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Introduction to geodesy

1. A very old question: what is the shape of the Earth?
2. The revolution of the satellites

3. Gravity field from a static mass distribution and its
spherical harmonics representation

4. Sources of the gravity field (geological timescales)

5. Time-varying gravity and surface displacements
(timescales of weeks to secular)



A very old science

Aristotle 4th century BC

Circular shadow of the Earth on
the Moon during lunar eclipses

Ex: lunar eclipse of 03/03/2007

Premier Partie de la

14 g
Cefte Figure demonffire guelaTerreeftronde.,

Sila Terre eftoit quarree, 'ombre diicelle paroiftroit
de cefte melme forme enlEcclipfe de Ia Lune.

Sila Terre eftoit trizn;fgu!airc, l'ombre dicelle feroit
aufsien I'Ecclipfe eriangulaire.

Bibliotheque de I'Observatoire de Paris.
Inference by Apian, German astronomer, 17th
century.




Measuring the Earth’s circumference

Eratosthene
3rd century BC

Alexandrie

\_5000 stadia=Ro—

Assouan

Summer solstice at noon:

- ho shadow in a well in Assouan
- shadow of an obelisk in Alexandrie

=72

1 Egyptian stadium = 157.5 m

Assumption: Alexandrie and Assouan on the
same meridian

Earth’s circumference estimate: 39375 km (instead of 40 008 km along a meridian)




A spheroidal shape

Pendulum clock

Richer (1672)

Richer’s Observations astronomiques et physiques faites en l'isle de Caienne (Paris, 1679)

T =21 |—
g

Jequator

Slower oscillations of the pendulum in Cayenne
(near the Equator) than in Paris
f € \ |

Newton: spheroidal shape of a rotating fluid body,
flattened at the poles because of the centrifugal force.

Jequator < Jpole



Measuring a meridian arc

Laponie

N
\ Guyana
2

/ f”/é\ English conclusions

\ French conclusions

Expeditions to measure a meridian arc near the
Equator and near the pole, to discriminate
between a prolate or an oblate spheroid

~

(Measurements of long distances
from many measurements of
shorter distances and angles

\within a network of points. )
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Triangulation of Paris meridian
(Dunkerque-Perpignan)
Picard: 1 arc = 108 km (North of France)
110 km (South of France)



Enigmatic deviations of
the plumb line

e Near mountains

i“.

¢

When measuring meridian arcs R
. I Bouguer (1698-1758)

The local vertical deviates from the normal to the ellipsoid
(Laplace, Gauss, Bessel)



The Figure of the Earth: the geoid

Departure
to ellipticity:
+ 100 m

Geoid: surface of constant gravitational + centrifugal potential energy, that coincides
with the sea level at rest (no tides nor currents), continued below the continents.

(The surface of a rotating fluid at equilibrium is an equipotential)

In the absence of other forces: a ball placed on the geoid will not move

— The horizontal surface of reference, over land and oceans = zero level of altitudes



Reference ellipsoid

=

g=9.83m/s2 ﬂ o

A dynamical definition:

Consider a homogeneous, rotating Earth with
constant angular speed @ ; ATz

total mass M includes the atmosphere. a=6378136m | -

— >

1 g£59.78 m/s2
Centrifugal potential: V., (P) = - w?r? sinf

e Equipotential surfaces of its gravity potential

. N : = e
U (gravitational + centrifugal) = ellipsoids sphere of equivalent volume:

R=6371000m
e Reference WGS84 ellipsoid:

- centered on the barycenter of the Earth’s masses
- space geodesy — semi-major axis a, gravitational constant GM
- global geoid model (C,,) = dynamical flattening

Thus this ellipsoid is based on the observed geoid flattening.



Non-hydrostatic geoid

- The observed flattening may be different from that of an Earth at
hydrostatic equilibrium: it is indeed affected by the global-scale mantle
density heterogeneity (Chambat et al., 2010).

- The non-hydrostatic geoid is defined with respect to hydrostatic state
of reference: a radially-layered, rotating self-gravitating Earth.
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Geoid anomalies with respect to the Geoid anomalies with respect to a

WGS84 geodetic ellipsoid hydrostatic, PREM-layered reference
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Observing satellite motions

Source: Reiner Rummel

Homogeneous sphere — fixed elliptical orbit

Oblate spheroid — precessing elliptical orbit [(Precession of orbital plane — dynamical flattening)]

Real Earth — orbit perturbations reflect the Earth’s gravitational field



A first global view of the geoid
based on the tracking of
satellites orbits using cameras
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Satellite laser ranging

< 1 cm precision on the range

(&)
E measurement over 6000 km range
3
= — Earth’s dynamical flattening
[ Retro- (low degrees of the gravity field)
reflectors

LAGEOS (launch 1976 & 1992)
5900 km altitude SLR station at Mt Haleakala, Maui island, Hawaii



The Earth gets less flat

Secular decrease: response to the last deglaciation o
\ / Inter-annual variations

/

15

Variations " A . L " L 1 1 i L A L 1 1 A 1L L 1 i i
1976 1980 1984 1988 1992 1996 2000 2004
Year

Cheng & Tapley (2004)

Vaariations of the Earth’s dynamical flattening from satellite laser ranging



Tracking satellites
from the ground

e Satellites have first been used to
improve the gravity field and better
model the orbits (ground stations
positions known more accurately
than the orbits).

Global Navigation Satellite Systems (GNSS)

ke

A
‘\?1\

AN
%Y.

e Improvements of the gravity field s
models — smaller orbit errors —
study of the variations in the Earth’s

rotation.

20 000 / 23 000 km altitude

GPS/Galileo:

DORIS (CNES)

e Good knowledge of the satellite
position (its orbit) — improve ground
station position — plate motions

Receiving
Antenna i




The GPS system: principle

Image:
Samuel Nahmani

Position to
determine

e Measurement of the travel time of an electromagnetic wave between the
satellite (emitter) and the ground station (receiver).

e |f the position of 3 satellites is known, the 3 coordinates (x,y,z) of the
ground station can be obtained.

e Non-linear equations — linearization — least-squares inversion of the
ground station position.



Very Long Baseline Interferometry

e Delays between two arrivals at two antennas of microwave signals from an
extra-galactic radio source (quasar) ; observe the delays associated with many
different quasars.

- inertial frame defined by quasars
- relative positions of the antennas

— Earth’s orientation in the
inertial frame

Hydrogen maser clock ‘\
(accuracy 1 sec in

1 million years) High speed
data link

Tsukuba, Japan



Network of space geodetic ground stations

ITRF2014 sites

-5

¥ VLBl ¢SLR «GNSS ODORIS

975 sites (1499 stations) Altamimi et al. (2016)



Observing the plates kinematics

ITRF2008 horizontal velocities (Altamimi et al., 2014).

Good general agreement of the geodetic plate motion models with the geological
ones over the last few millions of years.



A wealth of geodetic observations

Level 5
Extragalactic
Objects X

Accuracy on:

Level 4
Planetary

Objects o Positions: few mm

Velocities: 1 mm/yr,

Level 3 . s sometimes better
MEO - Mid Earth Orbiter R
GEO - Geostationary Orbiter
Satellite Missions ;
Uﬁttﬁu (both for the
Satellite 1g - reference network of
Altimetry it .
Vi : permanent statlons)

& § Stations

Level 1 " e VLBI Tide 4 Terrgstrla =
. . Gravimet
Eﬁ%%%ir::cheI*f’hal : ; v & a Laser Ranging) N

Tracking the orbits not only from ground stations, but also from space
(positioning using onboard GNSS receivers) — few cm accuracy on the orbits



Satellite altimetry and the marine gravity field

Distance between the satellite
and the sea surface from the
round-trip time of a radar pulse.

Satellite positioning: DORIS, GPS

Orbital height ~ 1300 km (Topex,
Jason) ; 800 km (Saral)

Topex-Poseidon

A whole series of satellites since 1978



The marine gravity field
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Smith & Sandwell (1997) Anomalies of intensity of gravity

Andersen & Knudsen (1998)

(reference ellipsoid contribution removed)



Mapping of uncharted seamounts

Standard
gravity

Induced
surface slope

Deflected
gravity

Cook-Austral volcanic chain,
South Central Pacific

Evidence for 2 parallel
lines of volcanoes

Diament & Baudry (1987)
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T %& Cazenave

10-b0 e et al5(1992)

30

20

‘small’ (200-300 km) scale .
geoid undulations parallel to
plate motion .20 25 . 250

Different mechanisms proposed.

Volcanism above the upwellings — secondary
convection driven by plate motion (Buck &
Parmentier, 1986 ; Robinson & Parsons 1988)




Satellite gravity missions

CHAMP g
GRACE  g(t)
GOCE g

High-resolution mapping of the Earth’s gravity:

— Fly low (higher sensitivity to smaller scale structures)
— Carry out dedicated gravity observation systems
— Measure the satellite position continuously (GNSS, SLR)

— Measure / compensate non-gravitational forces (accelerometry)
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Gravitational field of a mass source

Equipotential surfaces (orthogonal to g)

e A mass M in x,(x,Y,2,) generates a
gravitational field or acceleration g in
the whole space:

At x(x,y,z): g(x,y,z) = ————=
G =6.67 101 Sl (m3.kg1.s?)

e The field g derives from a scalar
potential V:
g=-vv

V = potential energy per unit mass

e A mass m at point x(x,y,z) feels the gravitational force F=m g(x,y,z)
= mutual attraction between two masses



Newton’s law of gravity

e For a mass density p(x’,y’,z’) in a volume €:

Gp(x") (x—x7) d3x’
|[x—x/|

Atx(xy2): g(x,y,z) = fQ

(Replace M by the mass element p(x")d>x’ and sum over Q)

u: unit vector
(x—x)

And:[V(x,y, Z) = fQ Gp(x’)de'J (1)

| x—x/]

u=
|x — x|

e Another formulation of this law is the Poisson equation:

Consider the Laplacian operator: AV = 07V + 0;V+ 0,V

Replace in equation (1), we end up with: [AV(x, v,z) = —4nGp(x,y, z)J




A harmonic potential

e Qutside the mass sources, the Poisson equation becomes the Laplace equation:

[ AV(x,y,z) = 0}

e Thus, Vis harmonic outside the masses

ﬁstrong property:

@the whole space outside .

Suppose V or @,V is known on the surface
> bounding the volume Q2 of the sources.

Then Vs entirely and uniquely determined

~

/

h

p>

n: unit vector, normal to the surface



Spherical harmonics representation

Newton integral: V(x,y,z) = f Md3.7c"

Q Jx—xr|
1. Development of :
|x—xr|
- . ('xfl)fp( )
— = — | Py(cosa
x— 2 Jxl &\ |

Legendre polynomial of degree |

2. Addition theorem: Spherical coordinates: x(r, 6, ¢)

/ =N S 3 X ’(I’ " 9'7 (D,)

£
(20 + DPy(cosa) = ) Y™ (8,0) Y8, )

" \

Surface spherical harmonics
of degree | and order m

. . . Frame centered at point O
— insert 1 and 2 in Newton integral P



Spherical harmonics representation

Attenuation with altitude !!

w ¢

{f=0m=—+¢

We end-up with:

Semi-major axis

The coefficients of this development are a weighted integral of the densities inside
the Earth:

1
v —_—
tm o1 M

1ae fﬂ r!f p(T,,Qr,(P,) Yfm(er,(p!) dQ(T’,Q!,(p!)

The Y;™ are the fully normalized spherical harmonics:

Y;"(8,9) = Npp Ppim(cos8) cosme m=>0
Y;"(6,9) = Npjm| Ppym|(cos 8) sin|mey] m<0

The normalization factor Ny ,,, is such that: ﬁr Il Y6, 9)|2sinf do dep =1

nit sphere |



Spherical harmonics representation

P, m(sin@) sin(mA) P q(sing) P, (sing) cos(md)

Zonaux

ordrem —

$9139p

@ = latitude, A = longitude

tesséraux tesséraux
ordres 3 2 1 0 1 2 I ses

: A 20000 km Source: Richard Biancale
Spatial wavelength for each degree: ~ = y




The low degree coefficients

We usually note C; ,, the coefficients of the cosine harmonics (m = 0) and S; 1,
those of the sine harmonics (m < 0).

e Degree 1:

— %c . —
C1,0—7 ;G = =

.o 1 - A+ B
207 Mq2 2

squared distance to z rotation axis

e Degree 2:

C: principal moment of inertia (polar) : C = [ (x"2 + y"*)p(r’, 0,0 )dQ(r',6',¢")

A, B : principal moments of inertia (equatorial):

A = fQ (yrz + Z’Z)dm(r’,H’,<p’) ‘B = fQ (xrz 4+ Z’Z)dm(T,,HI,QOI)



Gravity field models

— e N ‘T?\\.

1968
Ground gravity
Satellites

0su68 L N )
N, 1°x1° -90 -80 -70 -60 -50 —40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
wrms about mean / min / max = 26.97 / -89.04 / 61.85 meter

1975
Satellites only

GRIM1
N, 1°x1° -100 -80 -60 -40 20 0 20 40 60 80 100
wrms about mean / min / max = 31.57 / -103.2 / 89.04 meter

1996

Ground gravity
Satellites
Altimetry

EGM96
N,1°x 1° -100 -80 -60 -40 -20 0 20 a0 60 80 100
wrms about mean / min / max = 30.58 / -106.1 / 84.73 meter

T T T T T T T T T T
-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
mGal

2008 - Including GRACE (static)

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Monthly gravity field from GRACE
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180° 240° 300° 0° 80" 120° 180°

T
-1514-131211109 8-7-6-5-4-3-2-10 1 2 3 4 5 8 7 8 9101112131415
Geoid height (mm)

2015 — Time-varying gravity
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Removal of the topographic contribution

World gravity map
Bureau Gravimétrique International

ﬁil : I—ﬁ

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
mGal

Free-air gravity anomalies
(reference ellipsoid removed)

Bouguer gravity anomalies
(surface topography also removed)
—_—

-250 -100 -50 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
mGal




|sostatic support of the topographies

Lighter
Rigid Archimedes principle:
The excess topographic
Denser Tl weight is buoyed by the
Less viscous = = e default weight of the
crustal root.
hydrostatic compensation surface:
P=pcghct PmgD=pcg(h+hc+D)=cstt
Airy model (1855): D = —£“— h  — D=54h;  p.=2700kg.m™3

pm=Pe Pm— Pe= 500kg.m™3

A weak crust responding locally and intensely to a load



Isostatic support of the topographies

Everest (1790-1866) |gtadl
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hydrostatic compensation surface:

\wgh1=929h2=939h3=csty

e Moutains roots, surface load: Airy model

Bouguer
(1698-1758)

e Topographies associated with thermal variations due to a heat source: Pratt model



Example: crustal thickness

Both Pratt and Airy models have been used to estimate the crustal thickness

New York Vienna

Pacific Ocean Atlantic Ocean Indian Ocean
basin Northern i basin i basin
Gulf of Mexico Eastern US European Zagros
margin Appalachians Alpine/Variscan foreland basin

—v\./\/

Seismic 1 1
Moho 0 Km 4,000

Isostasy, Figure 3 Comparison of the crustal structure based on seismic refraction data to the predicted crustal structure
assuming an Airy mode! along an 18,000 km long great circle profile that extends from the Pacific Ocean in the west across

the Atlantic Ocean to the Indian Ocean in the east. The seismic refraction data is based on CRUST2.0 http://igppweb.ucsd.edu/~gabi/
rem.html and the Airy model is based on the same parameters as assumed in Figure 2.

Encyclopedia of Solid Earth Geophysics

Departures to isostasy:

- Support by bending of the lithosphere for smaller-scale loads
- Dynamic support




At the longest wavelengths:
deeper mass sources in a dynamic Earth

e At the global scale the near-surface isostatic signal tends to be
masked by the moving, deeper mass anomalies in a convecting mantle
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-100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 100
m
Observed geoid Modelled geoid from 200 Myr of

subduction history and convective

instabilities (Rouby et al., 2010)
See Ricard et al. (1993)



-80m 80m

Coincidence between:

e Global geoid lows

e Fast velocities in the lower mantle
(Dziewonski et al., 1977)

e Former subduction boundaries

-20ms™! 15ms-!

Former subduction belt
b 30-60 Myr

Richards & Engebretson (1992)



Moving mass anomalies in a dynamic Earth

e The flows induced
by the moving mass
anomaly deflect the
density interfaces.

e The gravitational signal
of the moving source
can be counterbalanced
by that of the deflected
interfaces.

_————"/_\

_

géoide masse + déformations

[ar=——————

l surface l

l CMB

R —




Geoid response functions

e We relate point loads (density anomalies) at each depth to the surface geoid
and topography changes using wavelength-dependent response functions (=
kernels defined for each spherical harmonics degree).

e These kernels are obtained by solving the system of equations that describe
the Earth’s viscous flow response to an internal load, in spherical geometry:
conservation of mass and momentum, Poisson equation, stress-strain relation.

. 3 R
e Geoid kernel G,(n,7): ON;* = G,(n,7r) Spy(r)dr
Spherical harmonics Earth / Spherical harmonics
coefficients of the non-  mean Mean CMB and coefficients of the density

hydrostatic geoid density surface radii anomalies at depth

The kernel depends on the radial mantle viscosity profile n(r).

e Dynamic topography kernels are also defined in a similar fashion.

Richards & Hager (1984) ; Ricard et al. (1984)



Geoid response functions

1. Uniform viscosity

geoid
anomaly
o g Y
/""/ N -
total e
o / bottom
top
top deformation "~ ~._--~
\ {/
Vo
l/l =
/ EO. Th
/ 7]
%
bottom dcl'nrnmlu}ﬁ"'*»,,,_,

LI L} ) I L 1
1=12 2 n= |
7 L
[ O T | I DR N . |
=0 0 05

Predominant
contribution
— geoid low

geoid
anomaly

total —— Ap
Predominant -
contribution bottom  top

— geoid high

top deformation  _
\

Global scale, deep source:
predominant CMB contribution . wcomaon

— geoid low

7=1/30

(a)

L3 1 |

surface

870
(km)

Gf (77» T')

L1 1 1

-0.6

0

0.5

2. Viscosity increase in the lower mantle

7700 27 |
n°l
(c)
Ll 41 11 L1 1 1 1
-0.5 0 05

Hager (1984) — kernels for whole mantle flow ; top figures redrawn in Karato (2008).



Geometry of the sources: gravity as a vector

e Emphasize the geometry of the gravity signals

e Directional differentiations of the gravity potential T / vector g

T:potential Ix

il il B W e "

gxza

agx Ixx

Locally, the
intensity of gravity
increases and its
direction deflects
towards the source




Example n e =

e Parallelepipede mass
anomaly at depth w/2 - w

e 2xQQ re

¢
® Spherical frame f | . 3

rr

— Enhance gravity variations

in the direction orthogonal to
that of the differentiation

. . mEOtvOos
— Geometry of geoid signal E—

-1000 -800 -600 -400 -200 O 200 400 600 800 1000
0 1 2 3 4 5 m



The GOCE mission

ESA, 2009-2013

Original objectives:

high resolution geoid to determine
ocean currents and study the
lithosphere

. o2V
Gravi di : Y Ox;0x;
ravity gradients from: J

N to-satellite
: - tracking

adiometry é. ‘- © Vsatellite-
s A ‘ >

 a low orbit (250 km)
o gradiometry at scales < 750-1000 km

e compensation of atmospheric drag

[Geometry of the mass sources}
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A sharper view on regional subduction patterns

/’

Gravity gradient signals @ GOCE altitude from:

North-South oriented masses

SRRl N g Y T
T—aN P =

# - - : # . .
~1500-300-225-150 =75 0 75 150 225 300 1500 MEOWVOS
Panet et al. (2014)

e Sinking slabs — high rates of gravity variations in the East-West /
North-South directions.



Curvature of the geoid from the gravity gradients

Ged\ir: the

Flat in the x direction

y direction

Positive curvature in the

two directions

Curvatures of opposite
signs in the two directions

Curvature describes how much a surface deviates from being
flat. It characterizes the local shape of the surface.

The local curvature of the geoid can be computed from the
gravity gradient. A shape index is defined using the maximum
and minimum curvatures.

Shape Index from
GOCE gradients

1.0

Dome
0.8
0.6

Ridge

0.4+
0.2 -

0 004
-0.2

Flat

Valley

-0.8
Bowl
-1.0

Ebbing et al. (2018)

90
-180° -90° 0 90°

Bowl-shaped mass default: cratonic areas, orogenic belts

The shape index varies between different cratons: interpreted
as compositional variations in the crust / uppermost mantle.
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g =9.8142627..... m/s?

Internal density anomalies
Flattening

2.8 28I 2814 9.8142

Mountains & trenches
) ' "

&
By 4
9.81416)  9.814262 9.8142627

Large aquifers / Time variations: tides Large buildings

1mGal~10%g
Figure: Olivier de Viron



Earth’s surface deformations

e Tides: - Earth’s tides (< 50 cm, daily)
- Oceanic tides (£ 15 cm, daily)

e Variations in flattening

......

¥ (

e Signals with large horizontal displacements W ‘Wf% \

: Y Al
- Plates tectonics: mm/yr — 10 cm/yr

{ j;@/ "/ ITRF2014

- Active seismic zones *3\ \/
%/ Altamimi et al.

e Signals with significant vertical displacements

- Response to surface water loads at different timescales

atmosphere, hydrology, cryosphere, oceans: cm

post-glacial rebound (secular: mm/yr)

- Earthquakes, volcanoes

- Pumping




Loading signals also in the horizontal motions

E -"'-. o e ——
tLj: "T .F *.a t .l_l.-g
i 11 w L 4l.- |
"I. s . |14 + Y £
If} . bt | 'L_i'-i ‘L
’ﬁ 1L/ SRR
I-.‘:m 'y e

Vertical velocities ITRF2014, Altamimi et al. Horizontal velocities

Loading Season Unloading Season

GPS station Seasonal displacements
> —> —>
A Surface load  Horizontal Vertical

Courtesy of Kristel Chanard



Time-varying gravity & the GRACE mission

Add altitude, 220 km dist

e Two satellites following each other
on the same orbit

e Measurement of the inter-satellites
dIStance / relat|Ve VeIOCIty 24 & 32 GHz K and Ka-band Crosslink
(accuracies: 10 um / few um/s) from J\e**« -
a microwave signal emitted by one
satellite and reflected by the other.

NASA Stations
LEOP & Contingency...
(Also McMurdo) - -

Poker Flat™™ & spitzvergen

e Non-gravitational forces measured

Raw (}‘Hc Centre
(DLR-DFD)

by ONERA accelerometers | 7 W

Scignce Data Systom ission Control

(accuracy: 1019 m/s?) CConPLaRE) P Cotarasoty Weimeim (5= 20




Principle

Effect of a local mass excess source on the distance
between the two GRACE satellites ?
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Principle

Satellite 2 not accelerated Inter-distance Satellite 1 accelerates
because its distance to the inc-reIZses because its distance to the
Mass source IS Iarge mass source decreases
>
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Principle

Satellite 2 accelerates nter-dist Satellite 1 decelerates
because its distance to the nder- Istance because its distance to the
mass source decreases ecreases mass source increases
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Monthly spherical harmonics models of the geoid

EDDE 2003 2004 EDDE 2006 2007 EUDB 2009 2010 ED‘I‘I 2012 2013 2014 ED‘IE
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R.Biancale, J-M. Lemoine et al. (2014)



Thin layer potential

e Surface load o in M:

d 0-(9;@) - Z?;O an=—€ O-f,myfm (9! (p)
R P a(8,9) = Xyio0e (6,9)

e |ts potential in P:

W(p,0p) = [, “22da(6,0) (1)

e In (1) we introduce the development of 1/d (see slide X) and that of &:

r+1
W(rp, 0p, 9p) = oo Dtne—s (%) gif opm Yy (Op, @p)
/Validity: Wahr et al 1998\
300 w0 02(6,0) _ oo R\
e At the surface: W0, p) = 723:0 il Yr=o W, (6, @) <R—+h> ~1
goz% . M= ZnR3p ; p=5520kg/m? K(fmax"'z)%«l/

3




Earth’s deformations under a surface load

W

o)

W: gravitational potential of the mass load

V: gravitational potential associated with the deformations within the Earth caused
by the mass load (surface displacements (u,, u,) + internal mass redistribution)

w £r oW fr 1 oW
V=k'W ; u.=h"— ; ug=—— ; Uy=———
Jdo go 06 P go sinf dg

™~ co-latitude ™~ longitude

k', h’, I' are dimensionless load Love numbers (Love, 1909).

Actually, they depend on the spherical harmonics degree. They depend on time
in the visco-elastic case.



Earth’s deformations under a surface load

/o Elastic load Love numbers: describe the response of the Earth to the body force and
the surface normal traction caused by a unit mass loading. Obtained by integrating the
equations of motion, the stress-strain relation and the Poisson equation for a self-

\gravitating spherical Earth initially at hydrostatic equilibrium (e.g. Farrell, 1972). y

e For each degree, the surface deformations are proportionnal to the potential
induced by the loading mass or its derivative

w(6,0) = > Tiosrs 0a(6,0) = Tio 2 Wh(6, 0)

up(6,¢) = - Zn 02n+1 Vhon(6,9) = Xnzo thW (6, 9)

horizontal displacement =~

e Perturbation of the gravity potential'

Kn
5V(9 (P) - Zn O2

n+1 On

o kn
(9: QD) — Zn=0 g_o Wn(g: 90)
e Total variation of the gravity potential (at a fixed point, not on the moving surface):

V(H QD) - Zn 0 n(ei QD)

1+kiy
2n+1

e Visco-elastic case: the Love numbers depend on the temporal frequency of excitation.



Examples: monitoring of aquifers depletion

Maximum average storage deficit Year of the maximum

g & & & & &
I I R G NN

Humphrey et al. (2016)

4D space-time monitoring of water transport

Homogeneous space-time coverage from satellites



Earth’s response to seasonal hydrology

SAGA (Brazil)

Det. North (mm)

£
E
g
£
E
0 100 200 360 40|O 560 600 700 %
>
Seasonal water load from GRACE gravity B o o iinan il Lol

(N7 =1.10"7 Pas,ir = 10) (N =1.10" Paskir = w10) (Mr=1.10" Pas, Ur= ) ]

Chanard et al. (2018) 2004 2006 2008 2010 oz

Time (years)

e Testing different asthenospheric rheologies to predict the surface displacements
under a seasonal hydrological load & comparison with GPS.

e Transient asthenospheric viscosity should not be lower than 5 107 Pa.s to explain
the horizontal displacement induced by seasonal water loads, in global average.



Thank you!




