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Abstract

We define NLCkf to be the restriction of the class of graphs NLCy, where rela-
belling functions are exclusively taken from a set F of functions from {1,...,k} into
{1,...,k}. We characterize the sets of functions JF for which NLC{ is well-quasi-
ordered by the induced subgraph relation <;. Precisely, these sets F are those which
satisfy that for every f,g € F, we have Im(fog) = Im(f) or Im(go f) = Im(g). To
obtain this, we show that words (or trees) on F are well-quasi-ordered by a relation
slightly more constrained than the usual subword (or subtree) relation.

A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellings
into n colors forms a well-quasi-order under <;, where <; respects labels. Pouzet
[15] conjectured that a 2-well-quasi-ordered class closed under induced subgraph is in
fact n-well-quasi-ordered for every n. A possible approach would be to characterize
the 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such a
class is always included in some well-quasi-ordered NLCk]: for some family F. This
would imply Pouzet’s conjecture.

1 Introduction

Let S be a set and < be a quasi-order on S, i.e. a reflexive and transitive
relation. Given a sequence (z;);e,, of elements of S, a good pair consists of two
elements z; < z;, with ¢ < j. A sequence with no good pair is called a bad
sequence of (S,<). A quasi-order with no bad sequence is a well-quasi-order.

There are other equivalent presentations of the notion of well-quasi-ordering
(see for instance [12]). A quasi-order is a well-quasi-order if and only if it
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has no infinite antichain and no infinite strictly decreasing sequence. Also,
a quasi-order is a well-quasi-order if and only if every infinite sequence has
an infinite increasing subsequence. Equivalently, a quasi-order is a well-quasi-
order if and only if every nonempty subset of S has a nonempty finite set of
minimal elements (up to equivalence).

The theory of well-quasi-ordering has been flourishing. Higman’s theorem
states that the set of words over a well-quasi-ordered set is well-quasi-ordered
by the subword relation [7], and this has been extended by Kruskal’s to trees
[11]. Robertson and Seymour’s celebrated graph minor theorem [16] asserts
that the minor relation is a well-quasi-order on the set of finite graphs. It
implies that every graph class closed under minor (or minor ideal) can be
characterized by a finite list of excluded minors. This in turn implies that
every minor ideal can be recognized in polynomial time.

The class of finite graphs is not well-quasi-ordered by the induced subgraph
relation since the cycles form an antichain. The good properties of the minor
ideals ensured by the minor theorem do not hold for induced subgraph ideals
(for instance, the set of paths, which is well-quasi-ordered does not have a
finite set of forbidden induced subgraphs). This is a motivation to the stronger
notion of 2-well-quasi-ordering.

In the following, we will be exclusively interested in the induced subgraph
relation. Throughout this paper, we will abbreviate "well-quasi-ordered by
the induced subgraph relation" in well-quasi-ordered, being understood that
we are dealing with the induced subgraph relation.

An extension of the notion of well-quasi-order is the notion of n-well-quasi-
order (see Kriz and Thomas [9] for a more general discussion in terms of QO-
category). A set S of graphs is n-well-quasi-ordered if the class S consisting of
all vertex n-coloring of graphs in S, is well-quasi-ordered by <;, where G <; G’
if there is an injection from V to V' preserving adjacency and color. The set
S is oco-well-quasi-ordered if S is n-well-quasi-ordered, for any n > 1. Being
2-well-quasi-ordered is a stronger property than being well-quasi-ordered, for
instance the set of paths is not 2-well-quasi-ordered.

The notion of 2-well-quasi-ordering is especially interesting in view of algo-
rithmic properties, as induced subgraph ideals which are 2-well-quasi-ordered
can be characterized by a finite list of forbidden induced subgraphs, and thus
are polynomially recognizable. Our ultimate aim would be to characterize the
2-well-quasi-ordered ideals of graphs, in order to prove the following conjecture
of Pouzet [15], also appearing in Fraissé [4]:

Conjecture 1 An induced subgraph ideal is 2-well-quasi-ordered if and only
if it is oo-well-quasi-ordered.
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Fig. 1. The graph G5

We will come back to this topic in Section 5. Our main purpose here is to
study a restriction of the hierarchy of graph classes NLC.

The class NLCy of k-node labelled controlled graphs was introduced in [18].
Let F be a set of functions from {1,...,k} into {1,...,k}. The class NLC?
is defined recursively by using & node-labels and three operators: e;, of and
Xs- For i € {1,...,k}, the operator e; creates a single vertex labelled by i.
The operator oy, with f € F, applied to a labelled graph replaces every label
i with f(i). The operator xg, with S C{1,...,k} x{1,...,k}, applied to two
labelled graphs G and H in this order, creates the disjoint union of graphs G
and H, and for all (i,j) € S adds edges between every vertex of label i in G
and every vertex of label j in H. The class NLC}, is defined to be NLCY where
® is the set of all functions from {1,...,k} into {1,...,k}. The NLC-width of
G is the minimum £ for which some labelling of GG is in NLC.

It is not known whether there exists a polynomial time algorithm computing
a NLC decomposition using k colors for graphs in NLCy. Only the cases k = 1
(which corresponds to cographs) and k& = 2 (see [8]) have been solved so far.
Computing the NLC-width is NP-hard (see [6]).

The NLC-width has a strong link with another well-known parameter: the
clique-width, introduced by Courcelle et al. (see [1]). NLC-width and clique-
width indeed differ by a factor at most 2 (more precisely, the clique-width of a
graph is bounded below by its NLC-width, and above by twice its NLC-width).
Moreover, transformations respecting these bounds between decompositions of
the two types can be done in linear time.

The class of graphs NLC is well-quasi-ordered, see 2| and [17] for the count-
able case. The class of graphs NLCs is well-quasi-ordered (and even oco-well-
quasi-ordered), this easily follows from the results in [8]. Indeed, the NLCy
prime graphs for the modular decomposition are constructible in NLCy with-
out relabelling, and thus form a well-quasi-ordered family by Kruskal’s tree
theorem. However, the class NLC3 is not well-quasi-ordered, as it contains
for every i the graph G; (a path of length ¢ with two pending vertices added
to each extremity) depicted in Fig. 1. These graphs indeed do not form a
well-quasi-ordered family. Allowing all relabelling operators oy is too much to
construct a well-quasi-ordered class of graphs if we have at least 3 colors. This
is why we define a restriction of NLC, using only relabelling operators from a
specified set of functions F. Our main purpose is to characterize the sets F
such that NLCY is well-quasi-ordered. We will see that NLCY is well-quasi-
ordered (equivalently co-well-quasi-ordered) if and only if it does not contain



arbitrarily large paths.

In Section 2, we introduce a binary relation < on set of functions. In Section 3
we introduce a subword order < on words labelled with a set of functions
which is more constrained that Higman’s order. In Section 4 we extend < to
trees, with the purpose of applications to NLC{ expressions. In Section 5,
we characterize the sets F for which NLCY is well-quasi-ordered. In the final
section, we discuss Pouzet’s conjecture on n-well-quasi-ordering.

Throughout this paper, we will obtain the following equivalent characteriza-
tions of F:

The set F is totally quasi-ordered by <.

The set of words on F is well-quasi-ordered by <.

The set of trees on F is well-quasi-ordered by <.

The set of graphs NLCY is well-quasi-ordered.

The set of graphs NLC{ is co-well-quasi-ordered.

The set of graphs NLC{ does not contain arbitrarily large paths.

[\

Totally ordered sets of functions

Let F be a set of functions from {1,...,k} into {1,...,k} closed under com-
position (with the convention that the identity function e belongs to F). The
key-definition of this section is the following. Let us say that f < g whenever

Im(f o g) = Im(f).

Assume that < is total on F, i.e. for every f, g in F, at least one of f < g and
g = f holds. This implies in particular that Im(f?) = Im(f) for all f € F.
Observe that f < g implies that [Im(f)| < |Im(g)|.

Lemma 1 If < is total on F, then =< is transitive.

Thus < is a reflexive and transitive relation, in other words < is a total quasi-
order on F. This is equivalent to the existence of a partition of F into ¢
equivalence classes [, ..., F; such that f € F; and g € Fj verify f < g if and
only if ¢ < j.

Lemma 2 When F is totally quasi-ordered by =, the equivalence classes
Fy, ..., F, are exactly the classes of functions having an image of the same
size, in increasing order of the image size.

Observe that the top class F; contains ¢, and contains only permutations.

Lemma 3 For all i, F; and U>;F}, are closed under composition.



Lemma 4 The functions of the bottom class Fi verify a "left-cancellation”
tdentity:

VfeF,Vh,h € F, ifhofoh’=ho f then foh' = f (1)

Here is an example of a set of functions which is totally ordered by <. An
(1,7)—cast, with ¢ < j, is a function f from {1,...,k} into itself such that
f(l) =1 for alll < i and f(I) = j whenever i < [. It is routine to check
that the set of casts is indeed totally ordered by <. We feel that the following
problem would give some insight on the well-quasi-ordered NLC7 classes:

Problem 2 Find a generic class of functions G (like casts for instance) such
that for every totally ordered F and k, there exists some k' for which NLC{
is included in NLCY,

Such a class of function would describe much more precisely how to construct
the well-quasi-ordered classes NLCY .

3 Words on functions

An F-word is a finite word on the alphabet F, i.e. a finite sequence fi,..., f;
of elements of F. Let W” be the set of F-words. Let M = fi,...,f; and

= f1,..., f} be two F-words. The word M is a subword of M" if there exists
an increasing injection ¢ from {1,...,l} into {1,...,{'} such that f; = Fow-
Higman’s theorem asserts that the subword partial order is a well-quasi-order
when the alphabet is finite. In our more constrained partial order on F-words,
we have M < M’ if two conditions are satisfied:

e There is a function ¢ for which M is a subword of M’.
o FOI" all 1 S 7/ < l, we haVe fl - f(;)(l) o) f(;(l)+1 ©:--+0 f(é)(’i#»l)*l

Thus, when M < M’ and i < j, the composition of functions f;o fiy10---0f; 4
is equal to the function f; o fiuy 00 fi;y - And since f; = fl), we
also have f;o fiy1 0.0 f; _f¢(z i (Z)+1O"'Of<;(j)-

Our goal is to prove here that W7 is well-quasi-ordered by < if and only if
=< is total on F. For this, we have to be a little bit more general and need to
consider Wg , the set of words on the set F x (), where () is a set endowed by
a well-quasi-ordered <g.

We naturally extend the partial order < on W5. For win W} and 1 < z < |w|
we denote by (f*, ¢?) the 2! letter of w. For any couple of indices a, b, with 1 <
a < b < |w|, we define L*(a, b) to be the composition fi’o f¥, o...0 f” ;. When



a = b, we set L"(a,b) = e. Let ¢ be an increasing injection from {1,... |w|}
into {1,...,|w'|}. We say that ¢ is compatible with labels if [ = f(;‘{x) and
7y <o qg’(;). We say that ¢ preserves path-composition if for every x < |w|, we
have that L¥(x,z 4+ 1) = LY (é(z), ¢(x + 1)) (observe that by definition we
have L*(x,x+1) = f¥). We write w < w’ if there exists an increasing injection
¢ from {1,... |w|} into {1,...,|w'|} compatible with labels and preserving
path-composition. When ¢ is only compatible with labels, we simply say that
w is a subword of w' and write w <y w'.

Theorem 1 The set of words Wg s well-quasi-ordered by < if and only if <
15 a total quasi-order on F.

4 Trees on functions

We extend in this section our results to trees. However, since the arguments
are similar to the previous section, we will not give the same level of details,
especially concerning the verification of path-composition.

A structured tree is a finite tree where the childs of a node are ordered from
left to right. Our trees have their nodes labelled by a well-quasi-ordered set
. We denote by ’TQf the set of structured rooted trees with nodes labelled by
F X @, where F is as usual a set of functions. A node z is then labelled by
a pair [(z) = (f(z),q(x)). We simply write 77 when there is no additional
label @. The set of nodes of T" is denoted by V(7). We write x A y for the
least common ancestor of z and y. We say that (x,y) is an arc of T when x
is the father of y. A sequence of nodes z, z1, ..., 2, is a downward path in T
if (24, 2i11) is an arc, for every i = 0,...,n — 1. For such a downward path
20, 21, -+, Zn, We denote by L(zg, z,,) the composition f(zg)o f(z1)o...0 f(z,-1).

Let us define a partial order < on ’TQf which extends the order < on words.
Precisely, let us write that 7" < 7" if there exists an injection ¢ from V(7T)
into V(7") such that:

e ¢ preserves descendance.

e ¢ preserves least common ancestors, i.e. p(z Ay) = ¢(z) A (y).

e ¢ preserves left/right order, i.e. if x and y are not in descendance relation,
and the branch of z A y containing x is to the left of the one containing vy,
the same holds for the branches of ¢(x) A ¢(y) containing ¢(z) and ¢(y).

e ¢ preserves labels, i.e. f(z) = f(é(x)) and ¢(z) <g q(é(x)).
e ¢ preserves path-composition if for any arc (x,y) in T, we have that L(z,y) =

L(¢(x), 9(y)), ie. f(x) = L(o(x), 9(y))-

When ¢ satisfies all these properties except possibly path-composition, we



simply write T' <y T". Kruskal’s tree theorem asserts that <; is a well-quasi-
order on the set of trees.

This more constrained order relation < presents some analogies with the so-
called gap-condition embedding studied by Kriz in [10]. For instance, when the
class of functions F is totally ordered, and hence partitioned into Fi, ..., F},
the path-composition property implies that if y is a child of x and f(x) belongs
to F;, then every fonction of the product L(¢(z), ¢(y)) belong to classes with
height at least 7. It could be interesting to state a common generalization of
these results, possibly involving ordinal functions.

Theorem 2 ’TQf is well-quasi-ordered by < if and only if =X is total on F.

5 NLC with restricted relabelling functions

We can see NLCY expressions as binary trees, where the leaves are labelled by
e;, the nodes of degree 1 by oy, and the nodes of degree 2 by xg. To fit in the
framework of the previous section, we add an extra label to every node of such
an NLCY construction tree, to see x5 and e; as identity relabelling functions.
For this, replace o; with (¢, ;), of with (f,0f) and xg with (e, xs). Such a
tree is a construction tree for the vertex-colored graph corresponding to this
NLC{ expression. Let Ty be a construction tree for a vertex-colored graph G.
Let x be a vertex of G with color ¢ which corresponds to the leaf 2’ of T and
y be an ancestor of 2’ in Tg. When we apply the operation corresponding to
the node y of Tz to the vertex z, the color of z, denoted by c¢,(y) is exactly

Ly, «')(2)-

Lemma 5 Let G and H be two vertex k-colored graphs together with their
NLC‘,? construction trees Tg and Ty. If T < Ty, then G <; H.

Proof: Let ¢ be an injection from V(T) into V(T ). The restriction of ¢ on
the leaves of Tz can be seen as an injection from V' (G) into V(H). Let z,y be
two vertices of GG, with x on the left of y in 7. Then x and y are neighbours
in G if and only if their least common ancestor in V' (7(;) is a node labelled by
Xs with (c.(zAy), cy(x Ay)) € S. As ¢ preserves labels, path composition and
right /left order, this is the case if and only if ¢(z) and ¢(y) are neighbours in
H.SoG<, H.UI

Theorem 2 immediately gives:
Corollary 1 If < is total on F, then NLCY is well-quasi-ordered by <;.

Moreover, since we can always add some extra vertex-labels, we obtain that
NLC{ is oco-well-quasi-ordered when = is total on F. The converse of the



previous corollary actually holds:
Theorem 3 NLCY is well-quasi-ordered by <; if and only if < is total on F.

Proof: Assume that < is not total on F, and let (f,g) be an incomparable
pair for the relation <. Let us show that for any n > 1, the graph G,, depicted
in Fig. 1 is in NLC{. The set {G,|n € w} is clearly not well-quasi-ordered.

Assume first that f = g, that is [Im(f?)| < [Im(f)|. Hence there exist z,y
¢ Im(f?), such that f(x) = y. To construct G,, start from two vertices
labelled by y and one vertex labelled by z, and apply X{(,) to form a path
of length 2. Relabel by f. Observe that the two extremities of this path will
never be again labelled by x or y since their labels will stay within I'm(f?).
Add a vertex labelled by z, apply again X{(.,). This adds an edge between
the middle vertex of the path and the new one. Then relabel by f, and keep
on building the path up to the desired length. The point is that after any step,
the extremity of the path is distinguished by its label from the other vertices.
When the last vertex of the path has been added (with label x as usual), add
two isolated vertices with label z for instance, and apply X{(z)}, completing
the graph G,,.

We can generalize this when f and g are distinct. An f-class is a subset S
of {1,...,k} such that [f(S)] = 1 and which is maximum with respect to
inclusion. Since f £ g, there exists an f-class disjoint from Im(g). Let = be
one of its elements. Similarly, let y be in a g-class disjoint from I'm(f). Let us
prove by induction that for every n, we can build paths of length 2n where
the last vertex is labelled by y and the other vertices are labelled in the set
Im(f). We will therefore be able to build graphs G,, for arbitrarily large n
then, adding two pending nodes on each extremity as in the previous case.

To start with, take a vertex z € Im(f), add a vertex y, and apply Xx{(,y)-
Now assume that we have a path of length 2n where the last vertex is labelled
by y and the other vertices by some elements of Im(f). Relabel by g. Observe
that the last vertex is still distinguished from the rest. Add a vertex z. At this
point, no other vertex has label z, since « is not in Im(g). Apply X{(z,y)}- This
constructs a path of length 2n+ 1. Now relabel by f, add a vertex y and apply
X{(y,x)} in order to get a path of length 2(n + 1) which satisfies the induction
hypothesis. [J

To sum-up the different results of this section, let us mention the following
equivalent statements:

NLCY is well-quasi-ordered by <,

NLCY is co-well-quasi-ordered by <;

< is total on F

NLC{ does not contain arbitrarily large paths.



6 oo-well-quasi-ordered classes of graphs

As we have mentioned before, one important motivation for the notion of
2-well-quasi-ordered class is that it can be described by a finite set of bounds.

Proposition 3 Let S be a 2-well-quasi-ordered induced subgraph ideal. There
are finitely many graphs in the complement S of S which are minimal with
respect to the induced subgraph relation.

Proof: By contradiction, we assume that the border (the set of minimal graphs
in S) B is infinite. For every graph G in B, choose a vertex, color its neighbours
red and its non-neighbours black, and delete it. Call the resulting graph G'.
The set B’ = {G'|G € B} is infinite, and we have that B’ C S, by minimality
of the border graphs. Thus there exist two graphs G and G in B’, such that
G <i GY. Hence GG is an induced subgraph of G5, contradicting the fact that
Gyisin B. O

This implies that any 2-well-quasi-ordered induced subgraph ideal is polyno-
mially recognizable. This means in particular that for a set F totally quasi-
ordered by =, the class NLCY is polynomially recognizable.

The following question would give an answer to Pouzet’s conjecture.

Conjecture 4 If G be a 2-well-quasi-ordered induced subgraph ideal, there
exists a well-quasi-ordered set NLCY which contains G.

We have no clue concerning this problem. One first step would be to show
that if a class of graph has unbounded clique-width, then it is not 2-well-quasi-
ordered. The next step would be to show that if indeed a subclass of NLC}, is
2-well-quasi-ordered, then it is contained in some well-quasi-ordered set NLCY,.
Finally, let us mention a question which would push Pouzet’s conjecture to a
full extent. The answer for cographs can be found in [17].

A quasi-order @) is a better-quasi-order if the class of countable ordinals la-
belled by @ is a wqo.

Conjecture 5 Let G be a class of countable graphs. If the class of finite in-
duced subgraphs Gr of G is 2-well-quasi-ordered, then G is better-quasi-ordered
for every better-quasi-ordered vertez-label.
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