
GENERALIZED PIGEONHOLE PROPERTIES OF GRAPHS
AND ORIENTED GRAPHS

ANTHONY BONATO, PETER CAMERON, DEJAN DELIĆ, AND STÉPHAN
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Abstract. A relational structure A satisfies the P(n, k) property if
whenever the vertex set of A is partitioned into n nonempty parts, the
substructure induced by the union of some k of the parts is isomorphic to
A. The P(2, 1) property is just the pigeonhole property, (P), introduced
by P. Cameron in [5], and studied in [2] and [3]. We classify the countable
graphs, tournaments, and oriented graphs with the P(3, 2) property.

1. Introduction

Vertex partition properties of relational structures have been studied by
numerous authors; see for example, [2], [3], [5], [7], [8], [10], [11] and [12].
One such property that has received some attention recently is the pigeon-
hole property, (P): a relational structure A has (P) if for every partition of
the vertex set of A into two nonempty parts, then the substructure induced
by some one of the parts is isomorphic to A. This property was introduced
by P. Cameron in [5], who in Proposition 3.4 of [6] classified the countable
graphs with (P); remarkably, there are only four: K1, Kℵ0 , Kℵ0 , and R,
the countably infinite random graph. The countable tournaments with (P)
were classified in [3]; in this case, there are ℵ1 many such tournaments: the
countable ordinal powers of ω and their reversals, and T∞, the countably
infinite random tournament. (As noted in [3], the classification of the count-
able oriented graphs with (P) is open. The problem reduces to classifying
orientations of R with (P).)

A natural generalization of (P) is to allow for partitions of the vertex set
into n nonempty parts, and insist that for some 1 ≤ k < n, the substructure
induced by the union of some k of the parts is isomorphic to the original
structure. We call this property the P(n, k) property. (Then (P) becomes
the P(2, 1) property.) This property was discovered in the summer of 2000
by P. Cameron, and is similar to the property of p-indivisibility (see [12]).

At a conference in the summer of 2000 in honour of Fräıssé’s 80th birthday,
P. Cameron asked which countable graphs have P(3, 2). (See also Problem
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26 of P. Cameron’s problem web page:
http://www.maths.qmw.ac.uk/∼pjc/oldprob.html.) In this article, we give
a complete answer to this problem (see Section 2), and furthermore, we give
a complete classification of all oriented graphs with P(3, 2).

In Section 2 we give the classification of the countable graphs with P(3, 2).
In contrast to the case for the P(2, 1) property, Theorem 1 implies that R
does not satisfy the P(n, n− 1) property if n > 2. In Section 3 we give the
classification of the countable linear orders (that is, transitive tournaments)
with P(3, 2). The classification breaks down into two cases: when there is a
first or last element (see Theorems 3 and 4) or when there is neither a first
nor last element (see Theorem 5). In Section 4 we prove in Theorems 6 and
7 that a countable P(3, 2) tournament must be a scattered linear order (that
is, it does not contain a dense suborder). This result, along with the results
of Section 3, give a complete classification of the countable tournaments
with P(3, 2). The case of countable oriented graphs with P(3, 2) is covered
in Section 5, which makes use of the results from all of the previous sections.
See Theorem 8. We close with a brief section containing some open problems.

Unless otherwise stated, all structures (that is, graphs or oriented graphs)
are countable, nonempty, and do not have loops or multiple edges. If A is a
structure, V (A) is the set of vertices of A, E(A) is the set of edges of A if A
is a graph, and the arcs (or directed edges) of A if A is an oriented graph.
If B ⊆ V (A), we write A � B for the substructure induced on B; if C is
an induced substructure of A we write C ≤ A. We write A ∼= B if A and
B are isomorphic. If A is a structure and X ⊆ V (A), then the structure
A−X results by deleting X and all edges or arcs incident with a vertex in
X. If X = {x} then we simply write A − X = A − x. If G is a graph and
x ∈ V (G), then the neighbour set of x, denoted N(x), is the set of vertices
joined to x; the elements of N(x) are the neighbours of x. The co-neighbour
set of x, denoted N c(x), is the set of vertices that are neither joined nor
equal to x; the elements of N c(x) are the non-neighbours of x. If O is an
oriented graph, the graph of O is the graph with vertices V (O) and with
edge set the symmetric closure of E(O).

ω is the set of natural numbers (considered as an ordinal), and ℵ0 is the
cardinality of ω. The proper class of ordinals is denoted ON. The order-
type of the rationals is η. We assume familiarity with basic results on linear
orders. We refer the reader to Rosenstein [9] throughout the article for
specific results on linear orders.

The clique (or complete graph) of cardinality α is denoted Kα. The com-
plement of a graph G is denoted G; the converse of an oriented graph O is
denoted O∗ (if O is an order, we say that O∗ is the reversal of O). Given
two graphs G, H, the join of G and H, written G ∨H, is the graph formed
by adding all edges between vertices of G and H; the disjoint union of G
and H is written G ]H. If α is a cardinal, the graph αG consists of α dis-
joint copies of G. The (linear) sum of (linear) orders (Li : i ∈ I) is denoted∑

i∈I Li; the sum of two orders L and M is denoted L + M .
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2. The graphs with P(3, 2)

In this section, the graphs with P(3, 2) are classified. In order to accom-
plish this, we must first introduce some terminology. Recall from [1] that
a graph is n-existentially closed or n-e.c. if for each n-subset S of vertices,
and each subset T of S (possibly empty), there is a vertex not in S joined
to each vertex of T and no vertex of S\T. R is the unique graph that is
n-e.c. for all n ≥ 1. An extension of a subset X ⊆ V (G) is a vertex z not
in X joined to the vertices of X in some fixed way; we say that z extends
X. X is r-extendable if one can extend X in G in r different ways. If X
is 2|X|-extendable, we say that X is extendable. Each n-subset of V (G) is
extendable if and only if G is n-e.c. Our first step in the classification of the
P(3, 2) graphs is the following theorem.

Theorem 1. For each n > 2, there is no (n− 1)-e.c. P(n, n− 1) graph.

Proof. Suppose that G is an (n − 1)-e.c. P(n, n − 1) graph. Fix a set of n
vertices of G, X = {a1, . . . an}. Partition V (G) into parts A1, . . . An so that

Ai = {ai} ∪ Si,

where Si is the set of vertices y joined to every aj , where j ∈ {1, . . . , n} \
{i, i−1}, and y is not joined nor equal to ai−1 (where the indices are ordered
cyclically mod n). Each set Si is nonempty by hypothesis. The remaining
vertices of G belong to A1.

Fix i ∈ {1, . . . , n}. If we consider the graph H = G � (V (G) \ Ai), then
there is no vertex in H that is joined to the vertices in X \ {ai, ai−1}, and
not joined nor equal to ai−1. This contradicts that G is (n− 1)-e.c. �

Observe that Theorem 1 implies, perhaps surprisingly, that the random
graph R does not have P(n, n− 1), when n ≥ 3.

A vertex x ∈ V (G) is isolated if it has no neighbours, and universal if
it is isolated in G. A pair of vertices {x, y} of G is an interval if for every
z ∈ V (G) \ {x, y}, x is joined to z if and only if y is joined to z; it is an
anti-interval if for every z ∈ V (G) \ {x, y}, x is joined to z if and only if y
is not joined to z. In addition, if xy is an edge of G, we say is either a full
interval or full anti-interval.

Theorem 2. The countable P(3, 2) graphs are the one-vertex graph, the
two-vertex and ℵ0-vertex cliques and their complements, and the graphs

K1 ]Kℵ0 ,K1 ∨Kℵ0 ,Kℵ0 ∨Kℵ0 ,Kℵ0 ]Kℵ0 ,Kℵ0 ]Kℵ0 ,Kℵ0 ∨Kℵ0 .

Proof. We leave the proof of sufficiency as an exercise for the reader. For
necessity, let G be an infinite P(3, 2) graph. We may assume that G is not
2-e.c., by Theorem 1. We note first that if G has exactly one isolated vertex
x, then G− x is a P(2, 1) graph. R]K1 does not have P(3, 2). To see this,
fix y ∈ V (R), consider the partition {x, y}, N(y), N c(y)∩V (R), and use the
facts that R−y ∼= R, and that R has no universal or isolated vertex. Hence,
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G− x must be Kℵ0 , and the characterization holds. The case if G has some
unique universal vertex is similar.

Let us now prove that G has an interval. Let V = V (G). If G has more
than one isolated (or universal) vertex, then it certainly has an interval
(any two isolated vertices or any two universal vertices). So we can assume,
without loss of generality, that G has no isolated nor universal vertices.

By Theorem 1, G has a non-extendable pair x, y of vertices. Partition
V \ {x, y} into four subsets

S00, S01, S10, S11,

where S00 contains the vertices not joined to x and y, S01 contains the
vertices not joined to x and joined to y, S10 contains the vertices joined to
x but not y, and S11 contains the vertices joined to both x and y.

Suppose first that {x, y} is 3-extendable.
Case 1. S11 = ∅. We partition V into {x}∪S01, {y}∪S10 and S00. Since

G is a P(3, 2) graph, the subgraph induced by the union of two of these
subsets is isomorphic to G. Two cases give isolated vertices, and we must
have G ∼= G � ({x, y} ∪ S01 ∪ S10) in which {x, y} is 2-extendable; therefore,
there is a 2-extendable pair of distinct vertices in G.

Case 2. S10 = ∅. We partition V into {x} ∪ S00, {y} ∪ S11 and S01.
Since G is a P(3, 2) graph, the subgraph induced by the union of two of
these subsets is isomorphic to G. Two cases give an isolated or a universal
vertex, and we must have G ∼= G � ({x, y} ∪ S00 ∪ S11) in which {x, y} is
2-extendable.

The other cases are equivalent. If now {x, y} is 1-extendable, we conclude
that G has a universal or an isolated vertex, or that {x, y} is an interval.

Finally consider the case when there exists a pair {x, y} which is 2-
extendable and, to obtain a contradiction, assume that there is no interval.
The pair {x, y} must then be an anti-interval. By taking complements if
necessary, we can assume that {x, y} is a full anti-interval. Enumerate now
the full anti-intervals of G as

{x1, y1}, {x2, y2}, . . .

If two full anti-intervals intersect, then an interval is created, so we assume
that all these pairs are disjoint.

Denote by X the union of the xi’s, by Y the union of the yi’s and by S the
set V \ (X ∪ Y ). We show first that S is empty. Otherwise, by considering
the partition X, Y, S of G, we deduce that G is isomorphic to its restriction
on, say, X∪S (and not on X∪Y , since in this case, every vertex of G would
be contained in a full anti-interval). The crucial fact is now that every full
anti-interval of G restricted on X ∪ S is also a full anti-interval of G, and
this is impossible. Therefore, S = ∅; in particular, the full anti-intervals of
G form a perfect matching (that is, a set of pairwise non-incident edges).
Now the partition

{x1}, {y1}, V \ {x1, y1}
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gives a contradiction.
Thus G has an interval, and by taking complements if necessary, we can

assume that there exists a full interval {x, y}. The relation

x ∼ y if and only if {x, y} is a full interval,

is an equivalence relation. Name the partition of G into its ∼-equivalence
classes a full partition, with its classes named full classes. Note that the full
classes are cliques. It is routine to check that if an induced subgraph H of G
has at least one vertex in each full class of G, then the full partition of H is
the restriction of the full partition of G. Suppose, to obtain a contradiction,
that a full class {x, y} of G contains exactly two vertices. Then the partition
{x}, {y}, V \ {x, y} implies that some full classes of G are singletons. Now
enumerate the full classes of G which have exactly two elements

{x1, y1}, {x2, y2}, . . . .

The partition X, Y, S, where X is the union of the xi’s, Y is the union of
the yi’s, and S is the set V \ (X ∪ Y ), gives a contradiction.

If one full class of G is finite and has exactly three vertices x, y, z, then
the partition

{x}, {y}, V \ {x, y}
gives a full class with two elements. More generally one can prove that there
are no full classes with exactly n elements, where n ≥ 3. We may therefore
suppose that every full class has 1 or ℵ0 many vertices. If there exists at
least two infinite full classes X, Y then G ∼= G � (X ∪ Y ). To see this fix
{x, x′} ⊆ X, {y, y′} ⊆ Y, and consider the partition

V \ (X ∪ Y ), {x, x′} ∪ Y \ {y, y′}, {y, y′} ∪X \ {x, x′}.

of V (G). In this case G or G is Kℵ0 ]Kℵ0 : since X and Y are full classes, if
one vertex of X is joined to a vertex of Y , then every vertex of X is joined
to every vertex of Y . We therefore have G is one of Kℵ0 ∨Kℵ0 or Kℵ0 ]Kℵ0 .

Assume that G has exactly one infinite full class C. By a partition ar-
gument, we can assume that C is joined or not joined to all the vertices of
V \C. To see this, let W be the set of vertices not in C. Each vertex in W
is either joined to each vertex of C or to no vertex of C. Let A be the set
of vertices in W joined to each vertex of C, and let B be the set of vertices
in W joined to no vertex of C. Assume that both A and B are nonempty.
Consider the partition A,B, C of V . If G � (C ∪X) ∼= G, where X ∈ {A,B}
then we obtained the desired conclusion. Suppose that G ∼= G � (A∪B) via
an isomorphism f . Then f(C) = C ′ is an infinite full class in H = G � W .
If C ′ is contained entirely in A or B, then C ′ is also a full class in G, which
gives a contradiction. Hence, C ′ ∩X 6= ∅, where X ∈ {A,B}. Then one of
C ′ ∩A or C ′ ∩B is infinite; suppose that C ′ ∩A is infinite (the other case is
similar). Then it is straightforward to check that any pair {x, y} of distinct
vertices in C ′ ∩A is a full interval in G, which gives a contradiction.
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Suppose that G = C ] W . Fix a partition A,B of W . As we have
discussed above, G 6∼= G � (A∪B). Hence, by the P(3, 2) property, we must
have G ∼= G � (C ∪ X), where X ∈ {A,B}, via an isomorphism f . It is
not hard to see that f(C) = C. From this it follows that H = G � W must
have P(2, 1). The only case that does not give a contradiction is for H to
be either K1 or Kℵ0 .

The final case is when G = C ∨ W . By taking complements, we may
therefore assume that G has infinitely many isolated vertices, and G = I]W
where I is the set of isolated vertices of G. (In fact, G = I ]W c. For ease
of notation, we write W rather than W c.)

If one vertex of W is universal in W , the conclusion follows: partition
V (G) into the set U of universal vertices in W , the set V (W )\U , and V (I).
Then G ∼= G � (U ∪ V (I)) and so G ∼= Kℵ0 ]Kℵ0 .

We therefore suppose for a contradiction that no vertex of W is universal.
We prove first that G has some vertices with degree 1. Suppose that there
exists x ∈ V (W ) such that W −x is isomorphic to G via an isomorphism f .
Then f(I) is a set of isolated vertices in W − x. Since no vertex is isolated
in W (by choice of I), it follows that each vertex of f(I) is of degree 1 in G.

Now suppose that there is no x ∈ V (G) so that W − x is isomorphic
to G. Fix x ∈ V (W ). Then, by hypothesis, A = N(x) $ V (W ) and
B = N c(x) ∩ V (W ) are nonempty, with |A| ≥ 2.

Fix a ∈ A. Consider the partition

V (I) ∪ {x}, A \ {a}, B ∪ {a}

of V (G). If V (I) ∪ {x} is deleted, then we are left with W − x, which by
hypothesis, is not isomorphic to G. Now suppose that G ∼= G � (V (I) ∪
{x} ∪ A \ {a}) via an isomorphism f . Then f(I) = I and f(W ) = G �
({x}∪A \ {a}). But x is universal in G � ({x}∪A \ {a}) which would imply
the contradiction that W also has a universal vertex. Hence,

G ∼= G � (V (I) ∪ {x} ∪B ∪ {a}) = H;

but x has degree 1 in H, and so some vertex of G has degree 1.
Therefore, G has some vertices of degree 1, and some vertices with degree

0. Define the reduction of a graph G to be the graph G′ obtained from G
by deleting the vertices of G with degree 0 and 1. (Note that G′ may be
empty.)

We may iterate the number of reductions (possibly taking transfinitely
many reductions) until either the empty graph is obtained, or we obtain
a graph with no vertex of degree 0 or 1. In the latter case, the induced
subgraph obtained is unique. We call this unique induced subgraph the
nucleus of G, and is denoted Nu(G). We leave it as an exercise to check
that the vertices not in Nu(G) induce a forest (that is, a graph with no
finite circuits).

Suppose first that Nu(G) is empty. Then G is a forest, with some isolated
vertices. If all vertices are isolated, we are done. If not all vertices are
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isolated, let X be the set of non-isolated vertices. Since H = G � X is 2-
colourable with no isolated vertex, we may partition H into two nonempty
independent sets A,B which correspond to the two colours. The partition,
A,B, I of V (G) gives a contradiction: deleting either A or B leaves only
isolated vertices, and deleting V (G) \ (A ∪B) leaves no isolated vertices.

Suppose now that Nu(G) is not empty. Either there is an edge between
Nu(G) and G\V (Nu(G)) or not. Suppose that there is no such edge. Then
G is the disjoint union of Nu(G) and a forest F . Fix some 2-colouring of F
into nonempty independent sets A and B. Consider the partition

V (Nu(G)), A, B.

Deleting V (Nu(G)) leaves a graph with an empty nucleus; deleting A or B
results in a graph with no vertex of degree 1.

The only remaining case is that Nu(G) is not empty and there is some
edge between a vertex of Nu(G) and some vertex of V (G) \ V (Nu(G)). In
this case we denote by O the set of vertices of V (G) \ V (Nu(G)) joined to
some vertex of Nu(G). The partition

V (I), O, V (G) \ (O ∪ V (I))

gives a contradiction. To see this, note that deleting V (I) leaves a graph
with no isolated vertex; deleting O leaves a graph with the same nucleus as
G but with no vertex outside the nucleus joined to the nucleus; and deleting
V (G) \ (O ∪ V (I)) leaves a forest which as we have determined above, must
be a complement of a clique. This contradiction completes the proof. �

3. Linear orders with P(3, 2)

We divide the classification of the P(3, 2) linear orders into cases depend-
ing on whether there are endpoints. We will make use of the following
property of oriented graphs.

Principle of Directional Duality: For each property of oriented graphs,
there is a corresponding property obtained by replacing every con-
cept by its converse.

Since the only finite oriented graphs with P(3, 2) are the one and two
element linear orders, we will consider only infinite linear orders.

3.1. The case when there is a source or sink. We first consider the
case of the well-orders with P(3, 2).

Theorem 3. The countable ordinals with P(3, 2) are

L = ωαm + ωβn,

where α, β, m, n are countable ordinals and 0 < m + n ≤ 2, α + β > 0.
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Proof. Suppose that L is an ordinal that satisfies P(3, 2). By Cantor’s nor-
mal form theorem (see Theorem 3.46 of [9]), there are ordinals α1 > · · · > αk

for k ∈ ω − {0}, and n1, . . . , nk ∈ ω − {0} such that

L = ωα1n1 + · · ·+ ωαknk.

By the P(3, 2) property, k ≤ 2. Otherwise, consider the partition

ωα1n1, ω
α2n2, ω

α3n3 + · · ·+ ωαknk

to obtain a contradiction. In a similar fashion, we have n1 + n2 ≤ 2.
For sufficiency, consider the case when m = n = 1 (the other cases are

similar). Suppose that the vertices of L = ωα + ωβ are partitioned into
A,B, C. Define Xi = X ∩ ωi where X ∈ {A,B, C} and i ∈ {α, β}. By the
P(2, 1) property, there are Y, Z ∈ {A,B, C} so that the suborders on Yα and
Zβ are isomorphic to ωα and ωβ, respectively. If Y = Z, choose some W ∈
{A,B, C}\{Y }. Now ωi ≤ ωi � (Yi ∪Wi) ≤ ωi so that ωi ∼= ωi � (Yi ∪Wi).
(We use here the property that if two ordinals are mutually embeddable
they are isomorphic; see Theorem 3.14 of [9]). Hence, L � (Y ∪W ) ∼= L. If
Y 6= Z, by a similar argument, L � (Y ∪ Z) ∼= L. �

Remark 1. Since P(3, 2) is preserved by taking reversals, Theorem 3 clas-
sifies the reversals of ordinals with P(3, 2).

To complete the classification of the P(3, 2) linear orders with an endpoint
we prove the following theorem.

Theorem 4. The countable linear orders L with P(3, 2) with an endpoint
and with the property that L,L∗ 6∈ ON , are

ωα + (ωβ)∗,

where α, β are nonzero countable ordinals satisfying α + β > 0.

Proof. The argument for sufficiency uses the facts that ωα and (ωβ)∗ satisfy
P(2, 1). Since the details are similar to the proof of sufficiency of Theorem
3, they are omitted.

For necessity, suppose that L satisfies the hypotheses of the theorem. By
the principle of directional duality, we can assume, without loss of generality,
that L has a first element 0. By hypothesis, we may assume that L is not a
well-order.

We write L = (A,C), where L = A + C and A is the maximal initial
section of L which is well-ordered. Since 0 ∈ A, A is nonempty. It is not
hard to see that if L is isomorphic to an order L′ = (A′, C ′), then A is
isomorphic to A′ and C is isomorphic to C ′.

We claim that both A and C satisfy P(2, 1). Once the claim is proven,
the proof of the theorem will follow. Partition A into nonempty parts A1

and A2, and partition C into nonempty parts C1 and C2. Assume, for
instance, for P(3, 2), that L ∼= L � (A1 ∪ C) and L ∼= L � (A ∪ C1). Since
L � (A1 ∪C) = (A1, C), we have A1

∼= A and so A satisfies P(2, 1). Suppose
for property P(3, 2) that L � (A ∪ C1) ∼= L. Set L � (A ∪ C1) = (A′, C ′),
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noting that A ⊆ A′. Since (A,C) ∼= (A′, C ′), we have A = A′, and thus
C ∼= C ′ = C1. Thus, C satisfies P(2, 1). �

3.2. The linear orders with P(3, 2) without endpoints. In the case
when there are no endpoints we have the following classification of the count-
able P(3, 2) linear orders.

Theorem 5. The countable P(3, 2) linear orders without endpoints are the
following linear orders and their converses: (ωα)∗ + ωβ, where α, β are
nonzero ordinals, and ωγ · ω∗ + ωδ for some ordinals satisfying 0 ≤ γ and
0 < δ.

Proof. Let L be a P(3, 2) linear order. We define the equivalence relation ≡
on L: x ≡ y if the interval [x, y] of L is finite. (For more on this equivalence
relation, see Section 4.2 of [9].) We first prove that every ≡-class of L is
infinite. To see this, note that P(3, 2) implies that every finite ≡-class is a
singleton. Indeed, if there exists a finite ≡-class with exactly n elements,
for some n > 1, then partition V = V (L) into A,B, C, where A contains
exactly one element in all the ≡-classes with exactly n elements, B contains
the other elements in the ≡-classes with exactly n elements, and C contains
the elements not in A ∪ B. This partition either yields singleton ≡-classes,
or forces each ≡-class to have exactly n elements; a suitable partition proves
the latter case to be impossible.

Denote by S the set of singleton ≡-classes. Suppose for contradiction that
there exists two elements x and y in S. Without loss of generality, we may
assume that x < y. We write L = A + x + B + y + C. Choose a ∈ V (A)
and c ∈ V (C). We claim that the partition

(V (A) \ {a}) ∪ {x}, (V (C) \ {c}) ∪ {y}, V (B) ∪ {a} ∪ {c}
violates P(3, 2). To see this, note that the only case that does not have
endpoints is L ∼= L � V (L) \ (V (B) ∪ {a} ∪ {c}). But this case is also
impossible since x, y is now a ≡-class. If S has exactly one element x, we
may write L = A + x + B, with A and B nonempty (otherwise, L would
have an endpoint) into A, {x}, B to obtain a contradiction.

Therefore, every ≡-class is infinite. We next prove that for every partition
into two summands L = A + B, either A is the reverse of an ordinal or B
is an ordinal. Assume that this is not the case, and some fixed partition
A + B does not satisfy this. There exists an initial section SA in A with
no maximum and a final section SB in B without minimum. We first prove
that we can suppose that L = SA + C + SB with C nonempty. On the
contrary, assume that L = SA + SB and fix a vertex a ∈ SA and b ∈ SB.
We partition L into

V (X), {a} ∪ V (Y ) ∪ {b}, V (Z),

where L = X + a + Y + b + Z. The sets V (X), V (Z) are nonempty to
avoid endpoints. To avoid endpoints and to satisfy P(3, 2), we must have
L ∼= L � (V (X) ∪ V (Z)) = L′. Since L = SA + SB, we can find in L′
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an initial section S′
A without a maximum and a final section S′

B without
a minimum so that L′ = S′

A + S′
B. If S′

A = X and S′
B = Z then we may

choose C = a + Y + b. Suppose now that S′
A & X. (The case when X & S′

A
is similar and so omitted.) Let S′ = S′

A and S′′ = SB. Then S′ is an initial
section with no maximum and S′′ is a final section with no minimum, and
we may choose (the nonempty set) C to be the vertices greater than S′ but
less than S′′.

Thus, there exists a partition SA +C +SB with C nonempty. Fix a ∈ SA,
b ∈ SB and c ∈ C. By considering the following partition for P(3, 2)

(SA \ {a}) ∪ {c}, {a} ∪ (V (C) \ {c}) ∪ {b}, SB \ {b},

we obtain either an endpoint, or c as an ≡-class. Each case gives a contra-
diction.

We may therefore assume that L = A + O where A is a linear order and
O is an ordinal (which is a limit ordinal since L has no greatest element).

Case 1. Suppose that L = (O′)∗+A′, for some ordinal O′ and some linear
order A′.

Then O′ is a limit ordinal (since L has no least element), and L = (O′)∗+
A′′+O, where A′′ is a linear order. If A′′ is nonempty, we may then consider
the partition (O′)∗ \ {x}, A′′ ∪ {x, y}, O \ {y}, where x ∈ (O′)∗ and y ∈ O,
to reduce to the case when A′′ = ∅. The choice of (O′)∗ and O are unique
in this notation, and thus (O′)∗ and O have P(2, 1). So L = (ωα)∗ + ωβ, for
some ordinals α, β > 0.

Case 2. No initial section of L is the reverse of an ordinal, and so every
proper final section of L must be an ordinal.

Write L = A+B, where B is the least non-zero ordinal with this property.
It is straightforward to check that B has P(2, 1), and is therefore infinite
(since L has no endpoints). The linear order B, which is a countable ordinal
power of ω, has the property that O+B = B when O is an ordinal satisfying
O < B.

Case 2.1. Suppose that there is a decomposition L = A + C + B, where
C is an ordinal satisfying C > B.

Hence, there is an ordinal C ′ so that C = B + C ′ so that L = X + B1 +
C ′ + B2, where X is some linear order, and B1, B2

∼= B. Partition L into

V (X) ∪ V (B1), V (C ′) ∪ {x}, V (B2) \ {x},

where x ∈ V (B2). Deleting V (X) ∪ V (B1) leaves an ordinal. Deleting
V (B2) \ {x} leaves a last element. Therefore, L ∼= L � (V (X) ∪ V (B1) ∪
V (B2 − x)). Since B is P(2, 1), B2 − x ∼= B2, so L ∼= X + B + B.

Applying this argument inductively gives either that L ∼= Z + B · ω∗

or L ∼= Z + B · n, where Z has no proper final section equal to B and
n ≥ 1. This last case gives directly by P(3, 2) that n = 1, so L ∼= Z + B.
Recall that L ∼= X + B1 + B2, where B1, B2

∼= B. Suppose that Z + B
is isomorphic to X + B1 + B2 via an isomorphism f . By the choice of Z,
f(B) properly contains B2. Since B+B > B, f(B) cannot properly contain
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B1 +B2. Therefore, there are non-zero ordinals α, β so that B1 = α+β and
f(B) = β + B2. It follows that β 6∼= B, and so by P(2, 1), α ∼= B. But then
f(Z) ∼= X +α ∼= X +B, which contradicts that Z has no final section equal
to B.

Thus, L = Z + B · ω∗, where Z has no final section equal to B. Fix
z ∈ V (Z). Then the final section {x : x ≥ z} contains ω∗ which is a
contradiction since we are in Case 2. Hence, L = B · ω∗, and so L has the
desired structure.

Case 2.2. Every partition L = A + C + B satisfies C < B, and thus,
C + B = B.

Thus, every proper final section of L is isomorphic to B, where B = ωδ

for some nonzero ordinal δ. An element x of L is a bad cut if, writing
L = L1 + x + R, the order L1 has the property that all its proper final
sections are isomorphic. If x is a bad cut, then we claim that every proper
final section of L1 is isomorphic to ωγ , for some countable γ ∈ ON . To see
this, fix a proper final section S of L1. Since S +x+R is a final section of L,
S is an ordinal. If S = α + β, where β 6= 0, then β is a proper final section
of L1 and so equals S. The ordinal S is therefore additively indecomposable
and the claim follows. (See Exercise 10.4 (6) of [9].) We say that the type
of the bad cut x is γ.

If x, y are bad cuts, and x < y in L, the type of x is certainly strictly
smaller than the type of y; and from this, if there is a bad cut, there exists a
minimum bad cut b. In other words, for every y < b, writing L = Ly +y+R,
the order Ly can be partitioned in a unique way into Ly = X + Y , where
Y is an ordinal and every proper final section of X is greater or equal to
Y . (Note that every proper final section of X is a suborder of a proper final
section of L, and so is an ordinal.)

If there are no bad cuts, choose y to be any element of L. Otherwise,
choose y < b. We decompose L as follows. Let L = L1 + y + R and
L1 = L2 +A1, where A1

∼= ωα1 , is the unique partition of L1 such that every
proper final section of L2 has ordinal type greater or equal to ωα1 . More
generally, we define Li = Li+1 +Ai, where Ai

∼= ωαi , as the unique partition
of Li such that every proper final section of Li+1 has ordinal type at least
ωαi . By this decomposition, we may write

L = X +
∑
i∈ω∗

ωαi

with α0 = δ, the order-type of B. Since every proper final section of L is an
ordinal, X is empty.

The increasing ordinal sequence

α1, α2, α3, α4, . . .

is denoted by s(y). If there is a bad cut and y, y′ < b, or there is no bad
cut and y, y′ are arbitrary, then the sequences s(y) and s(y′) are equal after
some finite number of terms. To see this, suppose that y′ < y and y′ belong
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to Ai in the decomposition of L which starts at y. Then the sequence s(y′),
up to its first terms is equal to αi+1, αi+2, . . .. So two decompositions of
L =

∑
i∈ω∗ ωαi , where αi ≤ αj , for every 0 < i < j, must be the same up to

a finite number of terms.
If in addition L is P(3, 2), we claim that for every decomposition, the

sequence (αi) is constant after a finite number of terms. Otherwise, the
partition O,E, ωα0 , where O is the union of the ωαi with i odd, and E is
the union of the ωαi , with i > 0 even, violates P(3, 2). To see this, note
first that since we are in Case 2.2, we can not have L ∼= L � (O ∪ E). Now
suppose that L ∼= L � (O ∪ ωα0) = L′ (the other case is similar). L′ gives
rise to the sequence

β = (βi) = (α0, α1, α3, . . .).

Let α be the sequence (αi : i ∈ ω). By the last sentence of the previous
paragraph, we must have there is a k0 ∈ ω so that for k > k0, βk = αk. But
then we obtain the equalities

α(2k0−1)+2j = αk0+j ,

where j > 0. But since α is increasing, these equalities imply that α is
constant after αk0 .

Hence,
L = ωγ · ω∗ + ωαk0 + . . . + ωα1 + ωα0 ,

for some γ such that 0 < α0 ≤ . . . ≤ αk0 ≤ γ. The P(3, 2) property implies
that

L = ωγ · ω∗ + ωδ,

where δ = α0. �

4. Tournaments with P(3, 2)

The notions of an r-extendable set of vertices in a tournament and an
n-e.c. tournament are similar to the corresponding notions for graphs, and
so we omit the definitions. The random tournament, T∞, is the unique
tournament that is n-e.c. for all n ≥ 1.

The following definitions apply in any oriented graph. The in-neigh-
bours of vertex x are the vertices y so that (y, x) is an arc; the out-neighbours
of x are the vertices y so that (x, y) is an arc. A vertex x is a source if it
has no in-neighbours, and a sink if it has no out-neighbours. If (x, y) is an
arc, we say that x dominates y and y is dominated by x.

Following the proof of Theorem 1, no 2-e.c. P(3, 2) tournament exists.
The proof of this is nearly identical to the proof of Theorem 1 and is therefore
omitted. What remains is to classify the P(3, 2) tournaments which fail to
be 2-e.c. We prove in the following theorem that every P(3, 2) tournament is
a linear order. Theorems 3, 4, 5 and 6 finish the classification of the P(3, 2)
tournaments. For nonempty sets of vertices A and B, the notation A → B
means that each vertex of A dominates each vertex of B.
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Theorem 6. The tournaments with P(3, 2) are linear orders.

Proof. Let T be a P(3, 2) tournament. We may assume that T is infinite.
As in the proof of Theorem 2, we first prove that T has an interval : two
distinct vertices x, y with the same out-neighbourhood in V (T ) \ {x, y}.

If T has a source x, then we prove there is an interval. (The case when T
has a sink follows by directional duality.) Pick y in V (T )\{x} and partition
V (T ) \ {x, y} into the out-neighbours A of y, and the in-neighbours B of y
different from x. Consider the partition {x, y}, A, B.

If T ∼= T � (A ∪ {x, y}), then {x, y} is an interval, so we may assume
that B 6= ∅. In that case, either for A = ∅ or for P(3, 2) we have that
T ∼= T � (B ∪ {x, y}) = X. Then y is a sink in X. We claim that an
interval exists. To see this, consider the partition {x}, {y}, B. It follows
that X � ({z} ∪ B) ∼= X, where z is either x or y. If X � ({x} ∪ B) ∼= X,
then since X ∼= T , it follows that X � ({x}∪B) has a sink, s, which must be
in B. But then {y, s} is an interval in X, and therefore, there is an interval
in T . If X � ({y} ∪B) ∼= X, then since X ∼= T , X � ({y} ∪B) has a source,
t, which must be in B. But then {x, t} is an interval in X, and we conclude
that there is an interval in T .

The final case is if T ∼= T � (A∪B); then there exists a source x′ in A∪B.
If x′ belong to B, then x′ dominates every vertex in T save x, thus {x, x′}
is an interval in T . If x′ ∈ A, then partition T into

{x}, (A \ {x′}) ∪ {y}, B ∪ {x′}.

Now deleting B ∪ {x′} gives the interval {x, y}. Deleting {x} gives a source
s in T − x. Since (y, x′) is an arc, s 6= x′. Since x′ dominates each vertex
of (A ∪ B) \ {x′}, we must have s = y. Hence, B = ∅. Thus, {x, y} is an
interval. Finally, deleting (A \ {x′}) ∪ {y} gives that {x, x′} is an interval.

Next, we assume that T has neither a source nor a sink. From the tour-
nament analogue of Theorem 1, it follows that T has a non-extendable pair
of vertices. If x, y is one such pair of non-extendable vertices in V (T ) = V ,
then partition V \ {x, y} into four subsets

S00, S01, S10, S11,

where S00 is the set of vertices dominating x and y, S01 is the set vertices
dominating x and not y, S10 is the set the vertices dominating y but not x,
and S11 is the set the vertices dominated by x and y.

Suppose first that x, y is 3-extendable.
Case 1. S11 = ∅. We partition V into {x} ∪ S01, {y} ∪ S10 and S00.

Since T is a P(3, 2) tournament, the induced subtournament on the union
of two of these subsets is isomorphic to T . Two cases give sinks, so the sole
remaining case is T � ({x, y}∪S01∪S10) ∼= T in which x, y is 2-extendable in
the induced subtournament, and so there is a 2-extendable pair of vertices
in T .
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Case 2. S10 = ∅. We partition V into {x} ∪ S00, {y} ∪ S11 and S01.
Two cases for P(3, 2) give a source or a sink, so the sole remaining case is
T � ({x, y} ∪ S00 ∪ S11) ∼= T in which {x, y} is an interval.

The other cases are similar. If x, y is 1-extendable, then {x, y} is an
interval or an anti-interval : a pair of vertices {a, b} such that whenever
(a, z) is an arc, then (z, b) is an arc, where z 6= a, b.

Consider the final case when there exists a pair x, y which is 2-extendable
and assume that {x, y} is neither an interval nor an anti-interval. The sole
case then (by directional duality) is when S01 and S11 are nonempty. The
partition

{x}, S01 ∪ {y}, S11

then gives either a source or an anti-interval. If we obtain a source, we
obtain an interval by previous arguments.

To prove that we have an interval, it is enough now to show that the exis-
tence of an anti-interval {a, b} in T gives a contradiction or an interval. By
directional duality, we may suppose that (a, b) is an arc. Throughout, when
speaking about an interval or an anti-interval {a, b}, it will be implicitly
assumed that (a, b) is an arc.

If T has two distinct anti-intervals {a, b}, {c, d} which intersect, then if
b = d, then {a, c} is an interval. A similar conclusion holds when a = c.
We can therefore assume that b = c or a = d. Without loss of generality,
suppose b = c and so (d, a) is an arc. The set of vertices

V (T ) \ {a, b, d}

admits a partition into A the out-neighbours of a not equal to b, and B
the in-neighbours of a not equal to d. Observe that A → b → B and
B → d → A. The partition A ∪ {a}, {b}, B ∪ {d} gives either the interval
{a, d}, or b as a source or sink. In any case we have an interval.

Thus, we can assume that the anti-intervals are disjoint. Enumerate the
anti-intervals of T as

{x1, y1}, {x2, y2}, . . .
Denote by X the union of the xi’s, by Y the union of the yi’s, and by S

the set V \(X∪Y ). We first reduce to the case when S is empty. Otherwise,
by considering the partition X, Y, S of T , we deduce that T is isomorphic to
T � (X ∪S) or T � (Y ∪S) (and not to T � (X ∪Y ), since in that case, every
vertex of T would be contained in an anti-interval and so S would be empty).
Suppose that T � (X ∪ S) (the other case is similar.) Every anti-interval of
T � (X ∪ S) is an anti-interval of T , which gives a contradiction.

We may therefore assume that S is empty; in particular, the anti-intervals
of T form a perfect matching (that is, a set of pairwise non-incident directed
edges). Now the partition

{x1}, {y1}, T \ {x1, y1}

gives a contradiction.
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We now conclude that T has an interval. We now introduce an extension
of the notion of interval. A chain-interval is a subset S of V such that
T � S is a linear order and every element outside of S either dominates
S or is dominated by S. An important property of chain-intervals is that
a (not necessarily finite) union of pairwise intersecting chain-intervals is a
chain-interval. Thus, using Zorn’s lemma, we may consider maximal chain-
intervals of T ; moreover the set of vertices of T is partitioned into chain-
intervals. By the fact that T has an interval, there exists one non-trivial
chain-interval. By the P(3, 2) property and an argument similar to one
in the proof of Theorem 2, T has either two infinite chain-intervals, which
results in a linear order, or a unique infinite chain-interval and possibly some
singleton chain-intervals.

We consider the case when there is a unique infinite chain-interval C. If
C = T , then the theorem follows, so we may assume C is a proper subtour-
nament of T . C satisfies P(2, 1) by uniqueness. We assume that C = ωα,
where α is a non-zero ordinal. (The case when C is the reversal of an ordi-
nal follows by directional duality.) Let us denote by A and B the partition
of V (T ) \ C such that A → C and C → B. Now consider for P(3, 2) the
partition A,B, C.

If T ∼= T � (A∪B), then there exists a unique infinite chain interval C ′ in
A∪B. Let T ′ = T � (A∪B). Denote by A′ and B′ the intersection of A and
B with C ′, respectively. Since C is the unique infinite chain-interval, and
has order-type ωα, in order to avoid in C ′ an interval of T (which would be
disjoint from C, and thus violate our hypothesis that there is a unique chain
interval in T ), it is necessary that the successor and the predecessor in C ′

(if any) of an element of A′ are elements of B′, and conversely the successor
and the predecessor of an element of B′ are elements of A′. In particular,
the order-type of A′ and B′ is exactly the order-type of C ′, which is the
order-type of C. (We are using the crucial fact here that C has order-type
ωα.) Consider now the partition

A′, B′, A ∪B \ (A′ ∪B′)

of V (T ′). If T ′ ∼= T ′ � (A′∪B′) we are done, since T ′ and hence, T , are linear
orders. If T ′ ∼= T ′ � (V (T ′) \ B′), then A′ and C are infinite chain-intervals
of T . Since there exists at most one infinite chain-interval in T , A′ and
C must be contained in a larger unique infinite chain-interval of T , which
must be isomorphic to C (by uniqueness). Since the order-type of A′ + C
is C + C (and the order-type of A′ is C), we violate the left-cancellation
law of ordinals. (See Theorem 3.10 of [9].) The same contradiction occurs
if T ∼= T � (V \ A′): we would obtain the conclusion that the order-type of
C + B′ is the order-type of C.

We must therefore have T ∼= T � (A ∪ C) or T ∼= T � (B ∪ C). By
directional duality, we now have the following situation: T is isomorphic to
C → B, where C is an ordinal power of ω or the reversal of such an ordinal,
and B has no non-trivial chain-intervals.
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We now prove that there is some vertex in B of in-degree 1. Fix a vertex
x in B. We denote by X and Y the in-neighbours and out-neighbours of x
in B, respectively. Observe that since C is a maximal chain interval, X is
nonempty. Let y ∈ X. If X \ {y} = ∅, then x has in-degree 1 in T . We may
therefore assume that X \ {y} 6= ∅. We partition V (T ) into

C ∪ {x}, Y ∪ {y}, X \ {y}.
If T ∼= T � ((C ∪ {x} ∪ (X \ {y})) = T ′, then x is a sink in T ′. Consider the
partition of V (T ′) into

C,X \ {y}, {x}.
Deleting X \ {y} leaves C → x, which is a linear order. If T ′ ∼= T ′(X \

{y} ∪ {x}) = T ′′, then T ′′ has a chain interval C ′′ isomorphic to C. It is
not hard to see that C ′′ is a chain interval of T ′, and by the maximality
and uniqueness of C, we must have that C and C ′′ are contained in a chain-
interval of T ′ isomorphic to C. If C is an ordinal power of ω this violates the
left-cancellation law for ordinals. If the order-type of C is (ωα)∗ for some
nonzero ordinal α, then we may use the fact that (ωα)∗ → (ωα)∗ � (ωα)∗ to
obtain a contradiction.

This forces that T ′ ∼= T ′ − x, which is impossible: T ′ − x would contain
a sink x′, which in turn, with x, would be a nontrivial chain-interval in T ′

disjoint from C, which as before would give a contradiction.
If T ∼= T � ((X ∪ Y ) \ {x}) via an isomorphism f , then the image under

f , say C ′, of C in X ∪ Y would alternate from X to Y . Suppose that C ′
X

is the part of C ′ intersecting X; C ′
Y is defined similarly. We consider the

partition
C ′

X , C ′
Y , V \ (C ′

X ∪ C ′
Y ).

As in an argument above, this case gives either a contradiction or gives that
T is a linear order.

Thus, T ∼= T � (C ∪{x}∪Y ∪{y}) via an isomorphism g. In other words,
(with the notation that T = C → B) B has a vertex of in-degree 1 relative
to B (the pre-image of x under g); we denote it by x0.

Given a tournament T ′, the chain-reduction of T ′ is the operation in which
we delete all the vertices of a maximal linear order L satisfying T ′ = L → A.
A point-reduction of T ′ is the tournament obtained from T by deleting one
vertex of in-degree 1. A reduction of T ′ is obtained by applying a chain-
reduction followed by one point-reduction to T ′. A tournament which is
unchanged by a reduction is reduced. Applying some number of reductions
to T ′ (beginning with the chain-reduction of deleting C followed by the
point-reduction of deleting x0; possibly transfinitely many reductions may
result after this initial reduction), the process eventually terminates in the
empty tournament or a reduced tournament. In the latter case, we call the
resulting reduced tournament a nucleus of T . (We are not claiming that a
nucleus is unique, since point-reductions may not be unique.)

The reduction process defines a linear order L on the vertices not in a
given nucleus: x <L y if x has been deleted before y in the reduction, or
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x and y were deleted in the same chain-reduction and x is less than y in
this chain. Thus, for any element x of L, the in-degree of x in the induced
subtournament of T ′ on the set

{y ∈ L : x < y in L} ∪ {x}

is at most 1.
The first case is if every nucleus of T is empty. We make use of the linear

order L on V defined above. Consider the graph G of the oriented graph
on T whose arcs are the arcs which are not in L. The vertices outside a
nucleus form a forest in G; hence, in this case, the graph G itself is a forest.
The vertices in C are isolated in G, and B gives rise to a forest F . Recall
that T = C → B, with C the unique infinite chain-interval of T . Consider a
fixed 2-colouring of B with nonempty independent sets B1, B2. Consider the
partition V (C), B1, B2. Deleting V (C) leaves a tournament with no chain-
interval which is a contradiction. Finally, the induced subtournaments on
C ∪ B1 and C ∪ B2 are linear orders: the linear order L restricted to these
sets coincides with T .

The final case is when there is a nucleus N of T that is nonempty. It is
straightforward to see that N and C are disjoint. Partition V (T ) into

V (C), V (N), V (T ) \ (V (C) ∪ V (N)).

The set V (T ) \ (V (C)∪V (N)) is not empty since it contains x0 (our vertex
of in-degree 1 in B). If T ∼= T � (V (C)∪V (N)) = T ′ via an isomorphism f ,
then C is the unique non-trivial chain interval of T ′ (this follows as above
by left-cancellation for ordinals and the fact that (ωα)∗ → (ωα)∗ � (ωα)∗).
Hence, f(B) = N . But B has a vertex of in-degree 1, while N does not.
Deleting V (C) would result in T ∼= T � B via an isomorphism h. But as
described above, considering the image of C under h gives a contradiction.
We must therefore have T ∼= T � (V (T ) \ V (N)) = S. In this case, we
consider the graph G of the oriented graph on arcs of S which are not in L.
Deleting N from T leaves C (since C is deleted in the first chain-reduction),
and a set F which is a forest in G. If F is empty, we are finished, since then
L is isomorphic to C which is a linear order. Assume that F is nonempty.
To finish, apply now the same argument to S as the one applied to T in the
case when every nucleus of T is empty. �

The order type of the rationals is denoted η, and a linear order is scattered
if it does not contain η as a suborder. Although we do not yet know a classi-
fication of the P(n, k) linear orders for all possible values of the parameters
n, k, the following theorem does give some insight into their structure.

Theorem 7. If L is a P(n, k) linear order, where 1 ≤ k < n, then L is
scattered.

Proof. To every countable linear order L, we associate the (countable) set
I(L) of intervals of L which are of ordinal order-type. Thus, there is a
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minimum countable ordinal, α(L), so that no element of I(L) is greater or
equal to α(L).

Suppose, to obtain a contradiction, that L is not scattered and satisfies
P(n, k). Then we can find n disjoint intervals I1, . . . , In of L, each of them
containing a suborder of order-type η. Partition each Ij into Aj and Bj in
such a way that both α(Aj) and α(Bj) are greater than α(L). To see that
this is possible, we apply the following claim with β = α(L), γ = α(Aj) and
δ = α(Bj).

Claim: For fixed countable β, γ, δ ∈ ON so that γ, δ > β, there is a
partition of Ij into Aj and Bj so that γ is an interval of Aj and δ is
an interval of Bj .

To prove the claim, note that since η is a suborder of Ij , we may embed γ
and δ in Ij in such a way so that there are x, y, z so that x < γ < y < δ < z
in the embedding. Define Aj to be the vertices of γ union {r : y < r < z}
minus the vertices of δ, and define Bj to be the vertices of δ union {s : s ≤
y} ∪ {t : t ≥ z} minus the vertices of γ. It is routine to check that γ is an
interval in the suborder on Aj and δ is an interval in the suborder on Bj .

Let S = L \ (
⋃

Ii). The partition

S ∪A1 ∪Bn, A2 ∪B1, A3 ∪B2, . . . , An ∪Bn−1

of L violates P(n, k) since the induced suborder on the union of any k of
these subsets is a linear order L′ with α(L′) > α(L). �

5. Oriented graphs with P(3, 2)

An oriented graph O with P(3, 2) must have a graph with P(3, 2). In
order to characterize the P(3, 2) oriented graphs, we may therefore exploit
Theorem 2. Theorem 8 also classifies the countable orders with P(3, 2). An
oriented graph is independent if it has no directed edges.

Theorem 8. The infinite oriented graphs with P(3, 2) that are neither in-
dependent nor tournaments are (up to converses) the following:

K1 ] ωα, ωα ] ωβ, ωα ]Kℵ0 ,K1 → Kℵ0 ,Kℵ0 → Kℵ0 ,Kℵ0 → ωα, ωα → Kℵ0 ,

where α and β are countable ordinals.

Proof. Consider orientations of the infinite P(3, 2) graphs G that are neither
cliques nor complements of cliques. These will give all the infinite P(3, 2)
oriented graphs that are neither tournaments nor independent.

Case 1. G = K1 ]Kℵ0 .
In this case, the infinite clique must be an orientation of a P(2, 1) tourna-

ment, which must be a linear order: the infinite random tournament, T∞,
along with an isolated vertex does not have P(3, 2). To see this, let x be
the isolated vertex, and fix y a vertex of T∞. Let O be the out-neighbours
of y and I the in-neighbours of y. The conclusion follows by considering the
partition {x, y}, O, I.

Case 2. G = K1 ∨Kℵ0 .
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Partition Kℵ0 into O, the out-neighbours of K1, and I, the in-neighbours
of K1. Since the oriented subgraph induced by O ∪ I has no edges, by the
P(3, 2) property we have K1 is a source or sink.

Case 3. G = Kℵ0 ∨Kℵ0 .
Denote the join-components as X and Y . Fix x ∈ X. Let O be the

out-neighbours of x in Y , and let I be the in-neighbours of x in Y . By
P(3, 2), we conclude that there is a source or a sink. Since x was arbitrary,
we can conclude there exist at least two sources or two sinks; without loss
of generality, suppose that there are two sources and they belong both to
X. In particular, Y is determined by having no sources. We partition X
into its set of sources S minus one called s, the set X \ S, and Y . If we
delete S, then we are left with an oriented graph with exactly one source s,
giving a contradiction. To see this, note that there are no sources in Y since
s ∈ X \S is a source. Any source in X \S would be a source in X ∪Y . If Y
is deleted, then we are left with an independent set. Therefore, the oriented
graph induced by S ∪ Y is isomorphic to the original oriented graph, which
must be Kℵ0 → Kℵ0 .

Case 4. a) G = Kℵ0 ]Kℵ0 , b) G = Kℵ0 ]Kℵ0 .
In either case, write G = X ]Y , where X, Y ∈ {Kℵ0 ,Kℵ0}. It is straight-

forward to see that if X and Y are complete then they have P(2, 1). In case
a), we obtain the disjoint union of two P(2, 1) tournaments, which must be
linear orders. In case b), we obtain the disjoint union of a P(2, 1) linear
order and an infinite independent set.

Case 5. G = Kℵ0 ∨Kℵ0 .
Name the join-components X, Y , respectively. A similar argument as in

Case 4 establishes that Y has P(2, 1), and so is a linear order. A similar
argument as in Case 3 establishes that we must have X → Y or Y → X.
Therefore, in this case, we obtain (up to converses) L → I, where L is a
P(2, 1) linear order, and I is an infinite independent set. �

6. Comments and Problems

For a given integer n ≥ 2, we may construct several examples of P(n, n−1)
graphs as follows. If G and H are graphs and x ∈ V (G), then by substituting
x in G by H we mean expanding x to a copy of H and then joining every
vertex of H to the neighbours of x in G. Fix G a graph with n− 1 vertices.
Substitute either Kℵ0 or Kℵ0 for some of the vertices of G. It is not hard to
see that the resulting graphs have P(n, n − 1); in fact, the P(2, 1) graphs,
except R, are of this form, and all the P(3, 2) graphs are of this form.
Unfortunately, there are examples of P(n, n − 1) graphs, for each n ≥ 4,
which are not of this form. For example, the graph G(n) defined to be

(n− 4)Kℵ0 ] ℵ0K2 ]Kℵ0

has P(n, n− 1).
The outstanding open problem we present is the one of classifying the

P(n, k) graphs, tournaments, and oriented graphs, when n > 3 and 1 ≤
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k < n. Theorems 1 and 7 put some restrictions on such structures. A
related problem is whether there are only finitely many P(n, n− 1) graphs
when n > 3. The evidence so far suggests this question will be answered
affirmatively; if so, is there a non-constructive proof? Another problem is
whether a structure with P(n, n− 1) also satisfies P(n + 1, n) when n ≥ 3.

The age of a graph G is the set of isomorphism types of induced subgraphs
of G. An age A has polynomial profile if there is a polynomial function
f : ω → ω so that the number of n-vertex graphs in A is bounded above
by f(n). We conjecture that an age A of a countable graph has polynomial
profile if and only if A is the age of a countable graph satisfying P(n, n− 1)
for some n > 2.
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