Deformation and anisotropy of physical properties: From the crystal to the rock and plate scale - 1

Andréa Tommasi

Internal Geophysics School

What will we talk about?

- Many physical properties, not only seismics, are anisotropic
- Physical causes of anisotropy at:
 - the crystal scale? The crystals structure!
 - at larger scales? Deformation!
- How rocks deform ductilely and why they become anisotropic (in short)
- Using forward models to constrain the interpretation of flow patterns from seismic anisotropy : the D" example
- Why inversing flow patterns from seismic data is not possible?
- Viscous anisotropy: the memory of deformation

How will we work?

- Course = 1h (questions welcome @ anytime)
- 15 minutes of discussion in groups of 5-6 on what was clear / not clear (take notes!)
- 15 minutes plenary discussion of the not clear points

<u>Anisotropy - variation of a physical</u> property depending on the direction in which it is measured

Oxford Dictionary

Physical properties

- Elasticity : seismic wave propagation
- Electrical/Magnetic/Thermal Conductivity
- Optical properties
- Strength/viscosity

Heat diffusion in a quartz crystal

If we cover a quartz crystal with wax and touch it with a hot needle ...

Radial heat flux (q) (controlled by crystal properties not boundary conditions)

Melting figures are ≠ in ≠ crystallographic faces!

Mechanical anisotropy – elastic behaviour

initial state

To displace the ring at 45°, the force must be applied with an angle \neq 45°

Displacement not necessarily parallel to applied stress

Springs with different strengths

How does this affect the displacement of the ring?

Mechanical anisotropy – elastic behaviour

Springs with different strengths

Principal directions (eigen directions of the tensor):

Displacement // applied force, BUT the force needed to obtain the same displacement is ≠

An example of anisotropy well know by geology students ...

Light Path Through A Calcite Crystal **Optical birrefringence** Optical Axis Incident Light-Calcite Wave Crystal Slow Nave 33 333 Wave Ordinary Extraordinary Ray Ray Figure 2

In a crystal, an EM wave is decomposed in 2 waves polarized in orthogonal directions, which are function of the crystal structure. The 2 waves propagate at ≠ velocities.

Polarization colors: function of the anisotropy (difference in velocity) & path length

Anisotropic physical properties

2nd rank tensor (properties that relate 2 scalars)

- Thermal diffusivity and conductivity
- Electrical conductivity...

Variation of the property is function of the sampling direction

4th rank tensor (properties that relate 2 tensors)

- Elasticity : Variation of the seismic velocities function of the sampling direction AND of the polarisation of the waves (also EM waves)
- Viscosity

What produces anisotropy?

1- In a grain (crystal) (crystals = bricks that compose the rocks)

Chrs

Periodic atomic arrangement with *≠* liaisons in *≠* directions Symmetry of the crystal structure controls the anisotropy

What produces anisotropy?

1- In a crystal

2- In a rock (sample scale = cm to m)

3- At the scale of geophysical observations (10s to 100s of km)

Rock-scale anisotropy results from

Intrinsic anisotropy

Crystal or Lattice Preferred Orientation (CPO or LPO) of anisotropic minerals :

olivine

INT

Extrinsic anisotropy

Organized intercalation of materials with very ≠ properties @ scale << observation one

Oriented melt/fluid inclusions

Deformation produces anisotropy

[100] [010] [001]

Open fractures Compositional layering...

Intrinsic @ extrinsic anisotropy may coexist (and interfere constructively or destructively)

Crystal preferred orientations can be measured

In a SEM by the analysis of electron backscatered diffraction patterns (EBSD)

How to determine anisotropic properties at the rock scale?

rock = aggregate of anisotropic crystals

microanisotropy of crystals macroanisotropy of the material

volumetric averaging as function of: - mineralogical composition - orientation of the crystals

Simplest approach – works fine for thermal and elastic anisotropy

In the upper mantle, controls the anisotropy

> [100] FAST

Fast

S-wave anisotropy= (Vs1-Vs2)/Vsmean

7 Å%

The orientation of the crystals is the key factor for transferring anisotropy to large scales

How do crystal preferred orientations form and evolve?

Relation between flow patterns and CPO

Deformation (flow) of ice Ih (the ice we see on the Mt Blanc)

≠ colors : *≠* crystal orientations

Polycrystalline ice Optical microscope – cross-polarized light C. Wilson - Univ. Melbourne, Australia

ALC: NOT THE OWNER OF

Ductile deformation (flow) of crystalline solids (rocks, but also ice, metals...) Dislocation creep

How to form crystal preferred orientations by deformation (dislocation creep)

within a grain (crystal):

Why does dislocation glide produce crystal preferred orientations?

motion of dislocations on a small number of crystal planes & directions (weaker bonds) = crystal deformation has limited degrees of freedom

strain compatibility → rotation of the crystal
development of a crystal preferred orientation
= all crystals tend to a common orientation

• parameters controlling CPO evolution during deformation by dislocation creep

✓ active slip systems, which depend on the crystal structure and on:

temperature deviatoric stress (or strain rate) pressure water melt

✓ deformation geometry

✓ dynamic recrystallisation

preservation / destruction of CPO & anisotropy?

annealing / static grain growth

reactions / crystallization of new minerals under static conditions

Dislocation glide is not the sole process producing crystal preferred orientations, but it is the most important

Magmatic flow: Deformation of a · crystal mush

(100)

© B. Ildefonse, Géosciences Montpellier

(010)

[001]

Oriented crystallization during reactions & phase transformations: Inheritance of the orientation of the parent mineral

Hornblende (N = 343) • Max.Density = 9.05 % • Max.Density = 4.29 % • Max.Density = 7.82 % Diopside (N = 95) • Max.Density = 9.56 % • Max.Density = 8.34 % • Max.Density = 16.49 %

hornblende + plg = magma + diopside (amphibolite 80% hb)

Diffusion creep with anisotropic diffusivity / crystal growth ✓ Strain-induced olivine crystal preferred orientations & anisotropy are ubiquitous in the upper 200 km mantle

Torsion experiments: Olivine HT-MP

- Simple Shear deformation
- evolution CPO = F(strain)

Low strain: $\gamma = 1$ to 3 Fast evolution of CPO [100] \rightarrow shear direction High strain: γ > 3 Slow evolution of CPO [100] // shear direction

Bystricky et al. Science 2003

Simple key to qualitatively "read" seismic anisotropy observations in the SHALLOW MANTLE (>250 km):

Global 1D radial anisotropy

The upper 200-250 km of the Earth is highly anisotropic

Crust

Open fractures, melt, compositional layering... CPO of micas, amphibole **Upper mantle** CPO of olivine Aligned melt pockets (asthenosphere)

Elsewhere in the mantle? ✓ main rock-forming minerals less anisotropic (cubic): ringwoodite or do not deform by dislocation creep: wadsleyite, bridgemanite

Clear anisotropy also in D"

CPO of postperovskite & ferropericlase + layering?

Seismic anisotropy in D": observations

What do we need for using these data to "map" deformation in D"?

- Forward models of deformation and seismic anisotropy
- Knowledge on the constitutive minerals deformation: at the crystal scale : which deformation mechanisms? at the rock scale : crystal preferred orientation as a function of strain
- 2. Knowledge on the minerals' seismic properties at high T & P
- 3. Calculation of the resulting seismic anisotropy

4. Finite-frequency modelling of wave propagation in an anisotropic Earth

How does PPV deform?

1. Atomic-scale modeling of dislocations structure & glide at 0 K, 120GPa

A. Goryaeva, PhD 2016, Goryaeva et al. PCM 2015a,b, 2017

How does PPV deform?

> Atomic-scale modeling of dislocations glide at D" temperatures, pressures & strain rates

Anisotropic Lattice Friction of PPV	0 K & 120 GPa
-------------------------------------	---------------

E	dge $\sigma_{ m p}$ (GPa)	Screw σ_{p} (GPa)
<	0.1	1
~	0.12	> 11
~	0.1	17.5
2		3
LO} 2	.8 \rightarrow twinning	0.7
LO} 2	.8 \rightarrow twinning	0.7

A. Goryaeva, PhD 2016, Goryaeva et al. PCM 2015a,b, 2017

How does PPV deform? Twinning

<110>{110} twinning: rotation by 34.5° around [001] Abrupt change of orientation = effect on texture evolution

How does PPV & MgO deform under D" conditions?

Cordier et al. Nature 2012, Goryaeva – PhD 2016; Goryaeva et al. Science Reports 2016; Goryaeva et al. PCM 2017

Modelling the deformation of a rock = polycrystalline aggregate Viscoplastic self-consistent models (VPSC)

within a grain (crystal):

strain = motion of dislocations on well-defined crystal planes & directions

Input : slip systems' strength, initial texture & mechanical solicitation (stress or velocity gradient tensor) Lebensohn & Tomé 1993

rock (polycrystal) deformation:

behavior of the aggregate (rock) = average of crystals' behaviors

 $\dot{E}_{ij} = \langle \dot{E}_{ij} \rangle \qquad \Sigma_{ij} = \langle \sigma_{ij} \rangle$

 $\dot{\epsilon}_{kl} - \dot{E}_{kl} = -M_{ijkl} (\sigma_{ij} - \Sigma_{ij})$

Output: evolution of crystal orientations & mechanical response (strain rate or stress tensor)

Modelling the deformation of a D" rock ~ aggregate of 70% MgSiO₃ PPV + 30% MgO crystals

MgSiO₃ PPV

MgO

Slip system	CRSS	Slip system	CRSS
[100](010)	1	<110>{110}	1
[100](011)	10	<110>{111}	5
[100](001)	20	[100]{110}	1
[001](010)	1/3	a Post-perovs [001] slip systems [100] (001)	kite C Ferropericlase (100) slip modes
½ <110>{110} twinning	3 / not active	(010)	[110] [010] (100)
		b Post-perovs [001] twinning	<100> skite [100] [100]
		(110) (110) 1/2[110] /2[110]	[1T0](110) parent lattice (011]
		[100]	[001]

volumetric averaging of the single crystal properties function of: - mineralogical composition

- orientation of the crystals

Tommasi et al. **EPSL 2018**

At low shear strains: fast polarization & birrefringence depend strongly on propagation direction Sdiff, ScS, SKKS fast polarization may be inclined by up to 50-60 $^{\circ}$ to relatively to the horizontal

CMB

160

180°

140

Seismic anisotropy of a PPV+MgO aggregate deformed in simple shear parallel to the CMB at 2000 K & 125 GPa

At low shear strains: fast polarization & birrefringence depend strongly on propagation direction Sdiff, ScS, SKKS fast polarization inclined by up to 50-60°

Max inclination of fast polarization decreases with increasing shear strain

At high shear strains: Fast polarizations mainly subhorizontal, but birrefringence still depends on propagation direction

CPO and seismic anisotropy evolution in response to a change in flow direction

CPO and seismic anisotropy evolution in response to a change in flow direction

Shear // to CMB to upwelling at the border of a Low Shear Velocity Province

Seismic anisotropy in D": Observations vs. model predictions

Seismic anisotropy in D": Observations vs. model predictions

Differential S-ScS splitting

- Fast ScS polarizations inclined by >30° to CMB only observed in or near vertical flow domains
- Consistent with the observations = paths sampling high velocity regions (downwellings)
- Predicted (local) anisotropy >> measured values : integration of spatially ∆ signal

- Different splitting in crosscutting ray paths = anisotropy depends on propagation direction
- Fast polarizations either subparallel or inclined relatively to CMB

Seismic anisotropy in D": Observations vs. model predictions Sdiff splitting – 3D waveform modeling

- Fast Sdiff polarizations inclined by 45° to CMB observed at southern border of the African LLSVP
- No clear SKS or SKKS anisotropy signal

[010]

Seismic anisotropy in D": Observations vs. model predictions SKKS-SKS splitting discrepancies

- Similar paths in the upper mantle, but different ones in D"
- BUT rare observations & often consistent & discrepant observations overlap

Restivo & Helffrich GJI 2006

Also, splitting in D" should deviate the initial polarization of SKS & SKKS from the back-azimuth : rarely observed!

Seismic anisotropy in D": Observations vs. model predictions SKKS-SKS splitting

- Clear SKS & SKKS birefringence for most propagation directions for both horizontal shearing & vertical flows. SKS & SKKS signals often ≠.
- Why this anisotropy is not "seen" by most SKS & SKKS waves? Hypothesis : Finite-frequency effects – averaging of the signal over large volumes with lateral variations in the flow pattern

Atomic scale models of the deformation of PPV & MgO + VPSC models : **prediction of the evolution of CPO as a function of strain**, which can be translated into seismic anisotropy patterns.

Most observations of seismic anisotropy in D" might be explained by an anisotropic PPV-rich D" deforming by dislocation creep with dominant activation of [100](010) & 001 slip + twinning. Inclined fast polarizations imply departures from flow // to CMB. Low observed delay times imply heterogeneity of flow at scales < 1000 km

BUT: Seismic waves integrate the signal over large volumes in D". No simple key for the interpretation of the observations.

Why even for the upper mantle inversing deformation patterns from seismic anisotropy is not possible?

- Incomplete seismological sampling

 full anisotropy tensor is never
 sampled
- Splitting data integrates the anisotropy along the path; discrimination of different contributions only possible by differential analysis
- Different processes / flow geometries produce similar olivine CPO
- Olivine CPO produced under ≠ conditions have ≠ orientations relation to flow pattern, but may only be discriminated in the deformation reference frame, which is not known!