Anisodyne: an anisotropic dynamo

or the easy dynamo

Thierry Alboussière Laboratoire de Géologie de Lyon

Franck Plunian

Institut des Sciences de la Terre de Grenoble

Marc Moulin

Laboratoire de Physique de l'ENS Lyon

9 July 2021, École d'été de Géophysique, Les Houches

The equations of dynamo action

For conducting, non-magnetic materials, Maxwell equations (1864) are the following, when radiative phenomena are not considered

$$\nabla \cdot \mathbf{B} = \mathbf{0}$$
$$\nabla \times \mathbf{B} = \mu \mathbf{j}$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Ohm's law tells us that $j = \sigma(E + u \times B)$ Taking its curl, we obtain the induction equation

$$rac{\partial \mathsf{B}}{\partial t} =
abla imes (\mathsf{u} imes \mathsf{B}) + rac{1}{\mu\sigma}
abla^2 \mathsf{B}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Starting with no magnetic field, a velocity field u is imposed on conducting materials. One then investigates whether a magnetic field develops spontaneously, or not.

$$rac{\partial \mathsf{B}}{\partial t} =
abla imes (\mathsf{u} imes \mathsf{B}) + rac{1}{\mu\sigma}
abla^2 \mathsf{B}$$

This is the problem of kinematic dynamo.

Anti-dynamo theorems (Cowling)

- A plane flow cannot maintain dynamo action
- In a sphere, a flow with no radial component cannot maintain dynamo action
- An axisymmetric magnetic field cannot be maintained by dynamo action

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Anti-dynamo theorems (Cowling)

- A plane flow cannot maintain dynamo action
- In a sphere, a flow with no radial component cannot maintain dynamo action
- An axisymmetric magnetic field cannot be maintained by dynamo action

But these theorems do not apply when the electric conductivity tensor is anisotropic

Herzenberg's dynamo

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ・ 今 Q ()・

Ponomarenko's dynamo

・ロト ・四ト ・ヨト ・ヨト æ

What can be done with

ANISOTROPY

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A simple configuration

Two plates sliding on top of each other

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A simple configuration

$$\Sigma_{ij} = \sigma_0 \delta_{ij} + (\sigma_1 - \sigma_0) \, q_i q_j$$

▶ < (□) ▶</p>

x

A very simple configuration

・ロト・日本・日本・日本・日本・今日で

x

A very simple configuration

DYNAMO!

x

Equations

Resistivity tensor
$$R_{ij} = \frac{1}{\sigma_0} \delta_{ij} + \left(\frac{1}{\sigma_1} - \frac{1}{\sigma_0}\right) q_i q_j$$
Induction equation $\frac{\partial \mathsf{B}}{\partial t} = \nabla \times (\mathsf{u} \times \mathsf{B}) - \nabla \times (\eta \cdot \nabla \times \mathsf{B})$

with
$$\eta_{ij} = \frac{R_{ij}}{\mu_0} = \frac{1}{\mu_0 \sigma_0} \left[\delta_{ij} + \eta_1 q_i q_j \right]$$

Poloidal – Toroidal Decomposition

$$\mathsf{B} = \boldsymbol{\nabla} \times (\mathsf{T}\mathsf{e}_z) + \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times (\mathsf{P}\mathsf{e}_z))$$

Invariance in x and y

$$P = P(z) \exp(ik_x x + ik_y y + \gamma t)$$

$$T = T(z) \exp(ik_x x + ik_y y + \gamma t)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Equations

The most interesting case is when $k_x = 0$

$$\gamma P = \left(1 + \eta_1 q_x^2\right) \left[P'' - k_y^2 P\right] + i\eta_1 k_y q_x q_z T$$

$$\gamma T = T'' - k_y^2 T - \eta_1 k_y^2 q_z^2 T + i\eta_1 k_y q_x q_z \left[P'' - k_y^2 P\right]$$

On threshold, $\Re(\gamma) = 0$, we also have $\Im(\gamma) = 0$. Hence we get

$$T = i \frac{\frac{1}{\eta_1} + q_x^2}{k_y q_x q_z} \left[P'' - k_y^2 P \right]$$

and substituting for T brings a fourth-order equation for P

$$P^{(4)} - [1 + N]k_y^2 P'' + N k_y^4 P = 0$$

with
$$\mathcal{N} = rac{rac{1}{\eta_1} + 1}{rac{1}{\eta_1} + q_{\chi}^2}$$

Solution

with

$$P = a_1 e^{k_y z} + a_2 e^{-k_y z} + a_3 e^{\sqrt{N} k_y z} + a_4 e^{-\sqrt{N} k_y z}$$

$$\mathcal{N}=rac{\eta_1+1}{rac{1}{\eta_1}+q_x^2}$$

Boundary conditions

- ▶ $P' + k_y P = 0$ at the top, $P' k_y P = 0$ at the bottom
- T = 0 at top and bottom
- P, P', T are continuous across the interface between the plates
- continuity of the electric field E_{y} across the interface

$$iT'_t + k_y UP_t = iT'_b - k_y UP_b$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution

The condition for the existence of a non-zero eigenmode is obtained analytically

Solution in the limiting case $\eta_1 \rightarrow \infty$

Solution in the limiting case $\eta_1 \rightarrow \infty$

(■) ■ のへ()

A bit of hand-waiving

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

A bit of hand-waiving

・ロト・日本・日本・日本・日本・日本

Axisymmetric version

A cylinder is rotating in an infinite domain. Electrical conductivity is anisotropic everywhere.

The eigenvalues and eigenvectors are obtained analytically, using Bessel functions

PLanning a cylindrical experiment

 $\Phi = 170$ mm, L = 205 mm 100 Watt, 20 rpm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Eigenmode

A hand-powered dynamo

An axisymmetric magnetic field maintained by a dynamo

・ロト ・ 戸 ト ・ ヨ ト ・

ANISODYNE

experiment

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Building blocks

Stator diameter: 17 cm Height: 20.5 cm

Copper CuA1, 100 % IACS, $\textit{i.e.}~5.8001~\times~10^7\,\Omega^{-1}m^{-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cutting grooves

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Electro-erosion Width: 0.33 mm

Insulating

<ロト <回ト < 三ト < 三ト = 三

film of kapton and resin

Chrome plating

Thickness: 20 μ m

Put a shaft

・ロト・日本・日本・日本・日本・日本

Connect to a crank

Install a few Hall probes

Arduino 16 bit A/D converter

Fill the gap with Galinstan

Gallium-Indium-Tin alloy near eutectic + unknown stuff

The first run: March 23, 2021

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

900

æ

All runs in the afternoon

JB, Renaud, Maëlis, Victor, Stéphanie, Yanick, Franck, myself...

A little help from an electric motor

(日)

Anisotropic or heterogeneous?

Cowling theorem applies in the heterogeneous case

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Preliminary conclusions on anisotropy

- Dynamos generated by a plane flow are possible
- Axisymmetric dynamos exist
- Some have simple analytical solutions
- The critical magnetic Reynolds number is obtained analytically
- Anisotropic magnetic permeability also leads to dynamo

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 'Superfast'' dynamo
- The experiment has been working for one week
- Version 2 is coming soon...