
Dense triangle-free graphs are four-colorable: A
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Abstract

In 1972, Erdős and Simonovits [9] asked whether a triangle-free graph with minimum
degree greater than n/3, where n is the number of vertices, has chromatic number at most
three. Hajnal provided examples of triangle-free graphs with arbitrarily large chromatic
number and minimum degree greater than (1/3− ε)n, for every ε > 0. Häggkvist [10] gave
a counterexample to the Erdős-Simonovits problem with chromatic number four based on
the Grötzsch graph. Thomassen [15] proved that for every c > 1/3, if the minimum degree
is at least cn, the chromatic number is bounded by some constant (depending on c). We
completely settle the problem, describing the class of triangle-free graphs with minimum
degree greater than n/3. All these graphs are four-colorable.

1 Introduction.

For every ε > 0, Hajnal (see [9]) provided examples of triangle-free graphs with arbitrarily large
chromatic number and minimum degree greater than (1/3 − ε)n, where n is the number of
vertices. The construction is as follows: Fix integers k ¿ m ¿ l, where 2m + k divides l. Start
with a disjoint union of a complete bipartite graph Kl,2l and a Kneser graph KG(2m + k, m).
Partition the vertices of the part of size 2l of Kl,2l into subsets X1, . . . , X2m+k of equal size.
Every vertex v of the Kneser graph corresponds to an m-subset Iv of {1, . . . , 2m + k} where v
and w are adjacent if and only if Iv ∩ Iw = ∅. For every such v, we add all the edges between
v and Xi, whenever i ∈ Iv. Observe that this graph is triangle-free, and its minimum degree
can be made arbitrarily close (but strictly less) to n/3. Moreover, from the celebrated result of
Lovász [12], the chromatic number of the Kneser graph, and thus of the whole graph, is at least
k + 2. Any further attempt to find triangle-free graphs with unbounded chromatic number and
minimum degree greater than n/3 failed.

It was shown by Andrásfai [1] that triangle-free graphs with minimum degree greater than
2n/5 are bipartite, this result being sharp because of the 5-cycle. Motivated by Hajnal’s con-
struction, Erdős and Simonovits [9] conjectured that every triangle-free graph with chromatic
number at least four has minimum degree at most (1 + o(1))n/3.

Using a suitable weight function on the set of vertices of the Grötzsch graph, Häggkvist [10]
gave a counterexample to this question with minimum degree 10n/29. He proved also that every
triangle-free graph with minimum degree greater than 3n/8 is 3-colorable. Later on, Jin [11]
proved that 3n/8 could be replaced by 10n/29, achieving the exact value. Moreover, in 1997,
Chen, Jin and Koh [6] proved that every triangle-free graph with minimum degree greater than
n/3 is either homomorphic with a graph Γi, and therefore 3-colorable, or contains the Grötzsch
graph as an induced subgraph and therefore its chromatic number is at least 4. The gap to
fill-in was to describe the triangle-free graphs between minimum degree n/3 and 10n/29 with
chromatic number at least 4.

The finiteness of the chromatic number was proven by Thomassen [15] in 2002, showing that
for every ε > 0, if the minimum degree is at least (1/3 + ε)n, the chromatic number is bounded
by some constant (depending on ε). Using the Regularity Lemma, ÃLuczak [14] recently proved
that not only the chromatic number is bounded, but there exists a finite graph Gε such that
every triangle-free graph with minimum degree at least (1/3+ε)n has a homomorphism into Gε.
Also in 2002, Brandt [3] proved that every maximal triangle-free graph which is regular of degree

2



> n/3 has chromatic number at most four and conjectured that the regularity requirement is
not needed.

We prove that this is indeed the case, i.e., every triangle-free graph with minimum degree
δ > n/3 is 4-colorable by describing the structure of these graphs in detail.

Let us start with some definitions and notations. We generally adopt the terminology from
standard graph theory literature like [8] and [16]. We say that a vertex v is joined to (or
dominates) a set of vertices X if v is adjacent to every vertex of X. When there is no edge from
v to X, we say that v is independent of X. A graph G is triangle-free if it does not contain a
triangle. Moreover G is maximal triangle-free if adding any missing edge to G creates a triangle.
Observe that a triangle-free graph is maximal triangle-free if and only if its diameter is at most
two.

We denote by Nv the neighborhood of a vertex v. Two vertices v, w are twins if Nv = Nw. In
particular, twins must be non-adjacent. A weighted graph is a pair (G,ω), consisting of a graph
G together with a weight function ω : V (G) → [0, 1] such that ω(V (G)) :=

∑
v∈V (G) ω(v) = 1.

The degree of a vertex v of a weighted graph is ω(Nv), and we denote the minimum degree by
δ(G,ω), or simply δ. When ω(Nv) is constant for every vertex v, we say that ω is regular. A
good weighted graph is a pair (G, ω) where G is a maximal triangle-free, twin-free graph with
chromatic number at least 4, and ω is a weight function such that δ > 1/3. A graph G is good
if there exists a weight function ω such that (G,ω) is a good weighted graph. If this function ω
is regular, G is a regular good graph. Note that this does not mean at all that the graph G itself
is regular.

A weighted graph (G,ω) with rational weights > 0 corresponds to the graph H, whose order
n is the lowest common multiplier of the denominators of the vertex weights in (G,ω), where
each vertex vi of G is replaced by a set Vi of ω(vi)n twins of vi. Conversely, replacing each class
Vi of twins in a graph H of order n by a vertex of weight |Vi|/n gives a weighted graph (G,ω).
Note that the minimum degree of H is cn if and only if the minimum degree of (G,ω) is c. A
weighted graph can have different optimal weight functions and vertices of weight 0. But as a
by-product of our main result we obtain that every good weighted graph has a unique optimal
regular weight function where all weights are non-zero and rational.

Our goal is to characterize the class of good weighted graphs.

We can concentrate on the case of graphs with chromatic number at least 4, since the 3-
colorable case is solved. To see this, let us denote by Γi, for every integer i ≥ 1, the graph on
vertex set {1, 2, . . . , 3i − 1} where the vertex j has neighbors j + i, . . . , j + 2i − 1, these values
taken modulo 3i − 1. Now translating a result of Chen, Jin and Koh [6] into the language of
weighted graphs we have the following result.

Theorem 1 A weighted maximal triangle-free, twin-free graph with minimum degree δ > 1/3
is either isomorphic to a graph Γi, for some i ≥ 1, and therefore 3-colorable, or it contains the
Grötzsch graph as an induced subgraph and therefore its chromatic number is at least 4.

On the other hand, Pach [13] found an interesting characterization of the graphs Γi.
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Theorem 2 The graphs Γi are just the triangle-free, twin-free graphs, where every maximal
stable set is the neighborhood of a vertex.

Let us now turn to 4-chromatic graphs. A class of good weighted graphs, the Vega graphs
were introduced by Brandt and Pisanski [5]. The construction is as follows: For some integer
i ≥ 2, start with a graph Γi on vertex set {1, . . . , 3i− 1} and add an edge xy and an induced 6-
cycle (a, v, c, u, b, w) such that x is joined to a, b, c and y is joined to u, v, w. The set of neighbors
of a, u on the Γi graph is {1, . . . , i}. The set of neighbors of b, v on the Γi graph is {i+1, . . . , 2i}.
The set of neighbors of c, w on the Γi graph is {2i + 1, . . . , 3i− 1}. This is the sole Vega graph
on 3i + 7 vertices. We denote it by Υi.

There are two Vega graphs on 3i + 6 vertices, obtained from Υi by a simple vertex deletion.
The first one is Υi−{y}, the second Υi−{2i} (the latter sequence does not occur in [5], perhaps
due to the fact that for i = 2 both graphs are isomorphic). Finally, the last Vega graph, on
3i + 5 vertices, is Υi −{y, 2i}. Observe that the Vega graph Υ2 −{y, 4} is exactly the Grötzsch
graph. Moreover, every vertex in a Vega graph is a neighbor of x, a, b or c, in other words,
Nx ∪ Na ∪ Nb ∪ Nc is the whole vertex set, this makes the Vega graphs 4-colorable, and even
4-chromatic since they contain the Grötzsch graph.

Let us start with the fact that Vega graphs are good (see [5]):

Theorem 3 Every Vega graph is a regular good weighted graph with positive weight function.

Proof. We already know that Vega graphs are 4-chromatic and it is routine to check that Vega
graphs are twin-free and maximal triangle-free. We have moreover to exhibit a regular weight
function with minimum degree δ > 1/3. To avoid fractions, we display integer weights. The
normalization for the weight function is obtained by dividing these weights by the total weight.

Υi: Assign weight 1 to the vertices x, y, 1, 2i, weight 3i− 3 to c, w, weight 3i− 2 to u, v, a, b
and weight 3 to all the other vertices. The degree is 9i− 6, and the total weight is 27i− 19.

Υi−{y}: Assign weight 1 to the vertices 1 and 2i, 2 to x, 3i− 4 to w, 3i− 3 to u, v, c, 3i− 2
to a, b and 3 to all the other vertices. The degree is 9i− 7, and the total weight is 27i− 22.

Υi − {2i}: Assign weight 1 to x, y, 2 to 1, i, 3i− 3 to b, v, c, w, 3i− 2 to u, a and 3 to all the
other vertices. The degree is 9i− 7, and the total weight is 27i− 22.

Υi − {y, 2i}: Assign weight 2 to x, 1, i, weight 3i− 4 to v, w, 3i− 3 to u, b, c, 3i− 2 to a and
3 to all the other vertices. The degree is 9i− 8, and the total weight is 27i− 25. ¥

The main result of this paper is that the good graphs are just the Vega graphs.

Theorem 4 A graph is good if and only if it is a Vega graph.

The necessity follows immediately from Theorem 3, so it is left to prove the sufficiency.
Combining this result with Theorem 1 gives the following characterization result:

Corollary 4.1 The twin-free, maximal triangle-free, weighted graphs with δ > 1/3 are the 3-
colorable graphs Γi for i ≥ 1 and the 4-chromatic Vega graphs.

Concentrating on the chromatic number we immediately get the following statement, con-
jectured by Brandt [3].
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Corollary 4.2 Every triangle-free graph with minimum degree > n/3 is 4-colorable.

There are several further consequences of our result, the first of which is a strengthening of
the previous corollary.

Corollary 4.3 (1) Every maximal triangle-free graph with minimum degree > n/3 has a reg-
ular weight function ω.

(2) Every maximal triangle-free graph with minimum degree > n/3 has a dominating K1,t,
t ≤ 3.

(3) Every triangle-free graph with minimum degree > in/(3i− 1) is homomorphic to Υi−1, for
i ≥ 3.

(4) Every maximal triangle-free, twin-free weighted graph with minimum degree δ > i/(3i− 1)
has at most 3i− 4 vertices, for i ≥ 2.

Statements (1) and (4) were conjectured in [3, Conjectures 3.8 and 5.1] and (3) refines the
result of ÃLuczak [14].
Proof.

(1) This is immediate from Theorems 1, 3, and 4.

(2) This follows from (1) combined with the main result of [3, Theorem 1.3].

(3) It is easy to verify that the graphs under consideration are Γj , j < i and Vega graphs with
at most i vertices. By definition, the Vega graph Υi−1 has order 3i + 4 and contains Γj

and all smaller order Vega graphs.

(4) Again, the graphs under consideration are the graphs Γj , j < i, with at most 3i−4 vertices
and Vega graphs with at most i vertices. ¥

Our main result can be interpreted in the way that the triangle-free graphs with minimum
degree δ > n/3 have a simple structure. So it is not surprising that certain parameters, that are
hard to compute for general graphs can be computed in polynomial time. This was shown by
Brandt [2] for the independence number and we will prove it here for the chromatic number at
the end of this paper.

From now on, let (G,ω) be a good weighted graph with minimum weighted degree δ > 1/3.
Among the weight functions ω we choose one which maximizes the minimum degree and if there
is a regular weight function ω we choose this. Linear programming yields that if there is a
regular weight function, it maximizes δ. Among the vertices of minimum weight of G let x be
one of minimum (unweighted) degree in G.

The proof of Theorem 4 proceeds in three steps: The first step is already completed in
Theorem 3 by showing that the Vega graphs form a family of good weighted graphs. The final
steps are the following statements.
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Theorem 5 If G is a good weighted graph and G − x is not a good weighted graph then G =
Υi − {y, 2i}.

Theorem 6 If G is a good weighted graph such that G − x is a Vega graph then G is a Vega
graph.

So there cannot be a minimal good weighted graph which is not a Vega graph and therefore
the good weighted graphs are just the Vega graphs.

The proof of Theorem 5 is performed in the next two sections while the proof of Theorem 6
is completed in the final section.

2 The structure of regular good graphs.

Here we investigate the structure of (G,ω) when ω is regular. To simplify the notation, we
frequently replace the weight ω(x) simply by x. As usual, ω(A) (or just A) denotes the sum of
the weights of the elements of A. We start with some preliminary results that do not require the
fact that the chromatic number is at least 4. Let Q3 be the graph of the 3-dimensional cube.

Lemma 1 (Brandt [3]) Every good weighted graph does not contain an induced Q3 subgraph.

Lemma 2 (Brandt [3]) Every stable set S of (G, ω) is such that ω(S) ≤ δ.

We sketch the proof of this result as a warm-up for the typical reasoning in this paper.
Proof. Consider a stable set S with maximum weight. If S is dominated by a vertex, its weight
is clearly at most δ. So assume it is not. The key-fact here is that there exists a subset T of S
such that

⋂
x∈T Nx is empty, just consider T = S. Now, choose T minimum in size. We claim

that |T | ≤ 3, otherwise G contains an induced cube (i.e. a K4,4 minus a perfect matching).
Thus T has two or three elements. If T = {a, b}, since S, Na and Nb are disjoint, we have
S + 2δ ≤ 1, and since δ > 1/3, we have S ≤ δ. If T = {a, b, c}, we denote by S′ the set
(Na ∩ Nb) ∪ (Na ∩ Nc) ∪ (Nb ∩ Nc). Note that S′ is a stable set, in particular S′ ≤ S. But if
we sum the weights of the neighborhoods of a, b, c, we get Na + Nb + Nc − S′ + S ≤ 1. Thus
S ≤ 1− 3δ + S′, which contradicts the fact that S′ ≤ S. ¥

In fact, the stronger result was shown that every maximal weight stable set is the neighbor-
hood of a vertex. The following observation will be frequently used.

Lemma 3 For every induced C6 of (G,ω) there is a vertex in G dominating three of its vertices.

Proof. Assume not, then summing the degrees of the vertices of C6 we get

6δ ≤
∑

v∈C6

d(v) ≤ 2,

and hence δ ≤ 1
3 , a contradiction. ¥
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2.1 Global structure.

Here we refine the reasoning in [3] and describe the global structure of a regular good graph in
more detail. Recall that x is among the vertices of minimum weight in (G,ω) one of minimum
degree in G.

Claim 1 In the neighborhood of x, there exist three vertices a, b, c such that Na∩Nb∩Nc = {x}.
Proof. First of all, {x} =

⋂
y∈Nx

Ny, otherwise Nx would be a subset of some Nz, contradicting
the fact that G is maximal triangle-free and twin-free. Now consider a smallest subset T of Nx

such that x =
⋂

y∈T Ny. By the minimality, for each vertex v of T there is a vertex in G being
adjacent to every vertex of T but v. Since Q3 is isomorphic to K4,4 minus a perfect matching,
T has at most three vertices by Lemma 1. If T = {a}, we have Na = {x}, and by the fact that
G is maximal triangle-free, x would dominate every vertex, contradicting our assumption that
G is not 3-colorable. If T = {a, b}, denoting by Q the vertices which are not neighbors of x, a
or b, we have 1−Q = Na + Nb + Nx − x > 1− x. This gives Q < x, and since x has minimum
weight, Q is empty. But this would mean that V (G) = Na ∪Nb ∪Nx, and thus G is 3-colorable.
¥

We denote by R the (stable) set of vertices that are neighbors of at least two vertices of
a, b, c. Note that R contains x. Two cases can occur: there can be a vertex y in G dominating
R or not. We will show that if y does not exist, G is just a Vega graph Υi −{y, 2i}. This is the
first and major step in the proof of Theorem 5. For the moment, we still assume that y may or
may not exist.

Claim 2 R = 4δ − 1− x.

Proof. If we sum all the degrees of a, b, c, x, we get 4δ − R − x = 1 − Q, where Q is the set
of vertices which are not neighbors of a, b, c, x. It gives that Q = 1 − 4δ + R + x. Since R is a
stable set, its weight is at most δ, and thus Q ≤ 1− 3δ + x < x. Since x has minimum weight,
the set Q is empty, implying 4δ −R− x = 1. ¥

Observe that R is a maximal stable set, since adding any vertex gives weight at least 4δ−1 >
δ. Observe also that since Q is empty, every vertex of G is a neighbor of x, a, b, or c. In particular
G is 4-colorable. This is how the first author proved in [3] that every regular triangle-free graph
with δ > n/3 is 4-colorable.

Let us now partition R into x,U, V, W , where U = (Nb ∩Nc) \ {x}, V = (Na ∩Nc) \ {x} and
W = (Na ∩Nb) \ {x}. Note that U (as well as V and W ) is not empty since otherwise we would
have Nb ∩ Nc = {x}, against the proof of Claim 1. Moreover we denote by X the set Na \ R,
also Y := Nb \R and Z := Nc \R.

Claim 3 The sets Nx, R, X, Y, Z partition V (G).

Proof. This is just a reformulation of V (G) = Nx ∪Na ∪Nb ∪Nc. ¥

Let u ∈ U such that ω(Nu ∩X) is as large as possible, similarly pick v ∈ V and w ∈ W such
that ω(Nv ∩ Y ) and ω(Nw ∩ Z) are as large as possible.

7



Claim 4 If p ∈ Nu ∩ Nx then U ⊆ Np. In other words, whenever a neighbor of x is joined to
u, it is also joined to U .

Proof. Assume not, and pick a non-neighbour u′ ∈ U of p. Since G is maximal triangle-free
there is a vertex x′ such that p, u′ ∈ Nx′ . Note that such a vertex x′ is necessarily in X and is
not joined to u. Since u has maximum weighted degree in X, there is a vertex x′′ of X such
that x′′ ∈ Nu but x′′ /∈ Nu′ . Now let q be a common neighbor of u′, x′′, observe that q ∈ Nx.
We have formed an induced 6-cycle upx′u′qx′′ such that no vertex of G dominates three of its
vertices, a contradiction to Lemma 3. ¥

Claim 5 X ⊆ Nu, Y ⊆ Nv and Z ⊆ Nw.

Proof. Assume that a vertex x′ of X is not a neighbor of u. Since R is a maximal stable
set, there exists a vertex u′ ∈ R joined to x′. Observe that u′ is necessarily in U . There exists
a common neighbor p ∈ Nx of u, x′. Since p is joined to u, it is joined to U by the previous
claim. This is a contradiction since px′u′ is a triangle. The two other inclusions are verified
analogously. ¥

Claim 6 Every vertex of Nu ∩Nv ∩Nw dominates R.

Proof. Observe that Nu is disjoint from R ∪ Y ∪ Z. Thus Nu ∩ Nv ∩ Nw is disjoint from
R ∪X ∪ Y ∪ Z, and falls into Nx by Claim 3. By Claim 4, every vertex of Nx ∩Nu ∩Nv ∩Nw

must be a neighbor of {x} ∪ U ∪ V ∪W . Finally, Nu ∩Nv ∩Nw dominates R. ¥

When R is not dominated, this simply mean that Nu ∩ Nv ∩ Nw is empty. Otherwise
Nu ∩Nv ∩Nw is a (unique) vertex y which dominates R. Let S be the set of vertices that are
adjacent to at least two of u, v, w.

Claim 7 We have S = Nx.

Proof. Observe that S ⊆ Nx. We need now two distinct proofs.
If R is not dominated, we let Q = Nx \ S. We have R + Nu + Nv + Nw −Nx + Q ≤ 1. Thus

6δ − 2− x + Q ≤ 0, and then Q < x. In particular, Q is empty.
If R is dominated by some vertex y, it suffices to show that every vertex of Nx is adjacent to

at least two vertices of u, v, w. Assume without loss of generality that p ∈ Nx is not adjacent to
u, v. Then p has common neighbors x′ with u and y′ with v. Note that x′ ∈ X and y′ ∈ Y . But
then px′uyvy′ is an induced C6 in which no vertex of G has three neighbors, a contradiction to
Lemma 3. ¥

By Claim 7, when R is dominated by some vertex y, every neighbor of x has at least two
neighbors in u, v, w. We will also need that every vertex has a neighbor in u, v, w or y which is
a consequence of Claim 3 and 5.

We consider the partition A,B, C of Nx \ {y} (i.e. Nx if y does not exist), where A is the
set of vertices that are neighbors of v, w, B is the set of vertices that are neighbors of u,w and
C is the set of vertices that are neighbors of u, v.
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Figure 1: The global structure of regular good weighted graphs (dashed lines indicate that some
edges may be present while bold edges indicate that all edges are present between the respective
sets).

Claim 8 There is no edge between B and X, V and X, C and X, W and X, A and Y , U and
Y , C and Y , W and Y , A and Z, U and Z, B and Z, V and Z.

Proof. Each such edge would belong to a triangle, for instance in the case of B and X any
edge would form a triangle with u. ¥

Claim 9 There are all edges between A and V , A and W , B and U , B and W , C and U and
C and V .

Proof. Assume that two elements of A and V are not joined by an edge, since G is maximal
triangle-free, there should be a vertex dominating them. There is no room for such a vertex in
the graph. ¥

Observe now that the global structure of a regular good weighted graph is as depicted in
Figure 1.

Now the local structure of the subgraphs induced by XY Z, AXU , BY V , and CZW is left
to be determined. We will do that for the case that R is not dominated and show that the
local structure is such that a Vega graph arises. By the final result, the local structure in the
non-dominated case is very much alike. Before starting to determine the local structure we will
establish two useful facts concerning the weights of vertices and sets.

Claim 10 The weight of x is 6δ−2 if R is not dominated and x = y = 3δ−1 if R is dominated.
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Proof. If R is not dominated, summing the degrees of a, b, c, u, v, w we get 6δ = 2+x. Otherwise
we get 6δ = 2 + x + y and R = δ and by Claim 2 we obtain x = 3δ − 1 implying y = 3δ − 1. ¥

Claim 11 If R is not dominated we have A = X = U + x/2, B = Y = V + x/2, and C = Z =
W + x/2.

Proof. Comparing the neighborhoods of u, v, w with x, we get A = X, B = Y , and C = Z.
Comparing the neighborhoods of a and u, and b and v, we get B + C = V + W + x and
A+C = U +W +x. Thus A+B+C +C = U +V +W +x+x+W , that is Nx +C = R+x+W .
Since R = 4δ − 1− x, we have δ + C = 4δ − 1 + W . Finally C = W + x/2. We prove similarly
that A = U + x/2 and B = V + x/2. ¥

It is now left to determine the internal structure of the tripartite subgraphs induced by
XY Z, AXU , BY V , and CZW .

2.2 Simple tripartite graphs.

A graph is 2K2-free if it does not contain two independent edges as an induced subgraph. We
call a tripartite graph simple, if each pair of its partite sets induces a 2K2-free subgraph. It
turns out that each of the indicated subgraph must be simple. We call a tripartite triangle-free
graph maximal if any two non-adjacent vertices from different sets have a common neighbor,
which clearly must belong to the third set. Still the graph may not be maximal triangle-free
since vertices from the same set can have no common neighbor.

Lemma 4 The induced tripartite graphs on XY Z, AXU , BY V and CZW are simple and
maximal.

Proof. Consider the graph induced by XY Z and assume for instance that its bipartite subgraph
induced by Y Z contains a 2K2. Since G is maximal triangle-free the graph induced by XY Z
must be maximal tripartite triangle-free since by Claim 8, vertices from different sets can only
have a common neighbor in the third set. In particular, any common neighbor of a vertex
in Y and a vertex in Z belongs to X. Assume now that there exist two independent edges
y1z1 and y2z2 between Y and Z. There exists a vertex x1 ∈ X dominating y1, z2 and a vertex
x2 ∈ X dominating y2, z1. Now x1y1z1x2y2z2 is an induced 6-cycle. But no vertex of G can
dominate x1, z1, y2 nor y1, x2, z2, a contradiction to Lemma 3. All the other possible cases follow
analogously. ¥

Lemma 5 Every 2K2-free bipartite graph with bipartition (X,Y ) has a vertex in X dominating
Y or an isolated vertex in Y .

Proof. Choose a vertex x ∈ X of maximum degree. If x is not dominating Y then there is a
vertex y ∈ Y which is not adjacent to x. Assume that y is not isolated. It has a neighbor x′ ∈ X.
Since the degree of x is maximum, there must be a neighbor y′ of x, which is not adjacent to x′.
So xy′, x′y is an induced 2K2. ¥

In a tripartite graph, a central vertex is a vertex which set of neighbors consists exactly of
one part.
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Lemma 6 Every maximal simple tripartite graph XY Z has at least two central vertices.

Proof. We just have to prove that there exists a vertex which is independent of one part which
is not its own part, it will be then joined to the third part by maximality. Consider now all
ordered pairs (X, Y, ), (Y, Z), (Z,X). To avoid triangles, one of them have a vertex in the first
set which does not dominate the second set. Thus, by Lemma 5, one of the second sets must
have a vertex independent of the first set. This is our first central vertex. Observe that by
reversing the order of the three pairs, we get a second central vertex. ¥

A tripartite graph is twin-free if it has no twins in the same partite set.

Lemma 7 Let XY Z be a maximal tripartite triangle-free graph. If x, x′ ∈ X are not twins,
there exists a path of length four with endvertices x, x′, and thus with inner vertices in Y and
Z.

Proof. Since the graph is twin-free, there is a edge say xy, with y ∈ Y such that x′ is
independent of y. By maximality, there exists a vertex z ∈ Z which is both joined to x′ and y.
Now, xyzx′ is our path. ¥

The next result is the inductive key of the characterization result:

Lemma 8 If H is a twin-free maximal simple tripartite graph and v is a central vertex of H,
then H − v is also a twin-free maximal simple tripartite graph.

Proof. The graph H − v is obviously simple. Since v is a central vertex, any two twins in the
same part of H − v were twins in H. Thus H − v is twin-free. Moreover, any two non-adjacent
vertices in different parts of H − v that have no common neighbor had no common neighbor in
H. Thus H − v is maximal triangle-free. ¥

First we need to recall a useful tool observed by the first author as a variant of Pach’s above
mentioned result Theorem 2.

Theorem 7 (Brandt [4]) The only graphs that are maximal triangle-free and without an in-
duced C6 are the graphs Γi, i ≥ 1, with some vertices duplicated.

We will now give a characterization of the twin-free maximal simple tripartite graphs.
Observe that the graphs Γi with the tripartition X = {1, . . . , i}, Y = {i + 1, . . . , 2i} and
Z = {2i + 1, . . . , 3i − 1} have this property. Indeed, they are maximal triangle-free and twin-
free. Assuming that x1y1, x2y2 is an induced 2K2 between two partite sets X, Y , there must be
common neighbors z1 of x1 and y2 and z2 of x2 and y1. Since z1, z2 must belong to the third
partite set Z, this gives an induced C6, contradicting Theorem 7. So they are simple as well.
Moreover every two tripartitions are isomorphic by an isomorphism mapping partite sets onto
partite sets.

Fix our initial labelling of Γi and the tripartition X, Y, Z. There are two central vertices
1 and 2i. Deleting the vertex 2i from the set Y , we get a twin-free maximal simple tripartite
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graph Γ′i (though not maximal triangle-free in the graph sense). The central vertices of this
graph are 1 joined to Y and i joined to Z. Deleting 1, we get another twin-free maximal simple
tripartite graph Γ′′i (note that this graph contains the twins i, i + 1 in different sets). Observe
that the graphs Γi and Γ′′i have an automorphism exchanging X and Y and fixing Z, and Γ′i has
an automorphism exchanging Y and Z and fixing X.

We now show that these are (up to isomorphisms mapping partite sets to partite sets) the
only maximal simple tripartite graphs without twins in the same set.

Theorem 8 A graph H is maximal simple tripartite without twins in the same set, if and only
if it is isomorphic to a graph Γi, Γ′i, or Γ′′i , by an isomorphism mapping partite sets to partite
sets.

Proof. We have already seen that the graphs Γi, Γ′i, Γ′′i have this property. So it suffices to prove
that every maximal simple tripartite graph without twins in the same set has an isomorphism
to one of these graphs mapping partite sets to partite sets. We proceed by induction.

Let H be a maximal simple tripartite graph without twins in the same set. If |H| ≤ 1 the
result holds, so assume that |H| ≥ 2. By Lemma 6, H has a central vertex v, and by induction
and Lemma 8, H − v is isomorphic to a graph Γi, Γ′i, or Γ′′i by an isomorphism respecting the
partite sets.

If H − v is isomorphic to Γi, then v was deleted from Z. Otherwise by the symmetry of X
and Y we may assume that v was deleted from X. Now if v is joined to Y and independent of
Z then it is a twin of 1 in X and if v is joined to Z and independent of Y , the neighborhood
of v would be a proper subset of the neighborhood of i ∈ X, contradicting the maximality
requirement. So, by symmetry, we may assume that v ∈ Z was joined to Y and independent of
X. This gives an isomorphism of H into Γ′′i+1 mapping j to j + 1 in X ∪ Y , j to j + 2 in Z and
v to 3i + 2.

By an analogous reasoning we get, when H − v is isomorphic to Γ′i, that v was deleted from
Y or Z and is joined to X. By symmetry, we get that H is isomorphic to Γi. Finally, if H − v
is isomorphic to Γ′′i , we get that v was deleted from X and is joined to Y or v was deleted from
Y and is joined to X. By symmetry, we get that H is isomorphic to Γ′i. ¥

In the next part we determine the structure inside the tripartite subgraphs in more detail.

2.3 Twins in tripartite graphs.

Here we assume that G is a good graph such that the set R is not dominated (i.e., no vertex y
exists) and we investigate the structure of the simple tripartite graphs induced by XY Z, AXU ,
BY V , and CZW . Note that although G is twin-free there can be twins with respect to the
tripartite graphs.

Lemma 9 All vertices of Y are twins in XY Z or in BY V .

Proof. Let y, y′ ∈ Y be two vertices. If they are not twins in XY Z, there is a vertex x′ ∈ X
which is joined, say, to y′ but not to y. Now x′ and y must have a common neighbor z in Z.
Observe that z is not joined to y′. If y and y′ are not twins in BY V then, similarly, there is a
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path of length three yv′b′y′ where v′ ∈ V and b′ ∈ B. Now yv′b′y′x′z is a 6-cycle, and no vertex
can dominate yb′x′ nor v′y′z, a contradiction by Lemma 3.

Since G is twin-free, every pair of vertices can be twins only in one of the graphs XY Z
or BY V . Consider the auxiliary complete graph H on the vertex set Y . Since being twins is
an equivalence relation, it follows that the twins in XY Z and the twins in BY V both induce
subgraphs of H consisting of vertex-disjoint cliques. Therefore one of them must contain all
edges of H. In particular, all vertices of Y are twins in XY Z or in BY V . ¥

Claim 12 In the subgraph induced by BY V , no vertex of B or V is independent of Y . Moreover,
if all the vertices of Y are twins in BY V , then B and V are the singletons {b} and {v}.

Proof. Observe that every vertex of V has a neighbor in Y , otherwise its neighborhood would
be included in Nx. Hence, to avoid triangles, b is independent of V , and thus central. Conversely,
no vertex from B can dominate V since R is not dominated. So, by Lemma 5, there must be a
vertex in V which is independent of B. Since the neighborhood of this vertex would be included
in Nv, this vertex is indeed v. Observe that b and v are the central vertices of BY V both
dominating Y . By Lemma 4 and Theorem 8, the graph induced by BY V is isomorphic to Γ′′i
(maybe containing twins), since only in Γ′′i the central vertices dominate the same set.

Finally, if all vertices in Y are twins in BY V , it follows that this graph is Γ′′2 (up to twins),
i.e. the path on three vertices with center vertex Y . In particular, all the vertices of B and of
V are twins in BY V . But this means that they are also twins in G, and thus equal to b and v,
respectively. ¥

Analogous statements hold for the graphs AXU and CZW .

Claim 13 All vertices of X, Y, Z are twins in AXU , BY V and CZW , respectively.

Proof. Observe first that there exists an edge between any two parts of the graph induced by
XY Z. If not, say X, Z are independent, pick two vertices x′ ∈ X and z′ ∈ Z. Then there is no
vertex dominating three vertices of the induced 6-cycle ax′ucz′wa, a contradiction to Lemma 3.
In particular, for one of the parts in XY Z, say X, not all vertices are twins, otherwise we would
get either a triangle, or two independent parts. Thus, by Claim 12, A = {a} and U = {u}.

Assume for a contradiction that the vertices of, say, Z are not twins in CZW . Then the
vertices of Z are twins in XY Z by Lemma 9. By Theorem 8, the graph induced by XY Z is (up
to twins) isomorphic to some graph Γi, Γ′i, Γ

′′
i . Since Z is a singleton in XY Z, we have i = 2.

Moreover, the case Γ′′2 is impossible since X has at least two vertices that are not twins. So
the graph induced by XY Z is Γ′2 or Γ2 (up to twins). In particular X = {x1, x2}, where x1

dominates Z, and x2 is independent of Z and therefore dominates Y .
First assume that the vertices of Y are not twins in BY V . Since by Claim 12, no vertex

in B or V is independent of Y there are, by Lemma 5, distinct vertices y1 ∈ Y dominating
B and y2 ∈ Y dominating V . By Lemma 7, there is a path y1b1v2y2 in the subgraph BY V .
Analogously there is a path z1c1w2z2 in CZW . Observe also that Y is completely joined to
Z, and thus x1 is independent of Y . Let S be the set {x1, x2, y1, y2, z1, z2, b1, v2, c1, w2}. Every
vertex of B,C, V,W has at most three neighbors in S (for instance a vertex of B has neighbors
y1, w2 and at most one vertex of the edge y1v2). Every vertex of A, Y, Z, U has at most four
neighbors in S (this is clear for A and U , and a vertex of Y is joined to x2, z1, z2 and at most
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one vertex in the edge b1v2). Finally, every vertex xi ∈ X has exactly two neighbors in S. Thus,
summing the degrees of the elements of S and using Claim 11, we get:

10δ ≤ 3 + Y + Z + A + U −X − x = 3 + A + B + C + U −X − x = 3 + δ − 3
2
x,

which implies 3
2x ≤ 3− 9δ < 0, a contradiction.

So we may assume that all the vertices of Y are twins in BY V , and thus B = {b} and
V = {v}. Recall that the graph induced by XY Z is isomorphic to Γ2 or Γ′2 (possibly with
twins).

First assume that XY Z induces Γ2. Then Y = {y1, y2}, where y1 dominates Z and y2

dominates X and is independent of Z. Summing the degrees of x1 and y1 we get by Claim 11

2δ = Z + a + u + y2 + Z + b + v + x2 = 2a + 2b + 2C − x + x2 + y2 = 2δ − x + x2 + y2

implying x2 + y2 = x, a contradiction to x having positive minimal weight 6δ − 2 (Claim 10).
Finally, assume that XY Z induces Γ′2. Here we have Y = {y1}, dominating Z and x2.

Again, summing the degrees of x1 and y1 we get by Claim 11

2δ = Z + a + u + Z + b + v + x2 = 2a + 2b + 2C − x + x2 = 2δ − x + x2

implying x2 = x. Since CZW is a Γ′′i for some i ≥ 3 (indeed, |Z| ≥ 2 since the elements of Z are
not twins in CZW ), there are at least two vertices in C. So the (unweighted) degree of x in G
is at least four while the neighborhood of x2 is a, u, y1, a contradiction to the degree minimality
assumption for x among the minimum weight vertices. ¥

In particular, by Claim 12, U, V, W,A,B, C are the singletons {u}, {v}, {w}, {a}, {b}, {c}.
Our graph G has then the structure depicted in Figure 2.

2.4 The characterization step.

Here we complete the characterization of the regular good graphs when R is not dominated.
Since each of the sets A,B, C, U, V, W consists of a single vertex, it is left to show that the graph
induced by XY Z is a graph Γ′i.

Proposition 1 If R is not dominated, then G is isomorphic to Υi − {y, 2i}, for some i ≥ 2.

Proof. We just have to show that the graph H induced by XY Z is Γ′i, with its usual tripartition.
Assume that this is not the case. Then, by Theorem 8, H must be isomorphic to Γi or Γ′′i .

In the latter case, there are central vertices x1 ∈ X independent of Y , and y1 ∈ Y independent
of X. Now, ax1uby1v is an induced C6 contradicting Lemma 3.

So we may assume that H = Γi. Then G is isomorphic to Υi − {y}. By complementary
slackness G has a unique regular weighting where all vertices have the same degree and the total
weight is 1, which is given in Theorem 3, up to normalization. But now the vertices 1 and 2i
have smaller weight than x, a contradiction to the choice of x. ¥
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Figure 2: Refined structure of good regular weighted graphs if R is not dominated.

3 The deletion step.

If G = Υi − {y, 2i}, then G − x is not a good weighted graph by Lemma 3 applied to the C6

induced by a, b, c, u, v, w. Our aim here is to show that for all other good weighted graphs G,
regular or not, the graph G− x is again good.

Proposition 2 If G 6= Υi−{y, 2i} is a good weighted graph then (G− x, ω′) is a good weighted
graph for a suitable weight function ω′.

Proof. Observe first that G−x is twin-free. If there were twins in G−x, one of them would have
in G its neighborhood included in the second. This is impossible since G is maximal triangle-free
and twin-free. Observe also that if G − x has a weight function with δ > 1/3 and is maximal
triangle-free, it cannot have chromatic number less than 4. Otherwise, by Theorem 1, G− x is
exactly a Γi graph, and thus x, by Theorem 2, would be joined to a maximal stable set of this
Γi graph, and therefore would be a twin of some other vertex.

By the two previous observations it is left to show that G − x is maximal triangle-free and
has a weight function with δ > 1/3. The arguments differ depending on whether the graph has
a regular weight function or not.

Let (G,ω) be regular. In particular, since G 6= Υi−{y, 2i}, the set R is dominated. Observe
that G−x is maximal triangle-free, since by Claim 7 every pair of vertices of Nx has a common
neighbor in {u, v, w}.

By Claim 10, x has weight 3δ−1. We just have to find a weight function for G−x. Delete x
and add 3δ − 1 to the weights of u, v, w, y. The key observation here is that the weight of every
neighborhood increases by 3δ− 1 since every neighbor of x has at least two neighbors in u, v, w,
and every vertex has a neighbor in u, v, w, y. At the same time, the total weight increases by
9δ − 3, so this new weight function ω′ still achieves δ′ > 1/3, when renormalized.
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Let (G,ω) be not regular. Here we use the duality theorem of linear programming. If ω
achieves the maximum minimum degree δ, there exists a dual weight function ωd with the same
total weight 1, such that ωd(Nv) ≤ δ for every vertex v of G. By complementary slackness, we
also know that if a vertex v has weight nonzero for ω, it satisfies ωd(Nv) = δ. In particular, it
is necessary that ω has a vertex x which has weight zero since if not, ωd would be regular with
degree δ, and we would consider this weight function instead of ω.

So the restriction of ω to G− x has minimum degree δ > 1
3 , and we just have to show that

G − x is maximal triangle-free. If this is not the case, there are two nonadjacent vertices z, z′

of G− x such that the unique vertex of G joined to both is exactly x. The sum of the degrees
of x, z, z′ is 3δ. Meanwhile, the only vertex which is counted twice is x, which has weight zero.
This would give 1 ≥ 3δ, a contradiction. ¥

From this point, we know that every good graph contains a Υi − {y, 2i}. In particular, we
reproved that every good graph contains a Grötzsch graph.

4 The induction step.

Our final goal is now to prove Theorem 6, saying that if a good weighted graph (G,ω) has a
vertex t such that G− t is a Vega graph, then G is also a Vega graph.

Now, let G be a graph having a vertex t such that G − t is a Vega graph. So G consists of
7 or 8 vertices x, a, b, c, u, v, w and possibly y and a graph Γi or Γi − {2i}, such that the vertex
sets X = N(a)∩N(u), Y = N(b)∩N(v), Z = N(c)∩N(z) form a proper 3-coloring of Γi. Note
that the possibly deleted vertex 2i has the property that its set of neighbors in Γi is precisely
one of the sets X, Y, Z. In order to use the symmetries of the situation we will only use this
property of 2i, and will not prescribe to which set it is joined. Now we are prepared to prove
Theorem 6.

Proof. We consider the 6-cycle C induced by {a, b, c, u, v, w} and T = N(t) ∩ V (C). We will
show that in any case:

(1) t is a twin of some vertex of G− t, contradicting that G is twin-free,

(2) t belongs to a C6 in which no vertex in G has more than 2 neighbors, a contradiction to
Lemma 3,

(3) t is the missing vertex 2i or y of G− t, and hence G is a Vega graph, or

(4) there is an independent set containing vertices from all three sets X,Y, Z, which contradicts
Pach’s characterization (Theorem 2). This is due to the fact that X,Y, Z is (or can be
extended to) a proper 3-coloring of Γi, but there is no vertex in Γi that dominates vertices
from three different color classes.

If T = {a, b, c} then t is a twin of x. Analogously, if T = {u, v, w} then t is either a twin of
y or t is the missing vertex y.

Otherwise, |T | ≤ 2. First assume T = ∅. Then, since t can be adjacent to at most one vertex
of {x, y}, it must be adjacent to at least one vertex of each of the sets X,Y, Z since it must
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have distance 2 to each vertex of C. As indicated above, this contradicts Pach’s characterization
Theorem 2.

Now assume that T has exactly two neighbors in one partite set of the bipartition of C.
W.l.o.g., t is adjacent to u, v (or a, b, resp.). But then it must be adjacent to each vertex in Z
and to x (y, resp., if y is present) and hence t is a twin of c (w, resp.). So t has at most one
neighbor in each of the partite sets.

If t has a neighbor in both partite sets, w.l.o.g., T = {a, u}, then t cannot be adjacent to x
nor to y. Moreover, t must be adjacent to a maximal independent set S of Y ∪Z, which contains
vertices from both Y and Z, since t has distance 2 to both b and c. Since no independent set
can contain vertices from all three sets X, Y, Z, the set S is maximal independent in the graph
induced by X ∪ Y ∪ Z as well. By Pach’s characterization there must be a vertex x′ ∈ X
dominating S, unless S is the neighborhood of the deleted vertex 2i. In the first case, t is a twin
of x′, in the latter case, t is the missing vertex 2i, and hence G is a Vega graph.

Finally, we have to treat the case where T consists of a single vertex, which we may assume
to be a or u. If T = {a} then t must be adjacent to a maximal independent set S of Y ∪ Z,
containing vertices y′ ∈ Y and z′ ∈ Z, and to y, if y is present in G− t. But now t, y′, b, x, c, z′ is
a C6 in which no vertex of G has more than two neighbors. If T = {u} then t must be adjacent
to a maximal independent set S of Y ∪Z, containing vertices y′ ∈ Y and z′ ∈ Z, and to x. Since
Γi and Γi − 2i are both twin-free, one of the vertices y′, z′, say z′, has a non-neighbor x′ ∈ X.
Since G is maximal triangle-free, x′ and z′ have a common neighbor y′′, which must belong to
Y . So t, z′, y′′, x′, a, x is a C6 in which no vertex of G has more than two neighbors. ¥

5 Computing the chromatic number.

Here we show that the chromatic number and even a minimal coloring of a triangle-free graph
with δ > n/3 can be computed in polynomial time. This question was asked by Brandt [2], who
proved that a maximum independent set of a triangle-free graph with minimum degree δ > n/3
can be computed in polynomial time, and, in fact, some tools can be reused here.

Observe first that Theorem 1 combined with our main Theorem 4 immediately gives a trivial
O(n11) algorithm that decides the chromatic number of the triangle-free graph with minimum
degree > n/3. First test whether the graph is bipartite and, if not, test every 11 vertex subset
whether it it induces a Grötzsch graph. If yes, the chromatic number is 4 and if none of the sets
induces a Grötzsch graph the chromatic number is 3. Next we sketch an algorithm that actually
finds a minimal coloring in much faster running time.

The first useful observation from [2] is that a triangle-free graph G = (V,E) of order n with
minimum degree δ > n/3 has a unique maximal triangle-free supergraph G′ = (V, E′) (in the
labeled sense), which can be computed in time needed to multiply two n × n-matrices with
0, 1-entries [2]. The currently best upper bound for the running time M(n) due to Coppersmith
and Winograd [7] is O(n2.3677), while the best lower bound seems to be Ω(n2).

Next we identify twins in G′. For this purpose we order the vertices by the characteristic
vector of their neighborhoods. This can be performed in time O(n2 log n), using an O(n log n)
sorting algorithm, since comparing two n-bit vectors takes time O(n). Find a vertex x of
minimum degree in the resulting twin-free graph G′′ and check whether G′′ is regular. If d(x) = 1

17



then G′′ = K2 is 2-chromatic. If d(x) ≥ 2 and G is regular then the graph is 3-chromatic, in
fact, G = Γi for an i ≥ 2. A proper 3-colouring can be found in the following way. Take any
neighbor p of x, choose a neighbor p′ of x which has the smallest number of common neighbors
with p, and choose another neighbor p′′ that has the smallest number of common neighbors
with p′. Now the neighborhoods N(x), N(p′), N(p′′) cover V (G′′). If G is not regular then it
must be a Vega graph and d(x) is 3 or 4. If d(x) = 3 then {x} ∪ N(x) is a set of 4 vertices
whose neighborhoods cover V (G′′) since G′′ is maximal triangle-free. If d(x) = 4 then one of the
3-element subsets S of N(x) has the property that the neighborhoods of {x} ∪ S cover V (G′′).
So we easily get a proper 3-coloring of G′′ in the regular case and a proper 4-coloring in the
non-regular case. All this can be performed in time O(n2).

Finally, coloring deleted twins of G′ with the color of its remaining twin in the graph in
reverse order of deletion we get a proper coloring of G′ with the same number of colors. This
coloring is also a proper coloring of its spanning subgraph G. So the total running time is
O(M(n) + n2 log n).

Concerning the independence number it has been shown that computing the independence
number in the class of triangle-free graphs with δ > (1

4 − ε)n is NP-hard for every ε > 0 [2]. A
corresponding hardness statement for the chromatic number of triangle-free graphs with linear
degree δ > cn seems not to be known for any c > 0.

6 The very end.

Let us sum-up the results in the following way. Assume that c belongs to [0, 1/2] and denote
by χc the supremum of the chromatic number of a triangle-free graph with minimum degree at
least cn. We have:

• For c ∈]0, 1/3[, Hajnal proved χc = +∞
• For c ∈]1/3, 10/29[, the bound is χc = 4

• For c ∈]10/29, 2/5], Jin proved χc = 3

• For c ∈]2/5, 1/2], Andrásfai, Erdős and Sós proved χc = 2

So the following question remains open.

Problem 1 What is the maximum chromatic number of a triangle-free graph with minimum
degree equal to n/3?

It can be any answer between 4 and +∞. Looking at the question from the other side we
can ask the following question:

Problem 2 Find for every t ≥ 5 the smallest function st(n) such that every triangle-free t-
chromatic graph has minimum degree δ ≤ 1

3n− st(n).

We know that 0 ≤ st(n) = o(n) for t ≥ 5 but finding tight upper and lower bounds may be
difficult.
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