] ∩ f(A′) , D2 = [xi+1, xj] \ f(A′)

A3 = [xj+1, xl] ∩ f(A′) , D3 = [xj+1, xl] \ f(A′)

A4 = [xl+1, xm+2] ∩ f(A′) , D4 = [xl+1, xm+2] \ f(A′).
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We write also ai = |Ai| and di = |Di| for i ∈ {1, 2, 3, 4}. In T , by the maximality of
j and k, the vertex xi is dominated by D3 ∪D4 ∪ {xm+3, xm+4} and xj is dominated by
D4 ∪ {xm+3, xm+4, xm+5, xm+6}.

In T|[xi,xm+4], the feedback property ensures that d+(xi) ≥ d−(xi). It follows that:

d3 + d4 + 2 ≤ a2 + a3 + a4 + d2. (3)

Since in T|[xj ,xm+6], we have d+(xj) ≥ d−(xj),

d4 + 4 ≤ a3 + a4 + d3. (4)

By Inequality 2, we have:

d1 + d2 + d3 ≤ a1 + a2 + a3. (5)

And since m ≥ 10n−12
3

, we have:

10(a1 + a2 + a3 + a4)− 12

3
≤ a1 + a2 + a3 + a4 + d1 + d2 + d3 + d4

.
That is :

7

3
(a1 + a2 + a3 + a4) ≤ d1 + d2 + d3 + d4 + 4. (6)

Inequalities 5 and 6 yield:

4

3
(a1 + a2 + a3) +

7

3
a4 ≤ d4 + 4. (7)

Inequality 3 and twice Inequality 4 yield:

3d4 + 10 ≤ a2 + 3a3 + 3a4 + d2 + d3. (8)

Combining Inequalities 5 and 8, it follows that:

3d4 + 10 ≤ a1 + 2a2 + 4a3 + 3a4. (9)

Finally, Inequality 7 multiplied by 3 and Inequality 9 give that 3a1 + 2a2 + 4a4 ≤ 2.
This is a contradiction since a1 > 0. �

This lemma and Lemma 3 yield the following corollaries:

Corollary 1 Let A′ be a tree of order n and A = A′ ∪ a → b → c → d. If A′ is
m-well-embeddable with m ≥ 10n−14

3
then A is (m + 10)-well-embeddable.
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Corollary 2 Let A′ be a tree of order n and A = A′ ∪ a → b → c ← d. If A′ is
m-well-embeddable with m ≥ 10n−12

3
then A is (m + 10)-well-embeddable.

Corollary 3 Let A′ be a tree of order n and A = A′ ∪ a → b ← c ← d. If A′ is
m-well-embeddable with m ≥ 10n−14

3
then A is (m + 10)-well-embeddable.

Up to this point, we are able to add all the paths of length three, except the alternating
path. For this particular path, we have the following result.

Lemma 5 Let A′ be a tree of order n and A = A′ ∪ a → b ← c → d. If A′ is m-well-
embeddable with m ≥ 3n then A is (m + 10)-well-embeddable.

Proof. Let L = (x1, . . . , xm+10) be a local median order of a tournament T . Denote by
T ′ and L′ the restrictions of T and L to [x5, xm+4]. There exists an L′-embedding f of
A′ into T ′. Let f(a) = xi. Denote by h the greatest index in {5, . . . ,m + 4}, if it exists,
such that |[x5, xh]∩ f(A′)| ≥ |[x5, xh] \ f(A′)|. By the feedback property and since f is an
L′-embedding, there exists xj in [xi, xm+6], chosen with maximal index, such that xi → xj

and xj /∈ f(A′). Suppose first that j > h or h does not exist. Setting f(b) = xj, still f is
an L|[x5,xm+6]-embedding of A′ ∪ a→ b into T|[x5,xm+6]. Then by applying Lemma 3 twice,
one can extend f to an L-embedding of A into T .

Suppose now that j ≤ h. We prove that xi dominates two vertices of [xi, xh] \ f(A′).
Set A1 = [x5, xi] ∩ f(A′) and D1 = [x5, xi] \ f(A′), A2 = [xi+1, xh] ∩ f(A′) and D2 =
[xi+1, xh] \ f(A′), A3 = [xh+1, xm+4] ∩ f(A′) and D3 = [xh+1, xm+4] \ f(A′). We also let
ai = |Ai| and di = |Di| for i = 1, 2, 3.

Suppose for contradiction that |N+(xi) ∩D2| ≤ 1. Using the feedback property of xi

in [xi, xm+6], we obtain (since D3 ∪ {xm+5, xm+6} ⊆ N−(xi)):

d2 + d3 ≤ a2 + a3. (10)

By definition of h, we have:

d1 + d2 ≤ a1 + a2. (11)

Since m ≥ 3n, we have:

2(a1 + a2 + a3) ≤ d1 + d2 + d3. (12)

Inequalities 11 and 12 yield:

a1 + a2 + 2a3 ≤ d3. (13)

Then, combining Inequalities 10 and 13 gives:
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a1 + d2 + a3 ≤ 0.

And this is a contradiction since A1 contains at least xi. Now, pick two vertices xj

and xk in N+(xi) ∩ D2. Without loss of generality we may suppose that xj → xk. If
xj ← xm+8, then let f(b) = xj and f(c) = xm+8. One can easily check that f is an
L|[x3,xm+8]-embedding of A′ ∪ a → b ← c into T|[x3,xm+8]. Thus, by Lemma 3, one can
extend f into an L-embedding of A. If xj → xm+8, we set f(b) = xk, f(c) = xj and
f(d) = xm+8. Again, f is an L-embedding of A into T . �

Note that an analogous proof gives an improvement of the bound of Corollary 2:
m ≥ 3n in place of m ≥ 10n−12

3
. To achieve the proof, we term star with center x a tree T

with a particular vertex x such that every vertex of T distinct from x is a leaf. The class
of trees T3 is defined inductively as follows: the singleton is in T3. If A is in T3 and P is
a path of length 3, then A ∪ P is in T3.

Lemma 6 Let A be a tree of T3. If the order of A is 3n + 1, then A is (10n + 1)-well-
embeddable.

Proof. By induction on n. If n = 0, the statement is obviously true. If n = 1, this is a
consequence of Theorem 4. So, assume that the conclusion holds for n ≥ 1. Let A′ ∈ T3
be a tree of order 3n + 1, P a path of length 3 and denote by A the tree A′ ∪ P . By the
induction hypothesis, A′ is (10n+1)-well-embeddable. Thus, by Lemma 5 and Corollaries
1, 2 and 3, A is (10n + 11)-well-embeddable. �

Theorem 5 Every tree of order n > 0 is (7n−5
2

)-unavoidable.

Proof. Let A be a tree of order n and A1 be a maximal subtree of A which belong to T3.
Denote the order of A1 by n1, by Lemma 6, A1 is (10n1−7

3
)-well-embeddable. The forest

A\A1 is the union of l isolated vertices and p stars Si (1 ≤ i ≤ p), with respective centers
xi. Note that each xi is connected to A1 by an arc. Let A2 be the subtree induced by A
on V (A1) ∪ {x1, . . . , xp}. By Lemma 3, A2 is (10n1−7

3
+ 4p)-well-embeddable and A \ A2

is the union of k ≥ p + l isolated vertices. Let I be the set of vertices of A \ A2 which
are inleaves of A; we set i = |I|. By directional duality, we may suppose that i ≤ k/2.
Let A3 be the subtree of A induced by the vertices of V (A2) ∪ I. By Lemma 3, A3 is
(10n1−7

3
+ 4(p + i))-well-embeddable. Moreover, A \ A3 is a subset of the outleaves of A.

Thus by Lemma 3, A is (10n1−7
3

+ 4(p + i) + 2(k− i))-well-up-embeddable. Since i ≤ k/2,
k ≥ p and k + p = n− n1, we have:

4(p + i) + 2(k − i) = 4p + 2k + 2i ≤ 4p + 3k ≤ 7

2
(n− n1).

These inequalities together yield:
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10n1 − 7

3
+ 4(p + i) + 2(k − i) ≤ 10n1 − 7

3
+

7

2
(n− n1) ≤

21n− n1 − 14

6
≤ 7n− 5

2
.

So, the tree A is (7n−5
2

)-unavoidable. �

We gratefully thank J.A. Bondy for his help during the preparation of this paper.

References

[1] I. Charon, A. Guénoche, O. Hudry and F. Woirgard, New results on the compu-
tation of median orders, Discrete Math., 165/166 (1997), 139–153.

[2] N. Dean and B. J. Latka, Squaring the tournament—an open problem. Proceed-
ings of the Twenty-sixth Southeastern International Conference on Combina-
torics, Graph Theory and Computing (Boca Raton, FL, 1995). Congr. Numer.,
109 (1995), 73–80.

[3] D. C. Fisher, Squaring a tournament: a proof of Dean’s conjecture. J. Graph
Theory, 23 (1996), 43–48.

[4] D. C. Fisher and J. Ryan, Tournament games and positive tournaments. J. Graph
Theory, 19 (1995), 217–236.
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