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Abstract

We prove that there is no degree of connectivity which will guarantee that a
hypergraph contains two edge-disjoint spanning connected subhypergraphs. We
also show that Edmonds’ theorem on arc-disjoint branchings cannot be extended
to directed hypergraphs. Here we use a definition of a directed hypergraph that
naturally generalizes the notion of a directed graph.

For standard notation and results on digraphs and hypergraphs we refer to [1] and
[2].

A spanning tree of a graph G = (V, E) is a subtree which contains all vertices
of G. A graph G = (V, E) is k-edge-connected if and only if there are at least k
edges connecting X to V −X for every non empty proper subset X of V . Clearly G
is 1-edge-connected if and only if G contains a spanning tree. However, it is not true
that every k-edge-connected graph contains k-edge-disjoint spanning trees and hence
k-edge-connectivity is not sufficient to ensure that a graph can be decomposed into
k edge-disjoint spanning subgraphs. Tutte characterized those graphs which have k
edge-disjoint spanning trees. A partition of a set S is a collection of disjoint non
empty subsets S1, S2, . . . , St ⊆ S such that S =

⋃t
i=1 Si.

Theorem 1 (Tutte) [10] A graph G = (V, E) has k edge-disjoint trees if and only if
for every partition P = {V1, V2, . . . , Vt} of V , the number of edges in G which connect
different sets in P is at least k(t− 1).

It is easy to check that Tutte’s theorem implies that every 2k-edge-connected graph
can be decomposed into k edge-disjoint spanning subgraphs and we can also use the
condition in Theorem 1 to show that 2k is best possible.

Tutte’s theorem can be proved in at least two different ways: An out-branching
from s in a digraph is a tree which is oriented in such a way that every vertex other
than s has precisely one arc coming in. It is easy to see that a graph G has k edge-
disjoint spanning trees if and only if it can be oriented as a digraph D so that D
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contains k arc-disjoint out-branchings from a vertex s (if G has k edge-disjoint trees
just pick up s in each tree and orient it away from s). Thus one can prove Theorem
1 by showing that the condition in the theorem guaranties such an orientation [6]. A
different way of proving the theorem is to use matroids and Edmonds’ theorem on
matroid partition [4]. Namely, to prove Theorem 1 it suffices to observe that a graph
has k edge-disjoint spanning trees if and only if the matroid M formed as the union
(sum) of k copies of the circuit matroid of G has k disjoint bases. Now the theorem
follows easily from Edmonds’ matroid partition theorem.

A hypergraph H = (V, E) is k-edge-connected if the number of hyperedges in-
tersecting X and V −X is at least k for every non empty proper subset X of V . Since
hypergraphs generalize graphs, it is natural to ask under what conditions the edges of
a hypergraph H can be decomposed into k spanning subhypergraphs of H. This is not
an easy problem. In fact, already for k = 2, the problem is NP-complete as shown in
[7].

In order to obtain some generalization of Tutte’s theorem to hypergraphs, Frank et
al. [7] introduced the following generalization of edge-connectivity for hypergraphs.
A hypergraph H = (V, E) is k-partition-connected if for every partition P =
{P1, P2, . . . , Pt} of V we have

αP ≥ k(t− 1), (1)

where αP is the number of hyperedges of E which intersect at least two sets in P .
Clearly a k-partition-connected hypergraph is k-edge-connected, but the opposite does
not hold in general since a hypergraph must have at least |V |−1 edges to be 1-partition
connected, whereas it needs only one to be connected if it contains the edge e = V .

Note that, by Theorem 1, a graph is k-partition-connected if and only if it has k
edge-disjoint spanning trees. The following theorem by Frank et al. generalizes Tutte’s
theorem to partition-connected hypergraphs. They proved this result using matroid
theory but it can also be derived from an analogue of Edmonds branching theorem and
an orientation theorem concerning a version of directed hypergraphs that we define
below (combine Theorem 4 below with Theorem 6.7 in [5] for l = 0).

Theorem 2 [8] A hypergraph H is k-partition-connected if and only if H can be de-
composed into k spanning sub-hypergraphs each of which is partition-connected.

It is an easy corollary of Theorem 2 that if the size of the largest hyperedge in
H is q and H is kq-edge-connected, then H admits a partition into k edge-disjoint
spanning connected subhypergraphs. However, the following example shows that one
cannot hope to find a condition, not involving the size of the largest hyperedge, which
still guaranties a decomposition into two spanning connected subhypergraphs.

Theorem 3 For every natural number k there exists a k-edge-connected hypergraph
which contains no two edge-disjoint spanning connected subhypergraphs.

Proof: Let t =
(

2k+1
k+1

)
and let I1, I2, . . . , It be an arbitrary enumeration of the t

distinct (k + 1)-subsets of S = {1, 2, . . . , 2k + 1}. Let H = (V, E) be the hypergraph
with vertex set V = {u1, u2, . . . , u2k+1} ∪ {v1, v2, . . . , vt} and edge set E = {{ui, uj} :
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1 ≤ i < j ≤ 2k + 1} ∪ {U1, U2, . . . , U2k+1}, where Ui is the edge containing ui and
those vj for which the set Ij contains the element i. Since H restricted to the vertices
U = {u1, u2, . . . , u2k+1} is a complete graph and hence 2k-connected and every vertex
in {v1, v2, . . . , vt} has k + 1 edges to U , it is not difficult to show that H is (k + 1)-
edge-connected (in fact it is even (k + 1)-vertex-connected, meaning that we must
remove at least k + 1 vertices to obtain a disconnected hypergraph). Still we claim
that the edge set of H cannot be decomposed into two disjoint spanning connected
subhypergraphs H1 = (V, E1) and H2 = (V, E2). For suppose H1 and H2 where such
hypergraphs. Without loss of generality H1 contains at least k + 1 of the 2k + 1 edges
{U1, U2, . . . , U2k+1}. Let I be the index set of those edges from {U1, U2, . . . , U2k+1} that
are in H1. Since |I| ≥ k + 1 there is some Ij such that Ij ⊆ I and hence the vertex vj

is not incident to any edge in H2, a contradiction. �

Our second aim is to show that our construction above also implies an impossibility
result for edge-disjoint in-branchings in directed hypergraphs. One can define a directed
hypergraph in many ways. Below we follow Frank et al. [7] and give a definition that
straightforwardly generalizes the notion of a directed graph. To make it more clear
what is going on we use the name star hypergraph for this kind of orientation. A star
hypergraph is a hypergraph H∗ = (V, A) together with a function h : A → V that
associates one vertex h(a) ∈ a to each hyperedge a ∈ A. We call h(a) the head of
a. For each of the definitions below let H∗ = (V, A) be a star hypergraph. We always
denote by H = (V, E) the underlying hypergraph of H∗, that is, the hypergraph we
obtain by ignoring the orientation (thus E and A contain the same edges as subsets
of V ). By an arc of H∗ we always mean a hyperedge with a designated head. The
arc a enters a set X ⊂ V if a ∩ (V − X) 6= ∅ and h(a) ∈ X. Similarly, a leaves X
if h(a) 6∈ X and a ∩X 6= ∅. The in-degree of X, d−(X), is the number of arcs that
enter X and the out-degree of X, d+(X), is the number of arcs that leave X. Note
that, as for usual digraphs, we have d−(X) = d+(V −X). Note also that an arc a may
contribute to the out-degree of up to |a| − 1 sets in a partition P of V but only to the
in-degree of at most one set in P .

A path in H∗ from v1 to vk is a sequence P = v1, a1, v2, a2, v3, a3, . . . , ak−1, vk

such that vi ∈ V , for i = 1, 2, . . . , k, all vi are distinct, aj ∈ A for j = 1, 2, . . . , k − 1,
h(ai) = vi+1 and vi ∈ ai for i = 1, 2, . . . , k−1. We call a path P as above an (s, t)-path
if s = v1 and t = vk.

Let s ∈ V be a vertex. An in-branching rooted at s is a collection of arcs
A′ = {a1, a2, . . . , ar} with the property that the hypergraph induced by the arcs in A′

contains a (t, s)-path for every t ∈ V and A′ is minimal with the property (that is, no
proper subset of A′ has the properties above). An out-branching rooted at s in a
star hypergraph on n vertices is a collection of n− 1 arcs A′ = {a1, a2, . . . , an−1} with
the property that for all v 6= s there is a path from s to v which uses only arcs from A′

(note that in an out-branching every vertex except s is the head of precisely one arc in
A′).
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Theorem 4 [7, Proposition 1.3](Edmonds’ out-branching theorem for star hy-
pergraphs) A star hypergraph H∗ = (V, A) has k-arc-disjoint out-branchings rooted
at s if and only if

d−H∗(X) ≥ k for every X ⊆ V − s. (2)

This is an easy consequence of Edmonds out-branching theorem for digraphs and
the following useful lemma. By shrinking an arc a with |a| > 2 in a star hypergraph
H∗ = (V, A) we mean replacing a by a′ = a− {x} for some x ∈ a− {h(a)} and taking
h(a′) = h(a). If H∗

1 = (V, A) and H∗
2 = (V, A′) are star hypergraphs on the same

vertex set, then we say that H∗
1 can be shrinked into H∗

2 if there exists a sequence of
successive shrinkings of arcs starting from A so that eventually we reach A′. A family
F of subsets of a ground set S is intersecting if X, Y ∈ F and X∩Y 6= ∅ implies that
X ∩ Y, X ∪ Y ∈ F . The lemma below (which was used without being explicitly stated
in [7]) implies that several results for digraphs extend directly to star hypergraphs.
It can be proved using the equation [7, Claim 1.2] for the in-degree function of star
hypergraphs.

Lemma 5 Let H∗ = (V, A) be a star hypergraph, let F be an intersecting family of
subsets of V . Suppose H∗ satisfies that

d−H∗(X) ≥ k for all X ∈ F (3)

then H∗ can be shrinked into a digraph D on the same vertex set as H∗ such that
d−D(X) ≥ k for every X ∈ F .

For digraphs it is easy to see, by reversing all arcs and applying the theorem above,
that a digraph has k arc-disjoint in-branchings rooted at s if and only if the out-degree
of every set not containing s is at least k. This result cannot be extended to star
hypergraphs. To see this, consider the star hypergraph H∗ = (V, A) that we obtain
from the hypergraph H from the proof of Theorem 3 by orienting the edges inside U
as a k-arc-strong tournament (that is all arcs have size 2 here) and making ui the head
of Ui for i = 1, 2, . . . , 2k + 1 (a digraph D is k-arc-strong if it remains strong after
deletion of any subset of at most k−1 arcs). It is not difficult to check that H∗ satisfies

d+
H∗(X) ≥ k for every X ∈ V − u1. (4)

However, since each in-branching rooted at u1 is connected as an undirected hy-
pergraph and H cannot be decomposed into two edge-disjoint spanning hypergraphs,
it follows that there are no two arc-disjoint in-branchings from u1 in H∗. This ex-
ample shows that there is no sufficient condition just in terms of out-degrees of sets
not containing s which ensures two arc-disjoint in-branchings rooted at s in a star
hypergraph.
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