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Abstract

Let f(k) be the smallest integer such that every f(k)-chromatic digraph contains every oriented
tree of order k. Burr proved that f(k) < (k—1)? and conjectured f(k) = 2n—2. In this paper, we give
some sufficient conditions for an n-chromatic digraphs to contains some oriented tree. In particular,
we show that every acyclic n-chromatic digraph contains every oriented tree of order n. We also
show that f(k) < k?/2 —k/2+ 1. Finally, we consider the existence of antidirected trees in digraphs.
We prove that every antidirected tree of order k is contained in every (5k — 9)-chromatic digraph.
We conjecture that if |E(D)| > (k — 2)|V(D)], then the digraph D contains every antidirected tree
of order k. This generalizes Burr’s conjecture for antidirected trees and the celebrated Erd&s-Soés
Conjecture. We give some evidences for our conjecture to be true.

1 Introduction

All the graphs and digraphs we will consider here are simple, i.e. they have no loops nor multiple arcs.
We rely on [3] for classical notation and concepts. An orientation of a graph G is a digraph obtained
from G by replacing every edge uv of G by exactly one of the two arcs uv or vu. An oriented graph is an
orientation of a graph. Similarly an oriented tree (resp. oriented path) is an orientation of a tree (resp.
path).

A E-colouring of a digraph is a mapping ¢ from its vertex into {1,2,...,k} such that c¢(u) # c(v) for
all arc uv. A digraph is k-colourable if its admits a k-colouring. The chromatic number of a digraph D,
denoted x(D), is the least integer k such that D is k-colourable. A digraph is k-chromatic if its chromatic
number equals k.

The celebrated Gallai-Hasse-Roy-Vitaver Theorem [16, 18, 23, 26| states that every n-chromatic di-
graph contains a directed path of length n — 1. More generally, one can ask which digraphs are contained
in every n-chromatic digraph. Such digraphs are called n-universal. Since there exist n-chromatic graphs
with arbitrarily large girth [13], n-universal digraphs must be oriented trees. Burr [6] considered the
function f such that every oriented tree of order k is f(k)-universal. He proved that f(k) < (k —1)2

*Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montréal, Québec, H3A
2K6, Canada. louigi@math.mcgill.ca.

tProjet Mascotte, I3S (CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France.
fhavet@sophia.inria.fr. Partly supported by ANR Blanc AGAPE and Equipe Associée EWIN.

tDept. of Computer Science, Federal University of Cear4, Fortaleza, CE, Brazil. 1inhares@lia.ufc.br. Partly supported
by Equipe Associée EWIN.

§School of Computer Science, McGill University, 3480 University Montréal, Québec, Canada H3A 2A7
breed@cs.mcgill.ca.

TLIRMM, 161 rue Ada, 34095 Montpellier Cedex 5 - France. thomasse@lirmm.fr Partly supported by ANR Blanc
AGAPE



and conjecture f(k) = 2k — 2 remarking that f(k) > 2k — 2 since a regular tournament (orientation of a
complete graph) of order 2k — 3 has no vertex of out-degree at least k — 1 and thus does not contain the
oriented tree S; consisting of a vertex dominating k — 1 leaves.

Conjecture 1 (Burr [6]) f(k) =2k —2 i. e. every oriented tree of order k is (2k — 2)-universal.

Conjecture 1 is a generalization of Sumner’s conjecture which states that every oriented tree of order
k is contained in every tournament of order 2k — 2. The first linear bound was given by Héaggkvist and
Thomason [17]. The best bound so far, 3k — 3, was obtained by El Sahili [12], refining an idea of [20].

Regarding the universality of oriented trees, there is no better upper bound than the one given by
Burr for oriented trees. Very few special cases are known, only about universality of paths. El-Sahili
proved [11] that every oriented path of order 4 is 4-universal and that the antidirected path of order 5 is
5-universal. Recently, Addario-Berry, Havet and Thomassé [1] showed that every oriented path of order
k > 4 with two blocks is k-universal. In Section 2, we give different results which imply the one of Burr.

In particular, we show that every k-chromatic acyclic digraph contains every oriented tree of order n. We
then derive f(k) < k?/2 —k/2 + 1.

In Section 3, we study the universality of antidirected trees, that are oriented trees in which every
vertex has in-degree 0 or out-degree 0. Burr [7] showed that every digraph D with at least 4(k—1)|V(D)|
arcs contains all antidirected trees of order k. He deduces that every antidirected tree of order k is
(8k — 7)-universal. We first improve this bound to (5k — 9) (for £ > 2) in Subsection 3.1. Then, in
Subsection 3.2, we prove Conjecture 1 for antidirected trees of diameter 3.

We then consider the smallest integer a(k) such that every digraph D with more than a(k)|V(D)| arcs
contains every antidirected tree of order k. The above-mentionned result of Burr asserts a(k) < 4k — 4.
We conjecture that a(k) = k — 2.

Conjecture 2 Let D be a digraph. If |[E(D)| > (k — 2)|V(D)|, then D contains every antidirected tree
of order k.

The value k — 2 for a(k) would be best possible. Indeed the oriented tree S is not contained in any
digraph in which every vertex has outdegree k — 2. It is also tight because the complete symmetric
digraph on k — 1 vertices K_1 has (k — 2)(k — 1) arcs but does trivially not contains any oriented tree
of order k.

Observe that there is no analog of Conjecture 2 for non-antidirected tree. Indeed, a bipartite digraph
with bipartition (A, B) such that all the arcs have tail in A and head in B contains no directed paths of
length two. Hence for any oriented tree T which is not directed and any constant C, there is a digraph
D with at least C' x |V(D)| arcs that does not contain 7.

Conjecture 2 for oriented graphs implies Burr’s conjecture for antidirected trees. Indeed, every (2k —
2)-critical digraph D is an oriented graph and has minimum degree at least 2k — 3 and so at least
223[Y(D)| > (k— 2)|V(D)] acs.

Conjecture 2 may be seen as a directed analog of the following well-known Erd6s-Sés conjecture
reported in [14].

Conjecture 3 (Erdds and Sés, 1963) Let G be a graph. If |E(G)| > 3(k—2)|V(G)|, then G contains
every tree of order k .

In fact, Conjecture 2 for symmetric digraphs is equivalent to Conjecture 3. Indeed, consider a graph
G and its corresponding symmetric digraph D (the digraph obtained from G by replacing each edge uv by
the two arcs uv and vu). Then G has more than §(k—2)|V(G)| edges if and only if |[E(D)| > (k—2)|V(D))|.
Furthermore, if T is a tree and T one of its (two) antidirected orientations, then it is simple matter to
check that G contains T if and only if D contains T.



Conjecture 3 has been proved in particular cases: when the graph has no Cy in [24]; and for trees with
diameter at most four [21]. Finally, using the Regularity Lemma, Ajtai et al. [2] proved that Conjecture 3
is true for sufficiently large k.

In Subsection 3.2, we settle Conjecture 2 for antidirected trees of diameter at most 3. We then derive
that every antidirected tree of order k and diameter at most 3 is (2k — 4)-universal.

2 General upper bounds

2.1 Constructing the tree iteratively

Let T be an oriented tree. The in-leaves (resp. out-leaves) of T are the vertices v of T' such that di(v) = 1
and d.(v) = 0, (resp. df(v) =0 and d;(v) = 1). The set of out-leaves (resp. in-leaves) of T is denoted
by Out(T) (resp. In(T)) and its cardinality is denoted by out(T") (resp. in(T)).

An out-star is an oriented tree T' such that T'— out(T") has a single vertex x. Hence x dominates all the
other vertices which are out-leaves. The out-star of order k is denoted S,j. An in-star is the directional
dual of an out-star; the in-star of order k is denoted S, . A star is either an out-star or an in-star.

Lemma 4 Let D be a digraph with minimum in- and out-degree k — 1 and T a tree of order k. For any
vertex x of D and vertex t of T, D contains a copy of T in which x corresponds to t.

Proof. We prove the result by induction on k, the result holding trivially when & = 1. Assume now
that £ > 2. Let v be a leaf of T distinct from ¢. By directional duality, we may assume that v is an
out-leaf. Let u be its in-neighbour in 7. By the induction hypothesis, D contains a copy 7" of T' — u in
which z corresponds to ¢. Let y be the vertex corresponding to u in 7”. Since d*(v) > k — 2, there is an
out-neighbour z of y not in V(T"). Hence adding the vertez z and the arc yz to T', we obtain the desired
copy of T. 0

Lemma 5 Let D be an oriented graph with minimum in- and out-degree k — 2 and T a tree of order k.
If T has two out-leaves which are not dominated by the same vertex, then D contains T'.

Proof. Let v; and vy be two out-leaves of T" which are dominated by the two distinct vertices u; and
uy. By Lemma 4, D contains a copy T’ of T — v1. Let x1, w2 and y be the vertices corresponding to
respectively uq, us and vy in T7. If 1 has an out-neighbour z; in V(D) \ V(T7), then adding z; and the
arc r121 to T”, we obtain a copy of T.

So we may assume that all the out-neighbours of z; are in V(7). Since d* (x1) > k—2, 1 dominates
all the vertices of 7/ — 1. In particular, it dominates xo and y. Hence the tree T"” obtained from T’
by removing the arc xoy and adding the arc z1y is a copy of T'— vy. Now o has out-degree at least
k + 2 and it does not dominated x; because D is an oriented graph. So x5 has an out-neighbour z, in
V(D) \ V(T"). Thus adding 2o and the arc z2z2 to T”, we obtain a copy of T. O

A (di)graph is k-degenerate if all its sub(di)graphs have a vertex of degree at most k. It is well-known
that every k-degenerate (di)graph is (k 4 1)-colourable.

A (di)graph is k-critical if its chromatic number is k and all its proper sub(di)graphs are (k — 1)-
colourable. It is folklore that every k-critical graph has minimum degree at least k — 1.
> vevic) V) 2|E(G)|
The average degree of a (di)graph G, denoted Ad(G) is = .

V(G V(@)

average degree of G, denoted Mad(G), is max{Ad(H ), H subgraph of G}.

The mazimum

Lemma 6 Let k > 3 be an integer and G be a graph of maximum average degree at most k. Then
X(G) =k or G contains a complete graph on k + 1 vertices.



Proof. Assume that x(G) > k, then G contains a (k + 1)-critical graph H. This graph has minimum
degree at least k and so Ad(H) > k. Since H is a subgraph of G and Mad(G) < k, we have that
Ad(H) = k. So every vertex has degree k and so A(H) = k. Because x(H) = k+ 1, by Brooks’ Theorem,
H is a complete graph on k + 1 vertices. O

Lemma 7 Let T be an oriented tree of order k > 3 which is not S,j. If T — Out(T) is l-universal then
T is (I + 2k — 4)-universal.

Proof. Since T # S;", then T — Out(T) has more than one vertex and thus [ > 2. If Out(T) = 0, the
results holds trivially so we assume that out(T) > 1.

Let D be an (I + 2k — 4)-chromatic digraph. Without loss of generality, we may assume that D is
connected. Let S be the set of vertices of D with out-degree at most k — 2.

Assume first that x(D — S) > [, then D — S contains a copy T” of T'— Out(T). Let vy,vs,...,0p
be the out-leaves of T" and wi,ws,...,w, be their respectives in-neighbours in 7. Now for 1 < i < p,
since the out-degree of w, the vertex corresponding to w; in T, is at least k — 1 in D, one can find an
out-neighbour v} of w} in V(D) \ (V(T") U{v,; | 1 < j < i}). Hence D contains T

Assume now that x(D — S) < [, then x(DI[S]) > 2k — 3, because x(D) = | + 2k — 4. Let H be
a subdigraph of D[S]. Then }° oy ) d(v) = 2E(H) < 2}, cy ) df(v) < (2k —4) x |V(H)|. Hence
Mad(DIS]) < 2k — 4. Thus by Lemma 6, D[S] contains a tournament R of order 2k — 3. Furthermore,
since the out-degree in R is at most the out-degree in D[S] and thus k — 2, every vertex of R has both
in- and out-degree equal to k — 2 in R. Since all vertices in R have out-degree at most k£ — 2 in D, each
vertex of R has no out-neighbour in V(D) \ V(R). Now, since D is connected, there is an arc zy with
x € V(D)\V(R) and y € V(R).

If T contains an in-leaf v, then let u be its out-neighbour in 7. By Lemma 4, R contains a copy of
T — v such that u corresponds to y. This copy together with the vertex z and the arc xy is a copy of T
in D.

If T' contains no in-leaf, then it contains only out-leaves. Moreover, since T # S,j, then T has two
leaves which are dominated by different vertices. Thus by Lemma 5, R contains 7. d

Let st(T) be the minimum number of successive removal of the in-leaves or out-leaves after which the
oriented tree is reduced to a single vertex. Since such a removal remove one or two edges of a path, we
have [diam(T)/2] < st(T) < diam(T).

Proposition 8 FEvery oriented tree T of order k is [(2k — 3 — st(T))st(T) + 2]-universal.

Proof. Let T' = Ty, T1,..., Ty ) be a sequence of oriented trees such that T; = T; 4 \ Out(T;—1) or
T; = T;—1 \ In(Ti—1) and Ty py— is an out-star or an in-star and thus is (2|7 (7y—1| — 2)-universal. By
successive application of Lemma 7, T is contained in every oriented tree of chromatic number at least 3
with $ = 2|Ty| = 4+ 2|T1 | =4+ - -+ 2| gy 2| — 4+ 2 Tagry 1| =2 = 2350071 | T;| - 4st(T) + 2. Now for
all 0 <i <st(T)—1, |T;| <k—1i,80 2 < (2k—3—st(T))st(T)+2. Hence T is [(2k —3 — st(T))st(T) 4 2]-
universal. O

Proposition 8 implies directly Burr’s result.
Corollary 9 (Burr [6]) Every oriented tree T of order k is (k? — 3k + 4)-universal.

Proof. Let T be a tree of order k. If T is a directed path, then it is k-universal by Gallai-Hasse-Roy-
Vitaver Theorem Theorem. If T is not a directed path, then st(T) < k — 2. So, by Proposition 8, it is
(k? — 3k + 4)-universal. O



In order to find an oriented tree T' in digraphs of sufficiently large chromatic number, it would be
useful to find a sequence of few removal of the in-leaves or out-leaves after which the tree is reduced to
a single vertex. However, we do not know if finding such a sequence with the minimum number of steps
can be done in polynomial time.

Problem 10 What is the complexity of determining st(7T") for a given an oriented tree T'?

2.2 Oriented trees in bikernel-perfect digraphs

Let D be a digraph. A set S of vertices is dominating if every vertex v in V(D) \ S is dominated by
a vertex in S. Similarly, a set S is antidominating if every vertex v in V(D) \ S dominates a vertex
in S. A dominating stable set is called a kernel and an antidominating stable set an antikernel. If
every induced subdigraph of D has a kernel (resp. antikernel), then D is said to be kernel-perfect (resp.
antikernel-perfect). A digraph which is both kernel- and antikernel-perfect is said to be bikernel-perfect.

Theorem 11 Every oriented tree of order k is contained in every k-chromatic bikernel-perfect digraphs.

Proof. Let us prove the result by induction on k, the result being trivially true if k£ = 1.

Let T be an oriented tree of order £ and D be a k-chromatic bikernel-perfect digraph. Let v be a leaf
of T and w its unique neighbour in 7. By directional symmetry, we may assume that v — w. Since D
is bikernel-perfect, 7" has a kernel S. The digraph D — S has chromatic number at least (k — 1), so by
induction it contains a copy T” of T — v. Now by definition of kernel, the vertex w’ in T” corresponding
to w is dominated by a vertex v’ of K. Hence D contains T O

Several classes of bikernel-perfect digraphs are known. It is easy to show that symmetric digraphs
are bikernel-perfect. Richardson [22] proved that acyclic digraphs and more generally, digraphs without
directed cycles of odd length are also bikernel-perfect. Several extensions of Richardson’s Theorem have
been obtained [8, 9, 10, 15]. Sands, Sauer and Woodrow [25] showed that a digraph whose arcs may be
partitionned into two posets is bikernel-perfect.

An approach to find a better upper bound for f(k) would be to prove that every digraph with not too
large chromatic number contains an acyclic (or more generally bikernel-perfect) k-chromatic digraph.

Problem 12 What is the minimum integer g(k) such that every g(k)-chromatic digraph has an acyclic
k-chromatic subdigraph?

What is the minimum integer ¢’'(k) such that every ¢’(k)-chromatic digraph has a bikernel-perfect
k-chromatic subdigraph?

An easy consequence of Theorem 11 is that f(k) < ¢'(k) < g(k).
Proposition 13 g(k) < k? — 2k + 2.

Proof. Let D be a (k% —2k +2)-chromatic digraph. Let v1,vs,...,v; be an ordering of the vertices of D.
Let D; and D; be the digraphs with vertex set V(D) and edge-sets E(D1) = {v;v; € E(D),i < j} and
E(Dz) = {vv; € E(D),i > j}. Clearly, D1 and Dy are acyclic and x(D1) x x(D2) > x(D) = k? — 2k +2.
Hence either D; or Dy has chromatic number at least (\/ k2 — 2k + 2] =k. O

The above proposition implies directly that f(k) < k? — 2k + 2. We now give a better upper bound
for f(k).

Theorem 14 f(k) < k?/2 —k/2+ 1.



Proof. Let us prove that f(k) < f(k—1)+k—1. Then an easy induction will give the result as f(1) = 1.

Let D be an (f(k — 1) + k — 1)-chromatic digraph and T be an oriented tree of order k. Let A be a
maximal acyclic induced subdigraph of D. If x(A) > k, then by Theorem 11, A contains T', so D contains
T. If x(A) <k—1, then x(D— A) > f(k—1). Let v be a leaf of T. The digraph D — A contains T — v.
Now, by maximality of A, for every vertex x of D — A, there are vertices y and z of A such that zy and
zx are arcs. So we can extend T — v to T by adding a vertex to A. O

Another approach will be to prove the existence of a dominating set with not too large chromatic
number in any k-chromatic digraph.

Problem 15 What is the minimum integer h(k) such that every k-chromatic digraph has an h(k)-
chromatic dominating set?

2.3 Acyclic partition and labelled oriented trees

Let D be a digraph. An acyclic partition of D is a partition of its vertex set (V1,Va,...,V},) such that
the digraph D[V;] induced by each of the V; is acyclic. The acyclic number of D, denoted ac(D), is the
minimum number of parts of an acyclic partition of D. Note that a colouring is an acyclic partition since
a stable set is acyclic. So x(G) > ac(G).

Theorem 16 Let T be an oriented tree with vertices vi,...,v; and D a digraph with acyclic number k.
Then for any acyclic partition of D in k sets Vi,..., Vi, D contains a copy of T such that v; € V; for all
1<i<k.

Proof. We prove the result by induction on k, the result being trivial for K = 1. Let v be a leaf of T
Free to relabel the vertices and the sets of the acyclic partition, we may assume that v = v; and the
neighbour of vy in T' is vg_1. Moreover, by directional symmetry, we may assume that vy_; — vg. Let us
now consider D' = D[V; U...UVj_1]. Obviously ac(D’) = k—1, so (V1,...,Vx_1) is an acyclic partition
of D’ in ac(D') sets. Hence, by the induction hypothesis, D’ contains copies of 77 = T — vy, such that
v, €Viforalll <i<k-—1.

Let S be the set of vertices of V},_1 that correspond to vy_1 in such a copy of 77 in D’. Let us show
that a vertex s of S dominates a vertex ¢ in Vi, which gives the result. Suppose for a contradiction
that no vertex of S dominates a vertex of V. Then D[V}, U S] is acyclic. Let us consider D" = D’ \ S.
Then ac(D”) = k — 1. Indeed an acyclic partition of D" in less than k — 1 sets together with S U V4
would be an acyclic partition of D in less than k sets which is impossible. In particular, S # V;_;. So
(Viyeo oy Vo, Vi1 \ S) is an acyclic partition of D" in ac(D") sets. Thus, by the induction hypothesis,
D" contains a copy of T” such that v; € V; forall 1 <i < k—2and vy_; € Vi1 \ S. But this contradicts
the definition of S. O

Theorem 16 and Theorem 11 yield that f(k) < (k—1)?+1. Indeed let D be a ((k— 1)+ 1)-chromatic
digraph D and T be an oriented tree of order k. If ac(D) > k, by Theorem 16, D contains T If not, in
an acyclic partition in ac(D) < k sets, one of the sets induces a digraph with chromatic number at least
k and by Theorem 11, D contains T

3 Universality of antidirected trees

In [7], Burr proved that every antidirected tree of order k& is contained in every digraph D with at least
4(k—1)|V(D)]| arcs. This implies trivially that every antidirected tree of order k is (8k — 7)-universal since
every (8k —7)-critical digraph D has minimum degree at least 8k — 8 and thus has at least 4(k —1)|V (D)]
arcs.



In this section, we will first improve Burr’s result by showing that every antidirected tree of order k is
(5k — 9)-universal. We then settle Conjecture 2 for antidirected trees of diameter at most 3 and deduce
that every such tree is (2k — 4)-universal.

3.1 Improved upper bound

Let T be an antidirected tree. Let VT (T) (resp. V~(T)) be the set of vertices with in-degree (resp. out-
degree) 0 in T'. Clearly (V~(T),V*+(T)) is a partition of V(T). We set m(T) = max{|V*(T)|,|V~(T)|}.

Theorem 17 Let T be an antidirected tree and D = (V, E) a digraph with at least (4m(T) — 4)|V| arcs.
Then D contains T

The proof of this theorem is based on the following three lemmas :

Lemma 18 (Burr [7]) Let G = (V, E) be a bipartite graph and p be an integer. If |E| > p|V| then G
has a subgraph with minimum degree at least p + 1.

Proof. Let us prove it by induction on |V|. If |V| = 4p, then G is the complete bipartite graph Koy, 2,
and we have the result.

Suppose now that |V| > 4p + 1. If G has minimum degree at least p 4+ 1 then G itself is the desired
subgraph. Otherwise, there is a vertex v with degree at most p. Then G — v is bipartite and has at least
p(JV| — 1) edges. Then, by the induction hypothesis, it has a subgraph with minimum degree at least
p+ 1 O

Remark 19 This result is tight : for any ¢ = mL—i-p > 0, the complete bipartite graph K, ,, has pm =
p|V](1 — €) edges but every subgraph has minimum degree at most p.

Let (A, B) be a bipartition of the vertex set of a digraph D. We denote by E(A, B) the set of arcs
with tail tail in A and head in B and by e(A4, B) its cardinality.

Lemma 20 (Burr [7]) Every digraph D contains a partition (A, B) such that e(A, B) > |E(D)|/4.

Proof. Let (A, B) be a partition that maximizes the number of arcs between A and B in any direction.
Then every vertex v has at least d(v)/2 neighbours in the opposite part. So e(A, B)+e(B, A) > |E(D)|/2.
It follows that either e(A, B) or e(B, A) is at least |E(D)|/4. O

Lemma 21 Let T be an antidirected tree and D = ((A, B), E) be a bipartite graph such that every vertex
in A has out-degree at least m(T') and every vertex in B has in-degree at least m(T). Then D contains
T.

Proof. Let us show by induction on |T'| that one may find a copy of T such that every vertex of V*(T)
(resp. V—(T)) is in A (resp. B).

Let v be a leaf of T. By directional symmetry, we may assume that v is an out-leaf so v € V(7).
Let u be the out-neighbour of v in T. Then u is V~(T'). T — v satisfies m(T —v) < m(T) so one can find
a copy of T — v such that every vertex of V(T —v) (resp. V(T —v)) is in A (resp. B). In particular,
wis in B. Now u has at least m(T) in-neighbours in A, so one of them is not in the copy of T' — v since
VH(T —v) <m(T). So adding a vertex in A\ N~ (u) to the copy of T — v, we get the desired copy of T.

O

Proof of Theorem 17. By Lemma 20, it contains a bipartite subdigraph D’ = (V = (4, B), E(A, B))
with at least (m(T) — 1)|V| edges. By Lemma 18, D’ has a bipartite subdigraph such that D" =



((A”,B"), E") such that every vertex of A” has out-degree at least m(T) and every vertex of B” has
in-degree at least m(T'). Hence, by Lemma 21, D" (and so D) contains T'. O

Corollary 22 FEvery antidirected tree T is (8m(T) — 7)-universal.

Proof. Every (8m(T) — 7)-chromatic digraph D contains an (8m(T) — 7)-critical digraph D’ which has
minimum degree at least 8m(T) — 8. So D’ has at least (4m(T") — 4)|V| arcs. Hence, by Theorem 17, D
contains 7. O

Note that Corollary 22 is rather good when m(T) is close to |T'|/2). We will now improve Corollary 22
when m(T) is big.

Lemma 23 Let T be an antidirected tree. Then T has at least Exc(T) = |VT(T)| — |V~ (T)| out-leaves.

Proof. Let us prove it by induction on the order of T'.

Note that if Fxe(T) < 0, the result is trivial. Suppose now that Exc(T) > 0. Let v be a leaf of T

If v is an out-leaf then Exc(T —v) = Exc(T) — 1. By induction T — v has Exzc(T) — 1 out-leaves.
These leaves and v are the Exc(T) out-leaves of T'.

If v is an in-leaf then Fxc(T —v) = Exce(T) + 1. By induction T — v has Exzc(T) 4+ 1 out-leaves and
at most one of them dominates v. So T has at least Exc(T) out-leaves. O

Theorem 24 Let T be an antidirected tree of order k which is not a star. Then T is (10k—8m/(T)—11)-
universal.

Proof. By directional duality, we may assume that Exc(T) > 0. Let F be a set of Exc(T) out-leaves
and U be the antidirected tree T — F. Then Exzc(U) = 0, so m(U) = |U|/2 = k — m(T). Hence, by
Corollary 22, U is (8k — 8m(T') — 7)-universal. Now, by Lemma 7, T is (10k — 8m(T) — 11)-universal. O

Corollary 25 Fuvery antidirected tree T of order k > 2 is (5k — 9)-universal.

Proof. If T is a star, then it is (2k — 2)-universal, so we may assume that T is not a star.

Corollary 22 and Theorem 24 yield that T is (min{8m(T") — 7; 10k — 8m(T) — 11} )-universal. The first
function increases with m(7T') and the second decreases with m(T)). They are equal when m(T') = 3k — 1.
In this case, the value of the two functions is 5k — 9. d

3.2 Antidirected trees of diameter 3

In this subsection, we give evidence for Conjecture 2. We settle it for antidirected trees of diameter at
most 3.

It is easy to show that Conjecture 2 holds for antidirected trees of diameter 2 because there are only
two antidirected trees of order k£ and diameter 2: the tree S,j with a vertex v which dominates the k — 1
others and its directional dual S, .

Proposition 26 Let D be a digraph. If |E(D)| > (k —2)|V(D)|, then D contains S;" and S;, .

Proof. Let D be a digraph with more than (k — 2)[V(D)| arcs. Since >, .y (p) dt(v) = E(D) >

(k—2)|V(D)|, D contains a vertex of out-degree at least k — 1. So it comtains S;". Similarly, D contains
S, . O



Henceforth, we now restrict our attention on antidirected trees of diameter 3. An antidirected tree of
order k and diameter 3 is made of a central arc uv such that v dominates the in(T") > 1 in-leaves of T'
and v is dominated by the out(T) = k — 2 — in(T) out-leaves of T. In particular, k > 4.

Lemma 27 Let D be a digraph, T an antidirected tree of diameter 3 and uv € E(D). If
a) d*(u) > k—1 and d~(v) > out(T) + 1, or
b) d¥(u) >k —2,d" (v) > out(T) +1 and N~ (v) ¢ N*(u) U{u},

then D contains T .

Proof. Set out(T) = p. Since its in-degree is at least p+ 1, the vertex v has at p in-neighbours vy, ..., v,
distinct from u with v; € N7 (v) \ N7 (u)U{u} in case b). Since d*(u) > k—1 or vy ¢ N*(u), the vertex
u has k — 2 — p = in(T") out-neighbours in V(D) \ {v,v1,...,v,}. Hence D contains T O

We will now show a statement which is slightly stronger than Conjecture 2 for antidirected trees of
diameter 3.

Theorem 28 Let D be a connected digraph. If |E(D)| > (k—2)|V(D)| and D # Ky_1, then D contains
every antidirected tree of order k and diameter 3.

Proof. Let T be an antidirected tree of order k and diameter 3. Let us prove the result by induction
on |V(D)|.

Let VT (resp. V) be the set of vertices of out-degree (resp. in-degree) at least k — 1.

Assume first that VT = V= = (). Then every vertex v satisfies d*(v) = d~(v) = k — 2. If D is not
K k—1, then it is not complete symmetric and has at least k vertices. Thus there exists three vertices u,
v and vy such that wv € E(D), viv € E(D) and uvy ¢ E(D). So u and v satisfies the condition b) of
Lemma 27. Hence D contains T'.

Hence, by symmetry, we may assume that V* # (. If V'~ = () then every vertex has in-degree k — 2.
Picking a vertex u € VT and one of its out-neighbour v, since k —2 > out(T'), Lemma 27 gives the result.

Hence we may assume that V' and V'~ are nonempty.

Let u be a vertex of out-degree at least kK — 1 and v an out-neighbour of u. If d~(v) > out(T) + 1,
then Lemma 27 gives the result. So we may assume that every out-neighbour of v has in-degree at most
d~(v) < out(T). In particular, the set Vi of vertices of in-degree at most out(T') has cardinality at least
k—1.

Analogously, we may assume that the set Vs of vertices of out-degree at most in(7T") has cardinality
at least & — 1.

Suppose first that V3 N V; has a vertex v. Then d(v) < in(T) + out(T) = k — 2. Hence |E(D —v)| >
(k—2)|V (D —v)| and by induction hypothesis, T is contained in D —v and so in D unless D —v = Kj,_;.
But in this case, d(v) = k — 2 and it is simple matter to check that D contains T. Hence we may assume
that V1 NV, = 0.

Suppose that there is v; € V; and v € V5 such that vyvs is not an arc. Then consider the digraph
D’ obtain by replacing the two vertices v; and ve by a vertex ¢ dominating the out-neighbours of v; and
dominated by the in-neighbours of v. Then D’ has one vertex less than D and at most d~(v1) + d*(v2)
arcs less than D (the d~ (v1) ingoing vy, the d* (v2) outgoing vy and vivy & E(D)). Now d~ (vq)+d™ (v2) <
in(T) + out(T) = k—2, so |[E(D')| > (k—2)|V(D')|. If D' # Kj_1, by induction hypothesis, D’ contains
a copy of T. This copy may be transformed into a copy of T in D, by replacing ¢ by vy (resp. wvq) if ¢
is a source (resp. a sink) in T. If D’ = Kj_; then D — {v1,v5} = Kj_5. Since d*(vy) > in(T) + 1 and
d~(vq) > out(T) + 1, one can easily check that D contains T'.

Hence Vi — V5. Then any vertex u € Vi has degree at least k£ — 1 and dominates any vertex v € Vs
which has in-degree at least £k — 1. So by Lemma 27, D contains 7. O



Theorem 28 implies that every connected digraph D with minimum degree at least 2k — 4 which is
not K, k—1 contains every antidirected tree of order k and diameter 3. In particular, this is the case if D
is (2k — 3)-critical. Hence antidirected trees of order k and diameter 3 are (2k — 3)-universal. We will
now improve slightly this result by showing that such trees are (2k — 4)-universal.

Proposition 29 Let D be an oriented graph with minimum degree at least 2k — 5. Then D contains
every antidirected tree of order k of diameter 3.

Proof. Suppose for a contradiction that there is an antidirected tree T' of order k and diameter 3 which
is not contained in an oriented digraph D with minimum degree 2k — 5.

Assume first that k& = 4.

We claim that D contains a vertex of out-degree 2. Suppose not. Then there is a vertex = of out-
degree 3. By Lemma 27, each out-neighbour of x has in-degree 1 and thus out-degree at least 2 and so
at least 3. Then the oriented graph induced by the vertices of out-degree at least 3 contains a vertex
of in-degree at least 3. So there is an arc uv such that d*(u) > 3 and d~(v) > 3. This contradicts
Lemma 27.

Let a be a vertex of out-degree 2, and b and c its two out-neighbours. We claim that there is no arc
between b and c¢. Indeed suppose there is one, say be. Since d(b) > 3, b has a neighbour « distinct from
a and c. If u is an in-neighbour then (u, b, a,c) is a copy of T otherwise (a, ¢, b, u) is.

It follows that d~(b) = d~(c) = 1 so d™(b) = d*(c) = 2.

Hence the oriented graph induced by the vertices of out-degree 2 contains a vertex of in-degree at
least 2. So there is an arc uv such that d*(u) > 2 and d~(v) > 2. Moreover by the above claim,
N~ (v) N N*(u) =0. This contradicts Lemma 27.

Assume now that k > 5.

By symmetry, we may assume that out(T) < in(T), so out(T) < k — 4. Let VT be the set of vertices
of out-degree at least k — 1.

We claim that V' = .

Suppose not. If there is no arc uv with u € V* and v ¢ VT, then each vertex of V* has its out-
neighbour in V. So the digraph DT induced by V* has at least |V |(k — 1) arcs and thus has at least a
vertex v of in-degree k—1 in DT. Let u be any in-neighbour of v in DT. As d*(u) > k—1, uv contradicts
Lemma 27.

Hence we may assume that there is an arc wv with v € V* and v ¢ VT, then d*(v) < k — 2 so
d~(v) > k — 3. Since out(T') < k — 4, uv contradicts by Lemma 27. This proves the claim.

So every vertex has out-degree at most k — 2 and thus in-degree at least k — 3. We claim that there is
a vertex u of out-degree k — 2 dominating a vertex of in-degree at least kK — 2. Suppose not. Then every
vertex of out-degree k — 2 has its out-neighbours with in-degree at most k£ — 3 and thus out-degree at
least k — 2. So V5 the set of vertices of out-degree k — 2 has no outgoing arcs and thus there is a vertex
v in V, with in-degree at least k — 2 in D[V5]. Picking any in-neighbour u of v in V5 we get the desired
vertices, a contradiction.

By Lemma 27, for every out-neighbour w of u, N~ (w) C N*(u)U{u}. Since each vertex has in-degree
at least £ — 3 and v has in-degree k — 2, the digraph D[N (u)| has at least (k —2)(k —4) +1 > (kgz)
arcs which is impossible since D is an oriented graph.

O

Note that Proposition 29 does not holds for digraphs instead of oriented graphs. Indeed there are
connected digraphs such that d(v) > 2k — 5 for every vertex v that do not contain every antidirected tree
of order k of diameter 3. Indeed let G = (A, B), E) be a regular bipartite graph of degree k — 3. Let D
the digraph obtained from G by orienting all the edges from A to B and adding for each a € A (resp.
b € B) a copy of Ki_s dominating a (resp. dominated by b). One can easily check that for every vertex

10



dt +d= > 2k — 5 and that D does not contain the antidirected tree of order k and diameter 3 with one
out-leaf.

Corollary 30 FEvery antidirected tree of order k and diameter 3 is (2k — 4)-universal.

Proof. Let D be a (2k — 4)-chromatic digraph. It contains a (2k — 4)-critical oriented graph D', in
which every vertex has degree at least 2k — 5. Hence D', and so D, contains every antidirected tree of
order k of diameter 3 by Proposition 29. g

Corollary 30 and Proposition 29 are tight. Indeed a regular tournament of order 2k — 5 is (2k — 5)-
chromatic and is an oriented graph in which each vertex with minimum degree 2k — 6 but does not contain
the antidirected tree with k — 3 out-leaves because no vertex has in-degree k£ — 2 or more.
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