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The equations of dynamo action

For conducting, non-magnetic materials, Maxwell equations
(1864) are the following, when radiative phenomena are not
considered

∇ · B = 0

∇× B = µj

∇× E = −
∂B

∂t

Ohm’s law tells us that j = σ(E + u× B)
Taking its curl, we obtain the induction equation

∂B

∂t
= ∇× (u× B) +

1

µσ
∇

2B



The dynamo instability

Starting with no magnetic field, a velocity field u is imposed
on conducting materials. One then investigates whether a
magnetic field develops spontaneously, or not.

∂B

∂t
= ∇× (u× B) +

1

µσ
∇

2B

This is the problem of kinematic dynamo.



Anti-dynamo theorems (Cowling)
◮ A plane flow cannot maintain dynamo action
◮ In a sphere, a flow with no radial component cannot

maintain dynamo action
◮ An axisymmetric magnetic field cannot be maintained by

dynamo action
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But these theorems do not apply when the electric
conductivity tensor is anisotropic



Herzenberg’s dynamo



Ponomarenko’s dynamo



What can be done with

ANISOTROPY



A simple configuration

Two plates sliding on top of each other



A simple configuration

conductivity anisotropy

Σij = σ0δij + (σ1 − σ0) qiqj



A very simple configuration

Uniform anisotropy, in the (x , z) plane
β = 0



A very simple configuration

Uniform anisotropy, in the (x , z) plane
β = 0

DYNAMO!



Equations

Resistivity tensor Rij =
1

σ0

δij +

(

1

σ1

−
1

σ0

)

qiqj

Induction equation ∂B

∂t
= ∇×(u× B)−∇×(η ·∇× B)

with ηij =
Rij

µ0

=
1

µ0σ0

[δij + η1qiqj ]

Poloidal – Toroidal
Decomposition

B = ∇× (T ez) +∇× (∇× (Pez))

Invariance in x and y P = P(z) exp (ikxx + ikyy + γt)

T = T (z) exp (ikxx + ikyy + γt)



Equations
The most interesting case is when kx = 0

γP =
(

1 + η1q
2
x

) [

P ′′
− k2

yP
]

+ iη1kyqxqzT

γT =T ′′
− k2

yT − η1k
2
y q

2
zT + iη1kyqxqz

[

P ′′
− k2

yP
]

On threshold, ℜ(γ) = 0, we also have ℑ(γ) = 0. Hence we get

T = i

1
η1
+ q2

x

kyqxqz

[

P ′′
− k2

yP
]

and substituting for T brings a fourth-order equation for P

P (4)
− [1 +N ]k2

yP
′′ +N k4

yP = 0

with N =

1
η1
+ 1

1
η1
+ q2

x



Solution

P = a1e
ky z + a2e

−ky z + a3e
√
Nky z + a4e

−
√
Nky z

with

N =

1
η1
+ 1

1
η1
+ q2

x

Boundary conditions

◮ P ′ + kyP = 0 at the top, P ′ − kyP = 0 at the bottom

◮ T = 0 at top and bottom

◮ P , P ′, T are continuous across the interface between the
plates

◮ continuity of the electric field Ey across the interface

iT ′
t + kyUPt = iT ′

b − kyUPb



Solution
The condition for the existence of a non-zero eigenmode is
obtained analytically

Rmc =
ky

1
η1

+q2x

qxqz
(N − 1)

[

1 + e−2
√
Nky

]

1 + e−2
√
Nky

[

1 + 1√
N

]

− 1√
N − 2e−(1+

√
N )ky

α = 0.5 rad

(28.65 ◦)



Solution in the limiting case η1 → ∞

lim
η1→∞

Rmc =
qz

ky

qx

[

1 + e
−2

ky

qx

]

1 + e
−2

ky

qx [1 + qx ]− qx − 2e−(1+
1
qx
)ky



Solution in the limiting case η1 → ∞

lim
η1→∞

Rmc =
qz

ky

qx

[

1 + e
−2

ky

qx

]

1 + e
−2

ky

qx [1 + qx ]− qx − 2e−(1+
1
qx
)ky

Minimum
Rmc ≃ 2.609



A bit of hand-waiving



A bit of hand-waiving



Axisymmetric version

A cylinder is rotating in an
infinite domain. Electrical
conductivity is anisotropic
everywhere.

The eigenvalues and eigenvectors are obtained analytically,
using Bessel functions



PLanning a cylindrical experiment

cylindre interne 

(rotor) (stator)

cylindre externe 

Ω

Φ = 170 mm, L = 205 mm
100 Watt, 20 rpm



Eigenmode
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A hand-powered dynamo

An axisymmetric magnetic field maintained by a dynamo



ANISODYNE

experiment



Building blocks

Stator diameter: 17 cm
Height: 20.5 cm

Copper CuA1, 100 % IACS, i.e. 5.8001 × 107 Ω−1m−1



Cutting grooves

Electro-erosion
Width: 0.33 mm



Insulating

film of kapton
and resin



Chrome plating

Thickness: 20 µm



Put a shaft



Connect to a crank



Install a few Hall probes

Arduino
16 bit A/D converter



Fill the gap with Galinstan

Gallium-Indium-Tin alloy
near eutectic
+ unknown stuff



The first run: March 23, 2021
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Run 3 / Run 4



All runs in the afternoon
JB, Renaud, Maëlis, Victor, Stéphanie, Yanick, Franck,
myself...



A little help from an electric motor



Anisotropic or heterogeneous?

Cowling theorem applies
in the heterogeneous case



Preliminary conclusions on anisotropy

◮ Dynamos generated by a plane flow are possible

◮ Axisymmetric dynamos exist

◮ Some have simple analytical solutions

◮ The critical magnetic Reynolds number is obtained
analytically

◮ Anisotropic magnetic permeability also leads to dynamo

◮ ’Superfast” dynamo

◮ The experiment has been working for one week

◮ Version 2 is coming soon...


