
Well-quasi-order of relabel functionsJean Daligault 1 Michael Rao 1 Stéphan Thomassé 1LIRMM-Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex, Francedaligault@lirmm.frrao@lirmm.frthomasse@lirmm.frAbstractWe de�ne NLCF
k to be the restriction of the class of graphs NLCk, where rela-belling functions are exclusively taken from a set F of functions from {1, . . . , k} into

{1, . . . , k}. We characterize the sets of functions F for which NLCF
k is well-quasi-ordered by the induced subgraph relation ≤i. Precisely, these sets F are those whichsatisfy that for every f, g ∈ F , we have Im(f ◦g) = Im(f) or Im(g◦f) = Im(g). Toobtain this, we show that words (or trees) on F are well-quasi-ordered by a relationslightly more constrained than the usual subword (or subtree) relation.A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellingsinto n colors forms a well-quasi-order under ≤i, where ≤i respects labels. Pouzet[15] conjectured that a 2-well-quasi-ordered class closed under induced subgraph is infact n-well-quasi-ordered for every n. A possible approach would be to characterizethe 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such aclass is always included in some well-quasi-ordered NLCF

k for some family F . Thiswould imply Pouzet's conjecture.
1 IntroductionLet S be a set and ≤ be a quasi-order on S, i.e. a re�exive and transitiverelation. Given a sequence (xi)i∈ω of elements of S, a good pair consists of twoelements xi ≤ xj , with i < j. A sequence with no good pair is called a badsequence of (S,≤). A quasi-order with no bad sequence is a well-quasi-order.There are other equivalent presentations of the notion of well-quasi-ordering(see for instance [12]). A quasi-order is a well-quasi-order if and only if it
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has no in�nite antichain and no in�nite strictly decreasing sequence. Also,a quasi-order is a well-quasi-order if and only if every in�nite sequence hasan in�nite increasing subsequence. Equivalently, a quasi-order is a well-quasi-order if and only if every nonempty subset of S has a nonempty �nite set ofminimal elements (up to equivalence).The theory of well-quasi-ordering has been �ourishing. Higman's theoremstates that the set of words over a well-quasi-ordered set is well-quasi-orderedby the subword relation [7], and this has been extended by Kruskal's to trees[11]. Robertson and Seymour's celebrated graph minor theorem [16] assertsthat the minor relation is a well-quasi-order on the set of �nite graphs. Itimplies that every graph class closed under minor (or minor ideal) can becharacterized by a �nite list of excluded minors. This in turn implies thatevery minor ideal can be recognized in polynomial time.The class of �nite graphs is not well-quasi-ordered by the induced subgraphrelation since the cycles form an antichain. The good properties of the minorideals ensured by the minor theorem do not hold for induced subgraph ideals(for instance, the set of paths, which is well-quasi-ordered does not have a�nite set of forbidden induced subgraphs). This is a motivation to the strongernotion of 2-well-quasi-ordering.In the following, we will be exclusively interested in the induced subgraphrelation. Throughout this paper, we will abbreviate "well-quasi-ordered bythe induced subgraph relation" in well-quasi-ordered, being understood thatwe are dealing with the induced subgraph relation.An extension of the notion of well-quasi-order is the notion of n-well-quasi-order (see Kriz and Thomas [9] for a more general discussion in terms of QO-category). A set S of graphs is n-well-quasi-ordered if the class Ŝ consisting ofall vertex n-coloring of graphs in S, is well-quasi-ordered by ≤1, where G ≤1 G′if there is an injection from V to V ′ preserving adjacency and color. The set
S is ∞-well-quasi-ordered if S is n-well-quasi-ordered, for any n ≥ 1. Being2-well-quasi-ordered is a stronger property than being well-quasi-ordered, forinstance the set of paths is not 2-well-quasi-ordered.The notion of 2-well-quasi-ordering is especially interesting in view of algo-rithmic properties, as induced subgraph ideals which are 2-well-quasi-orderedcan be characterized by a �nite list of forbidden induced subgraphs, and thusare polynomially recognizable. Our ultimate aim would be to characterize the
2-well-quasi-ordered ideals of graphs, in order to prove the following conjectureof Pouzet [15], also appearing in Fraïssé [4]:Conjecture 1 An induced subgraph ideal is 2-well-quasi-ordered if and onlyif it is ∞-well-quasi-ordered. 2



Fig. 1. The graph G5We will come back to this topic in Section 5. Our main purpose here is tostudy a restriction of the hierarchy of graph classes NLC.The class NLCk of k-node labelled controlled graphs was introduced in [18].Let F be a set of functions from {1, . . . , k} into {1, . . . , k}. The class NLCF
kis de�ned recursively by using k node-labels and three operators: •i, ◦f and

χS. For i ∈ {1, . . . , k}, the operator •i creates a single vertex labelled by i.The operator ◦f , with f ∈ F , applied to a labelled graph replaces every label
i with f(i). The operator χS, with S ⊆ {1, . . . , k}×{1, . . . , k}, applied to twolabelled graphs G and H in this order, creates the disjoint union of graphs Gand H , and for all (i, j) ∈ S adds edges between every vertex of label i in Gand every vertex of label j in H . The class NLCk is de�ned to be NLCΦ

k where
Φ is the set of all functions from {1, . . . , k} into {1, . . . , k}. The NLC-width of
G is the minimum k for which some labelling of G is in NLCk.It is not known whether there exists a polynomial time algorithm computinga NLC decomposition using k colors for graphs in NLCk. Only the cases k = 1(which corresponds to cographs) and k = 2 (see [8]) have been solved so far.Computing the NLC-width is NP-hard (see [6]).The NLC-width has a strong link with another well-known parameter: theclique-width, introduced by Courcelle et al. (see [1]). NLC-width and clique-width indeed di�er by a factor at most 2 (more precisely, the clique-width of agraph is bounded below by its NLC-width, and above by twice its NLC-width).Moreover, transformations respecting these bounds between decompositions ofthe two types can be done in linear time.The class of graphs NLC1 is well-quasi-ordered, see [2] and [17] for the count-able case. The class of graphs NLC2 is well-quasi-ordered (and even ∞-well-quasi-ordered), this easily follows from the results in [8]. Indeed, the NLC2prime graphs for the modular decomposition are constructible in NLC2 with-out relabelling, and thus form a well-quasi-ordered family by Kruskal's treetheorem. However, the class NLC3 is not well-quasi-ordered, as it containsfor every i the graph Gi (a path of length i with two pending vertices addedto each extremity) depicted in Fig. 1. These graphs indeed do not form awell-quasi-ordered family. Allowing all relabelling operators ◦f is too much toconstruct a well-quasi-ordered class of graphs if we have at least 3 colors. Thisis why we de�ne a restriction of NLC, using only relabelling operators from aspeci�ed set of functions F . Our main purpose is to characterize the sets Fsuch that NLCF

k is well-quasi-ordered. We will see that NLCF
k is well-quasi-ordered (equivalently ∞-well-quasi-ordered) if and only if it does not contain3



arbitrarily large paths.In Section 2, we introduce a binary relation � on set of functions. In Section 3we introduce a subword order ≤ on words labelled with a set of functionswhich is more constrained that Higman's order. In Section 4 we extend ≤ totrees, with the purpose of applications to NLCF
k expressions. In Section 5,we characterize the sets F for which NLCF

k is well-quasi-ordered. In the �nalsection, we discuss Pouzet's conjecture on n-well-quasi-ordering.Throughout this paper, we will obtain the following equivalent characteriza-tions of F :
• The set F is totally quasi-ordered by �.
• The set of words on F is well-quasi-ordered by ≤.
• The set of trees on F is well-quasi-ordered by ≤.
• The set of graphs NLCF

k is well-quasi-ordered.
• The set of graphs NLCF

k is ∞-well-quasi-ordered.
• The set of graphs NLCF

k does not contain arbitrarily large paths.2 Totally ordered sets of functionsLet F be a set of functions from {1, . . . , k} into {1, . . . , k} closed under com-position (with the convention that the identity function ε belongs to F). Thekey-de�nition of this section is the following. Let us say that f � g whenever
Im(f ◦ g) = Im(f).Assume that � is total on F , i.e. for every f, g in F , at least one of f � g and
g � f holds. This implies in particular that Im(f 2) = Im(f) for all f ∈ F .Observe that f � g implies that |Im(f)| ≤ |Im(g)|.Lemma 1 If � is total on F , then � is transitive.Thus � is a re�exive and transitive relation, in other words � is a total quasi-order on F . This is equivalent to the existence of a partition of F into tequivalence classes F1, ..., Ft such that f ∈ Fi and g ∈ Fj verify f � g if andonly if i ≤ j.Lemma 2 When F is totally quasi-ordered by �, the equivalence classes
F1, ..., Ft are exactly the classes of functions having an image of the samesize, in increasing order of the image size.Observe that the top class Ft contains ε, and contains only permutations.Lemma 3 For all i, Fi and ∪k≥iFk are closed under composition.4



Lemma 4 The functions of the bottom class F1 verify a "left-cancellation"identity:
∀f ∈ F1, ∀h, h′ ∈ F , if h ◦ f ◦ h′ = h ◦ f then f ◦ h′ = f (1)Here is an example of a set of functions which is totally ordered by �. An

(i, j)−cast, with i ≤ j, is a function f from {1, . . . , k} into itself such that
f(l) = l for all l < i and f(l) = j whenever i ≤ l. It is routine to checkthat the set of casts is indeed totally ordered by �. We feel that the followingproblem would give some insight on the well-quasi-ordered NLCF

k classes:Problem 2 Find a generic class of functions G (like casts for instance) suchthat for every totally ordered F and k, there exists some k′ for which NLCF
kis included in NLCG

k′Such a class of function would describe much more precisely how to constructthe well-quasi-ordered classes NLCF
k .3 Words on functionsAn F-word is a �nite word on the alphabet F , i.e. a �nite sequence f1, . . . , flof elements of F . Let WF be the set of F -words. Let M = f1, . . . , fl and

M ′ = f ′
1, . . . , f

′
l′ be two F -words. The word M is a subword of M ′ if there existsan increasing injection φ from {1, . . . , l} into {1, . . . , l′} such that fi = f ′

φ(i).Higman's theorem asserts that the subword partial order is a well-quasi-orderwhen the alphabet is �nite. In our more constrained partial order on F -words,we have M ≤ M ′ if two conditions are satis�ed:
• There is a function φ for which M is a subword of M ′.
• For all 1 ≤ i < l, we have fi = f ′

φ(i) ◦ f ′
φ(i)+1 ◦ · · · ◦ f ′

φ(i+1)−1.Thus, when M ≤ M ′ and i < j, the composition of functions fi◦fi+1◦· · ·◦fj−1is equal to the function f ′
φ(i) ◦ f ′

φ(i)+1 ◦ · · · ◦ f ′
φ(j)−1. And since fj = f ′

φ(j), wealso have fi ◦ fi+1 ◦ · · · ◦ fj = f ′
φ(i) ◦ f ′

φ(i)+1 ◦ · · · ◦ f ′
φ(j).Our goal is to prove here that WF is well-quasi-ordered by ≤ if and only if

� is total on F . For this, we have to be a little bit more general and need toconsider WF
Q , the set of words on the set F ×Q, where Q is a set endowed bya well-quasi-ordered ≤Q.We naturally extend the partial order ≤ onWF

Q . For w inWF
Q and 1 ≤ x ≤ |w|we denote by (fw

x , qw
x ) the xth letter of w. For any couple of indices a, b, with 1 ≤

a < b ≤ |w|, we de�ne Lw(a, b) to be the composition fw
a ◦fw

a+1◦...◦fw
b−1. When5



a = b, we set Lw(a, b) = ε. Let φ be an increasing injection from {1, . . . , |w|}into {1, . . . , |w′|}. We say that φ is compatible with labels if fw
x = fw′

φ(x) and
qw
x ≤Q qw′

φ(x). We say that φ preserves path-composition if for every x < |w|, wehave that Lw(x, x + 1) = Lw′

(φ(x), φ(x + 1)) (observe that by de�nition wehave Lw(x, x+1) = fw
x ). We write w ≤ w′ if there exists an increasing injection

φ from {1, . . . , |w|} into {1, . . . , |w′|} compatible with labels and preservingpath-composition. When φ is only compatible with labels, we simply say that
w is a subword of w′ and write w ≤0 w′.Theorem 1 The set of words WF

Q is well-quasi-ordered by ≤ if and only if �is a total quasi-order on F .4 Trees on functionsWe extend in this section our results to trees. However, since the argumentsare similar to the previous section, we will not give the same level of details,especially concerning the veri�cation of path-composition.A structured tree is a �nite tree where the childs of a node are ordered fromleft to right. Our trees have their nodes labelled by a well-quasi-ordered set
Q. We denote by T F

Q the set of structured rooted trees with nodes labelled by
F × Q, where F is as usual a set of functions. A node x is then labelled bya pair l(x) = (f(x), q(x)). We simply write T F when there is no additionallabel Q. The set of nodes of T is denoted by V (T ). We write x ∧ y for theleast common ancestor of x and y. We say that (x, y) is an arc of T when xis the father of y. A sequence of nodes z0, z1, ..., zn is a downward path in Tif (zi, zi+1) is an arc, for every i = 0, . . . , n − 1. For such a downward path
z0, z1, ..., zn, we denote by L(z0, zn) the composition f(z0)◦f(z1)◦ ...◦f(zn−1).Let us de�ne a partial order ≤ on T F

Q which extends the order ≤ on words.Precisely, let us write that T ≤ T ′ if there exists an injection φ from V (T )into V (T ′) such that:
• φ preserves descendance.
• φ preserves least common ancestors, i.e. φ(x ∧ y) = φ(x) ∧ φ(y).
• φ preserves left/right order, i.e. if x and y are not in descendance relation,and the branch of x ∧ y containing x is to the left of the one containing y,the same holds for the branches of φ(x) ∧ φ(y) containing φ(x) and φ(y).
• φ preserves labels, i.e. f(x) = f(φ(x)) and q(x) ≤Q q(φ(x)).
• φ preserves path-composition if for any arc (x, y) in T , we have that L(x, y) =

L(φ(x), φ(y)), i.e. f(x) = L(φ(x), φ(y)).When φ satis�es all these properties except possibly path-composition, we6



simply write T ≤0 T ′. Kruskal's tree theorem asserts that ≤0 is a well-quasi-order on the set of trees.This more constrained order relation ≤ presents some analogies with the so-called gap-condition embedding studied by Kriz in [10]. For instance, when theclass of functions F is totally ordered, and hence partitioned into F1, . . . , Ft,the path-composition property implies that if y is a child of x and f(x) belongsto Fi, then every fonction of the product L(φ(x), φ(y)) belong to classes withheight at least i. It could be interesting to state a common generalization ofthese results, possibly involving ordinal functions.Theorem 2 T F
Q is well-quasi-ordered by ≤ if and only if � is total on F .5 NLC with restricted relabelling functionsWe can see NLCF

k expressions as binary trees, where the leaves are labelled by
•i, the nodes of degree 1 by ◦f , and the nodes of degree 2 by χS. To �t in theframework of the previous section, we add an extra label to every node of suchan NLCF

k construction tree, to see χS and •i as identity relabelling functions.For this, replace •i with (ε, •i), ◦f with (f, ◦f) and χS with (ε, χS). Such atree is a construction tree for the vertex-colored graph corresponding to thisNLCF
k expression. Let TG be a construction tree for a vertex-colored graph G.Let x be a vertex of G with color i which corresponds to the leaf x′ of TG and

y be an ancestor of x′ in TG. When we apply the operation corresponding tothe node y of TG to the vertex x, the color of x, denoted by cx(y) is exactly
L(y, x′)(i).Lemma 5 Let G and H be two vertex k-colored graphs together with theirNLCF

k construction trees TG and TH . If TG ≤ TH , then G ≤i H.Proof : Let φ be an injection from V (TG) into V (TH). The restriction of φ onthe leaves of TG can be seen as an injection from V (G) into V (H). Let x, y betwo vertices of G, with x on the left of y in T . Then x and y are neighboursin G if and only if their least common ancestor in V (TG) is a node labelled by
χS with (cx(x∧y), cy(x∧y)) ∈ S. As φ preserves labels, path composition andright/left order, this is the case if and only if φ(x) and φ(y) are neighbours in
H . So G ≤i H . �Theorem 2 immediately gives:Corollary 1 If � is total on F , then NLCF

k is well-quasi-ordered by ≤i.Moreover, since we can always add some extra vertex-labels, we obtain thatNLCF
k is ∞-well-quasi-ordered when � is total on F . The converse of the7



previous corollary actually holds:Theorem 3 NLCF
k is well-quasi-ordered by ≤i if and only if � is total on F .Proof : Assume that � is not total on F , and let (f, g) be an incomparablepair for the relation �. Let us show that for any n ≥ 1, the graph Gn depictedin Fig. 1 is in NLCF
k . The set {Gn|n ∈ ω} is clearly not well-quasi-ordered.Assume �rst that f = g, that is |Im(f 2)| < |Im(f)|. Hence there exist x, y

/∈ Im(f 2), such that f(x) = y. To construct Gn, start from two verticeslabelled by y and one vertex labelled by x, and apply χ{(x,y)} to form a pathof length 2. Relabel by f . Observe that the two extremities of this path willnever be again labelled by x or y since their labels will stay within Im(f 2).Add a vertex labelled by x, apply again χ{(x,y)}. This adds an edge betweenthe middle vertex of the path and the new one. Then relabel by f , and keepon building the path up to the desired length. The point is that after any step,the extremity of the path is distinguished by its label from the other vertices.When the last vertex of the path has been added (with label x as usual), addtwo isolated vertices with label x for instance, and apply χ{(x,x)}, completingthe graph Gn.We can generalize this when f and g are distinct. An f -class is a subset Sof {1, . . . , k} such that |f(S)| = 1 and which is maximum with respect toinclusion. Since f � g, there exists an f -class disjoint from Im(g). Let x beone of its elements. Similarly, let y be in a g-class disjoint from Im(f). Let usprove by induction that for every n, we can build paths of length 2n wherethe last vertex is labelled by y and the other vertices are labelled in the set
Im(f). We will therefore be able to build graphs Gn for arbitrarily large nthen, adding two pending nodes on each extremity as in the previous case.To start with, take a vertex z ∈ Im(f), add a vertex y, and apply χ{(z,y)}.Now assume that we have a path of length 2n where the last vertex is labelledby y and the other vertices by some elements of Im(f). Relabel by g. Observethat the last vertex is still distinguished from the rest. Add a vertex x. At thispoint, no other vertex has label x, since x is not in Im(g). Apply χ{(x,y)}. Thisconstructs a path of length 2n+1. Now relabel by f , add a vertex y and apply
χ{(y,x)} in order to get a path of length 2(n + 1) which satis�es the inductionhypothesis. �To sum-up the di�erent results of this section, let us mention the followingequivalent statements:
• NLCF

k is well-quasi-ordered by ≤i

• NLCF
k is ∞-well-quasi-ordered by ≤i

• � is total on F
• NLCF

k does not contain arbitrarily large paths.8



6 ∞-well-quasi-ordered classes of graphsAs we have mentioned before, one important motivation for the notion of
2-well-quasi-ordered class is that it can be described by a �nite set of bounds.Proposition 3 Let S be a 2-well-quasi-ordered induced subgraph ideal. Thereare �nitely many graphs in the complement S̄ of S which are minimal withrespect to the induced subgraph relation.Proof : By contradiction, we assume that the border (the set of minimal graphsin S̄) B is in�nite. For every graph G in B, choose a vertex, color its neighboursred and its non-neighbours black, and delete it. Call the resulting graph G′.The set B′ = {G′|G ∈ B} is in�nite, and we have that B′ ⊆ S, by minimalityof the border graphs. Thus there exist two graphs G′

1 and G′
2 in B′, such that

G′
1 ≤1 G′

2. Hence G1 is an induced subgraph of G2, contradicting the fact that
G2 is in B. �This implies that any 2-well-quasi-ordered induced subgraph ideal is polyno-mially recognizable. This means in particular that for a set F totally quasi-ordered by �, the class NLCF

k is polynomially recognizable.The following question would give an answer to Pouzet's conjecture.Conjecture 4 If G be a 2-well-quasi-ordered induced subgraph ideal, thereexists a well-quasi-ordered set NLCF
k which contains G.We have no clue concerning this problem. One �rst step would be to showthat if a class of graph has unbounded clique-width, then it is not 2-well-quasi-ordered. The next step would be to show that if indeed a subclass of NLCk is2-well-quasi-ordered, then it is contained in some well-quasi-ordered set NLCF

k′ .Finally, let us mention a question which would push Pouzet's conjecture to afull extent. The answer for cographs can be found in [17].A quasi-order Q is a better-quasi-order if the class of countable ordinals la-belled by Q is a wqo.Conjecture 5 Let G be a class of countable graphs. If the class of �nite in-duced subgraphs GF of G is 2-well-quasi-ordered, then G is better-quasi-orderedfor every better-quasi-ordered vertex-label.9
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