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Introduction to geodesy

1. A very old question: what is the shape of the Earth? 

2. The revolution of the satellites

3. Gravity field from a static mass distribution and its 
spherical harmonics representation

4. Sources of the gravity field (geological timescales)

5. Time-varying gravity and surface displacements 
(timescales of weeks to secular) 



Aristotle 4th century BC

Circular shadow of the Earth on 
the Moon during lunar eclipses

A very old science

Ex: lunar eclipse of 03/03/2007

Bibliothèque de l’Observatoire de Paris. 
Inference by Apian, German astronomer, 17th 
century. 



Measuring the Earth’s circumference

Eratosthene

3rd century BC

Summer solstice at noon: 

- no shadow in a well in Assouan
- shadow of an obelisk in Alexandrie

Earth’s circumference estimate: 39375 km (instead of 40 008 km along a meridian) 



Richer (1672)

Newton (1689)

Slower oscillations of the pendulum in Cayenne 
(near the Equator) than in Paris

Richer’s Observations astronomiques et physiques faites en l’isle de Caïenne (Paris, 1679)

Pendulum clock

Newton: spheroidal shape of a rotating fluid body, 
flattened at the poles because of the centrifugal force. 

A spheroidal shape

ℓ



Triangulation of Paris meridian
(Dunkerque-Perpignan)

Expeditions to measure a meridian arc near the 

Equator and near the pole, to discriminate 

between a prolate or an oblate spheroid

Laponie

Guyana

Picard: 1 arc = 108 km (North of France)
110 km (South of France)

French conclusions

English conclusions

Measurements of long distances 
from many measurements of 
shorter distances and angles 
within a network of points.

Measuring a meridian arc



Enigmatic deviations of 
the plumb line

Bouguer (1698-1758)

Everest (1790-1866)

• Near mountains

• When measuring meridian arcs

The local vertical deviates from the normal to the ellipsoid
(Laplace, Gauss, Bessel)



The Figure of the Earth: the geoid

Geoid: surface of constant gravitational + centrifugal potential energy, that coincides 
with the sea level at rest (no tides nor currents), continued below the continents.

(The surface of a rotating fluid at equilibrium is an equipotential)

Departure 
to ellipticity: 
± 100 m

In the absence of other forces: a ball placed on the geoid will not move

→ The horizontal surface of reference, over land and oceans = zero level of altitudes



Reference ellipsoid

• Equipotential surfaces of its gravity potential 
U (gravitational + centrifugal) = ellipsoids

• Reference WGS84 ellipsoid: 
- centered on the barycenter of the Earth’s masses
- space geodesy → semi-major axis a, gravitational constant GM
- global geoid model (C20) → dynamical flattening

Thus this ellipsoid is based on the observed geoid flattening.

g = 9.78 m/s2

g = 9.83 m/s2



Non-hydrostatic geoid

• The observed flattening may be different from that of an Earth at 
hydrostatic equilibrium: it is indeed affected by the global-scale mantle 
density heterogeneity (Chambat et al., 2010).

• The non-hydrostatic geoid is defined with respect to hydrostatic state 
of reference: a radially-layered, rotating self-gravitating Earth.

Geoid anomalies with respect to the 
WGS84 geodetic ellipsoid

Geoid anomalies with respect to a 
hydrostatic, PREM-layered reference

m m
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Observing satellite motions

Homogeneous sphere → fixed elliptical orbit

Oblate spheroid → precessing elliptical orbit

Real Earth → orbit perturbations reflect the Earth’s gravitational field

Source: Reiner Rummel

(Precession of orbital plane → dynamical flattening)



Kaula, 1963

Baker-Nunn camera

A first global view of the geoid
based on the tracking of 

satellites orbits using cameras



Satellite laser ranging

Starlette (CNES, launch 1975)
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LAGEOS (launch 1976 & 1992)
5900 km altitude

< 1 cm precision on the range 
measurement over 6000 km range

Retro-
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→ Earth’s dynamical flattening 
(low degrees of the gravity field)

SLR station at Mt Haleakala, Maui island, Hawaii



The Earth gets less flat

Cheng & Tapley (2004)

Variations of the Earth’s dynamical flattening from satellite laser ranging

Secular decrease: response to the last deglaciation

Seasonal
variations

Inter-annual variations



Tracking satellites

• Satellites have first been used to 
improve the gravity field and better
model the orbits (ground stations 
positions known more accurately
than the orbits).

• Improvements of the gravity field 
models → smaller orbit errors →
study of the variations in the Earth’s 
rotation. 

• Good knowledge of the satellite 
position (its orbit) → improve ground
station position  → plate motions

from the ground

SLR

GNSS

DORIS (CNES)
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The GPS system: principle

• Measurement of the travel time of an electromagnetic wave between the 
satellite (emitter) and the ground station (receiver).

• If the position of 3 satellites is known, the 3 coordinates (x,y,z) of the 
ground station can be obtained.

• Non-linear equations → linearization → least-squares inversion of the 
ground station position.

•

Position to 
determine

Image: 
Samuel Nahmani



Very Long Baseline Interferometry

- inertial frame defined by quasars

- relative positions of the antennas

→ Earth’s orientation in the 
inertial frame

Tsukuba, Japan @ NASA

• Delays between two arrivals at two antennas of microwave signals from an 
extra-galactic radio source (quasar) ; observe the  delays associated with many
different quasars.



Altamimi et al. (2016)975 sites (1499 stations)

Network of space geodetic ground stations



Observing the plates kinematics

ITRF2008 horizontal velocities (Altamimi et al., 2014).

Good general agreement of the geodetic plate motion models with the geological
ones over the last few millions of years.



A wealth of geodetic observations

Tracking the orbits not only from ground stations, but also from space 
(positioning using onboard GNSS receivers) → few cm accuracy on the orbits

Accuracy on:

Positions: few mm

Velocities: 1 mm/yr, 
sometimes better

(both for the 
reference network of 
permanent stations)



Satellite altimetry and the marine gravity field

A whole series of satellites since 1978

Distance between the satellite 
and the sea surface from the 
round-trip time of a radar pulse.

Satellite positioning: DORIS, GPS

Orbital height ~ 1300 km (Topex, 
Jason) ; 800 km (Saral)

Topex-Poseidon

Jason 1

Saral-AltiKa



Anomalies of intensity of gravity

(reference ellipsoid contribution removed)

Smith & Sandwell (1997)

Andersen & Knudsen (1998)

The marine gravity field



Mapping of uncharted seamounts

Evidence for 2 parallel
lines of volcanoes

Cook-Austral volcanic chain, 
South Central Pacific

Diament & Baudry (1987)



‘small’ (200-300 km) scale
geoid undulations parallel to 
plate motion

Cazenave
et al. (1992)

Richter (1973)
Ballmer et al. (2007)

Different mechanisms proposed.

Volcanism above the upwellings → secondary
convection driven by plate motion (Buck & 

Parmentier, 1986 ; Robinson & Parsons 1988)
Ballmer et al. (2007)



CHAMP     g

GRACE      g(t)

GOCE        g

Satellite gravity missions

High-resolution mapping of the Earth’s gravity:

− Fly low (higher sensitivity to smaller scale structures)

− Carry out dedicated gravity observation systems

− Measure the satellite position continuously (GNSS, SLR)

− Measure / compensate non-gravitational forces (accelerometry)
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g(x,y,z)

M (x0,y0,z0)

Gravitational field of a mass source

Equipotential surfaces (orthogonal to g)

• A mass M in x0(x0,y0,z0) generates a 
gravitational field or acceleration g in 
the whole space:

V = potential energy per unit mass

• A mass m at point x(x,y,z) feels the gravitational force F = m g(x,y,z)
= mutual attraction between two masses

G = 6.67 10-11 SI (m3.kg-1.s-2)



Newton’s law of gravity

• For a mass density r(x’,y’,z’) in a volume W:

and sum over W)

(1)



A harmonic potential

• Outside the mass sources, the Poisson equation becomes the Laplace equation: 

• Thus, V is harmonic outside the masses



O

Spherical harmonics representation

2. Addition theorem:
Legendre polynomial of degree l 

Spherical coordinates: x(r,q, j)

x’(r’,q ’,j’)

Surface spherical harmonics 
of degree l and order m

→ insert 1 and 2 in Newton integral
Frame centered at point O



Spherical harmonics representation

The coefficients of this development are a weighted integral of the densities inside
the Earth:

Semi-major axis 

Attenuation with altitude  !!



Spherical harmonics representation

Source: Richard Biancale

j = latitude, l = longitude

Spatial wavelength for each degree:  
𝜆

2
=

20 000 𝑘𝑚

ℓ



The low degree coefficients

• Degree 1:

𝐶1,0 =
𝑧𝐺

𝑎
;   𝐶1,1 =

𝑥𝐺

𝑎
;  𝑆1,1 =

𝑦𝐺

𝑎

We usually note 𝐶ℓ,𝑚 the coefficients of the cosine harmonics (𝑚 ≥ 0) and 𝑆ℓ,𝑚
those of the sine harmonics (𝑚 < 0).

• Degree 2:

𝐶2,0 = −
1

𝑀𝑎2
𝐶 −

𝐴 + 𝐵

2

C: principal moment of inertia (polar) : 𝐶 = Ω׬ 𝑥′2 + 𝑦′2 𝜌 𝑟′, 𝜃′, 𝜑′ 𝑑Ω 𝑟′, 𝜃′, 𝜑′

A, B : principal moments of inertia (equatorial): 

A = Ω׬ 𝑦′2 + 𝑧′2 𝑑𝑚 𝑟′, 𝜃′, 𝜑′ ; 𝐵 = Ω׬ 𝑥′2 + 𝑧′2 𝑑𝑚 𝑟′, 𝜃′, 𝜑′

squared distance to z rotation axis



Gravity field models

1968
Ground gravity
Satellites

1975
Satellites only

1996
Ground gravity
Satellites
Altimetry

2008  - Including GRACE (static)

2015 – Time-varying gravity
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Removal of the topographic contribution

Free-air gravity anomalies 
(reference ellipsoid removed)

Bouguer gravity anomalies
(surface topography also removed)

World gravity map
Bureau Gravimétrique International

1 mGal = 10-6 x (10 m/s2)



Isostatic support of the topographies

Archimedes principle:

The excess topographic 
weight is buoyed by the 
default weight of the 
crustal root.

A weak crust responding locally and intensely to a load

Denser
Less viscous

Lighter
Rigid



Isostatic support of the topographies

Pratt model (1854)

• Moutains roots, surface load: Airy model

• Topographies associated with thermal variations due to a heat source: Pratt model

Bouguer 
(1698-1758)

Everest (1790-1866)



Example: crustal thickness

Both Pratt and Airy models have been used to estimate the crustal thickness

Departures to isostasy:

- Support by bending of the lithosphere for smaller-scale loads
- Dynamic support

Encyclopedia of Solid Earth Geophysics



At the longest wavelengths:

• At the global scale the near-surface isostatic signal tends to be 
masked by the moving, deeper mass anomalies in a convecting mantle

deeper mass sources in a dynamic Earth

Observed geoid

m m

Modelled geoid from 200 Myr of 
subduction history and convective 
instabilities (Rouby et al., 2010)

See Ricard et al. (1993)



Richards & Engebretson (1992)

Coincidence between:

• Global geoid lows

• Fast velocities in the lower mantle
(Dziewonski et al., 1977)

• Former subduction boundaries

Géoïde dVs

Former subduction belt



Moving mass anomalies in a dynamic Earth

• The flows induced 
by the moving mass 
anomaly deflect the 
density interfaces.

• The gravitational signal 
of the moving source 
can be counterbalanced 
by that of the deflected 
interfaces.



Geoid response functions

• We relate point loads (density anomalies) at each depth to the surface geoid
and topography changes using wavelength-dependent response functions (= 
kernels defined for each spherical harmonics degree).

• Geoid kernel 𝐺ℓ 𝜂, 𝑟 : 𝛿𝑁ℓ
𝑚 =

3

(2ℓ+1)ഥ𝜌
𝑟𝐶𝑀𝐵׬

𝑅
𝐺ℓ 𝜂, 𝑟 𝛿𝜌ℓ

𝑚 𝑟 𝑑𝑟

Spherical harmonics
coefficients of the density
anomalies at depth

Spherical harmonics
coefficients of the non-
hydrostatic geoid

Mean CMB and 
surface radii

Earth
mean
density

The kernel depends on the radial mantle viscosity profile 𝜂(r).

• Dynamic topography kernels are also defined in a similar fashion.

Richards & Hager (1984) ; Ricard et al. (1984)

• These kernels are obtained by solving the system of equations that describe
the Earth’s viscous flow response to an internal load, in spherical geometry: 
conservation of mass and momentum, Poisson equation, stress-strain relation.



Geoid response functions

1. Uniform viscosity

Hager (1984) – kernels for whole mantle flow  ;   top figures redrawn in Karato (2008).

Predominant
contribution 
→ geoid low

2. Viscosity increase in the lower mantle

Predominant
contribution 
→ geoid high

Global scale, deep source: 
predominant CMB contribution 
→ geoid low

𝐺ℓ 𝜂, 𝑟



4
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Geometry of the sources: gravity as a vector

• Emphasize the geometry of the gravity signals

• Directional differentiations of the gravity potential T / vector g 

g

Locally, the 
intensity of gravity 

increases and its 
direction deflects 

towards the source



4
7

Example

→ Enhance gravity variations 
in the direction orthogonal to 
that of the differentiation

→ Geometry of geoid signal

• Parallelepipede mass 
anomaly at depth w/2 - w

• Spherical frame

width w



Gravity gradients from: 

• a low orbit (250 km)

• gradiometry at scales < 750-1000 km

• compensation of atmospheric drag

The GOCE mission

Original objectives: 

high resolution geoid to determine
ocean currents and study the 
lithosphere

Geometry of the mass sources
3

ESA, 2009-2013



49

A sharper view on regional subduction patterns

• Sinking slabs → high rates of gravity variations in the East-West / 
North-South directions.   

Tjj Tqq

mEötvös

Gravity  gradient signals @ GOCE altitude from:

North-South oriented masses                                    East-West oriented masses 

Panet et al. (2014)



Curvature of the geoid from the gravity gradients

Curvature describes how much a surface deviates from being
flat. It characterizes the local shape of the surface.

Flat in the 

y direction

Positive curvature in the 
two directions

Curved in the 

x direction

The local curvature of the geoid can be computed from the 
gravity gradient. A shape index is defined using the maximum 
and minimum curvatures.

Curvatures of opposite 
signs in the two directions

Shape Index from
GOCE gradients

Ebbing et al. (2018)

Bowl-shaped mass default: cratonic areas, orogenic belts

The shape index varies between different cratons: interpreted
as compositional variations in the crust / uppermost mantle.
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g = 9.8142627….. m/s2

Flattening

Mountains & trenches

Internal density anomalies

Large aquifers Time variations: tides Large buildings

1 mGal ~ 10-6 g
Figure: Olivier de Viron



Earth’s surface deformations

- Earth’s tides (≤ 50 cm, daily)

- Oceanic tides (≤ 15 cm, daily)

• Tides:

• Variations in flattening

• Signals with large horizontal displacements

- Plates tectonics: mm/yr → 10 cm/yr

- Active seismic zones

• Signals with significant vertical displacements

- Response to surface water loads at different timescales

atmosphere, hydrology, cryosphere, oceans: cm

post-glacial rebound (secular: mm/yr)

- Earthquakes, volcanoes

- Pumping

ITRF2014
Altamimi et al.

Paulson et al. (2007)



Loading signals also in the horizontal motions

Vertical velocities ITRF2014, Altamimi et al. Horizontal velocities

Courtesy of Kristel Chanard



Time-varying gravity & the GRACE mission

• Measurement of the inter-satellites 
distance / relative velocity 
(accuracies: 10 m / few m/s) from 
a microwave signal emitted by one 

satellite and reflected by the other.

• Two satellites following each other

on the same orbit

Add altitude, 220 km dist

• Non-gravitational forces measured 

by ONERA accelerometers 
(accuracy: 10-10 m/s2)



Principle

Considered mass source

Effect of a local mass excess source on the distance 

between the two GRACE satellites ?



Principle

Satellite 1 accelerates 

because its distance to the 

mass source decreases

Satellite 2 not accelerated 

because its distance to the 

mass source is large

Inter-distance 

increases

Considered mass source



Satellite 1 decelerates 

because its distance to the 

mass source increases

Principle

Satellite 2 accelerates 

because its distance to the 

mass source decreases

Inter-distance 

decreases

Considered mass source



R.Biancale, J-M. Lemoine et al. (2014)

Monthly spherical harmonics models of the geoid



Validity: Wahr et al 1998

𝑅

𝑅 + ℎ

ℓ+2

~ 1

ℓ𝑚𝑎𝑥 + 2
ℎ

𝑅
≪ 1

Thin layer potential

• Its potential in P:

N 𝑊 𝜃𝑃, 𝜑𝑃 = Σ׬
𝜎 𝜃,𝜑

𝑑
𝑑𝜎 𝜃, 𝜑

• In (1) we introduce the development of 1/d (see slide X) and that of s:

N 𝑊 𝑟𝑃, 𝜃𝑃, 𝜑𝑃 = σℓ=0
∞ σ𝑚=−ℓ

ℓ 𝑅

𝑟𝑃

ℓ+1
4𝜋𝐺𝑅

2ℓ+1
𝜎ℓ,𝑚 𝑌ℓ

𝑚(𝜃𝑃, 𝜑𝑃)

(1)

• At the surface: 𝑊 𝜃,𝜑 =
3𝑔0

𝜌
σℓ=0
∞ 𝜎ℓ 𝜃,𝜑

2ℓ+1
= σℓ=0

∞ 𝑊ℓ 𝜃, 𝜑



Earth’s deformations under a surface load

s

W: gravitational potential of the mass load

V: gravitational potential associated with the deformations within the Earth caused
by the mass load (surface displacements (uv, uh) + internal mass redistribution)

𝑉 = 𝑘′𝑊 ; 𝑢𝑟 = ℎ′
𝑊

𝑔0
; 𝑢𝜃 =

ℓ′

𝑔0

𝜕𝑊

𝜕𝜃
; 𝑢𝜑=

ℓ′

𝑔0

1

sin 𝜃

𝜕𝑊

𝜕𝜑

W

co-latitude

k’, h’, l’ are dimensionless load Love numbers (Love, 1909). 

Actually, they depend on the spherical harmonics degree. They depend on time 
in the visco-elastic case.

longitude



Earth’s deformations under a surface load

• Elastic load Love numbers: describe the response of the Earth to the body force and 
the surface normal traction caused by a unit mass loading. Obtained by integrating the 
equations of motion, the stress-strain relation and the Poisson equation for a self-
gravitating spherical Earth initially at hydrostatic equilibrium (e.g. Farrell, 1972).

• Total variation of the gravity potential (at a fixed point, not on the moving surface):

d𝑉 𝜃, 𝜑 =
3

𝜌
σ𝑛=0
∞ 1+𝑘′𝑛

2𝑛+1
𝜎𝑛 𝜃, 𝜑

N 𝑢ℎ 𝜃, 𝜑 =
3

𝜌
σ𝑛=0
∞ ℓ𝑛

′

2𝑛+1
∇ℎ𝜎𝑛 𝜃, 𝜑 = σ𝑛=0

∞ ℓ𝑛
′

𝑔0
∇ℎ𝑊𝑛 𝜃, 𝜑

• Perturbation of the gravity potential:

𝛿𝑉 𝜃, 𝜑 =
3

𝜌
σ𝑛=0
∞ 𝑘𝑛

′

2𝑛+1
𝜎𝑛 𝜃, 𝜑 = σ𝑛=0

∞ 𝑘𝑛
′

𝑔0
𝑊𝑛 𝜃, 𝜑

• For each degree, the surface deformations are proportionnal to the potential
induced by the loading mass or its derivative:  

d 𝑢𝑟 𝜃, 𝜑 =
3

𝜌
σ𝑛=0
∞ ℎ𝑛

′

2𝑛+1
𝜎𝑛 𝜃, 𝜑 = σ𝑛=0

∞ ℎ𝑛
′

𝑔0
𝑊𝑛 𝜃, 𝜑

• Visco-elastic case: the Love numbers depend on the temporal frequency of excitation. 

horizontal displacement



Examples: monitoring of aquifers depletion

Humphrey et al. (2016)

4D space-time monitoring of water transport

Homogeneous space-time coverage from satellites



Earth’s response to seasonal hydrology

Seasonal water load from GRACE gravity

• Testing different asthenospheric rheologies to predict the surface displacements
under a seasonal hydrological load & comparison with GPS. 

• Transient asthenospheric viscosity should not be lower than 5 1017 Pa.s to explain
the horizontal displacement induced by seasonal water loads, in global average. 

Chanard et al. (2018)



Thank you!


