Fanny Garel

Géosciences Montpellier University of Montpellier

Summer school – Les Houches July 2021

1. Introduction \rightarrow definition \rightarrow why does rheology matter for the Earth ? \rightarrow why is difficult to characterize?

2. Investigating and representing rheology for Earth materials

- stress, strain, strain rate lab and numerical experiments
- (micro-)mechanical processes flow "laws" and dependencies

3. Contemplating mantle rheology at long geological time-scales

- from flow laws to "effective" viscosity
- feedbacks between deformation and dynamics
- independent constraints on Earth's upper mantle viscosity

4. (open) Conclusion : complexify or simplify ?

Chrs

+ round-table on upper mantle rheology Tuesday 13th July

1. <u>Introduction</u> \rightarrow definition \rightarrow why does rheology matter for the Earth ? \rightarrow why is difficult to characterize?

2. Investigating and representing rheology for Earth materials

- stress, strain, strain rate lab and numerical experiments
- (micro-)mechanical processes flow "laws" and dependencies

3. Contemplating mantle rheology at long geological time-scales

- from flow laws to "effective" viscosity
- feedbacks between deformation and dynamics
- independent constraints on Earth's upper mantle viscosity

4. (open) Conclusion : complexify or simplify ?

Chrs

+ round-table on upper mantle rheology Tuesday 13th July

What do we call rheology?

A-LOGOS (study) of RHEO (flow)

CITS

= the science that deals with the **deformation and flow of materials**, both solids and liquids (Wikipedia)

B- Now rheology is also used to name "the response of material to an applied force"

- Experimentalists produce rheological parameterisations
- Thermo-mechanical modelers use rheology as an <u>input</u> to predict plate and mantle dynamics

Various responses of solids to an applied force

Reversible deformation > elastic

Various responses of solids to an applied force

Reversible deformation > elastic

CILLS

Irreversible deformation > plastic

mechanical rupture > **brittle**

continuous deformation > ductile

For fluid and solid: viscous flow

Pitch drop exp.: 9 drops in 84 years !

→ if you wait long enough, everything flows !

dimensionless Debora number "the mountains flowed before the Lord"

Viscosity = <u>measure</u> of material resistance to flow/deformation over time (> strain rate) = resulting from "internal" friction

- dynamic viscosity η or μ in Pa.s
 - kinematic viscosity v in m²/s
 "momentum diffusivity"

Credit : John Mainstone

For fluid and solid: viscous flow

Pitch drop exp.: 9 drops in 84 years !

Credit : John Mainstone

U

→ if you wait long enough, everything flows !

dimensionless Debora number "the mountains flowed before the Lord"

Viscosity – orders of magnitude

Water ~ 10⁻³ Pa.s, Oil ~ 10⁻² Pa.s Maple syrup ~ 1 Pa.s Peanut butter ~10² Pa.s Pea ~ 10¹¹ Pa.s Salt diapir ~ 10¹⁸ Pa.s

Rock ~ 10¹⁹⁻²⁸ *Pa.s*

U

Earthquake hazard

EQ = rock brittle deformation in response to an applied stress

Explaining Earth topography and surface motion

CITS

U

→ lithospheric flexure under loading (ice sheet, volcano, collisional thickened crust, sediments...)

Earthquake hazard

EQ = rock brittle deformation in response to an applied stress

- Earth's secular **cooling** and differenciation

CITS

6

U

Demouchy & Bolfan-Casanova, 2016

- Influence of mantle flow and plate deformation on **surface topography**
- **Plate tectonics**: force budget, formation of new boundaries, orogenic cycle

CITS

U

Conservation equations for fluid mechanics > <u>viscosity</u> !

$$\begin{split} \boldsymbol{\nabla} \cdot \boldsymbol{u} &= 0, \\ \rho_0 \, \frac{\mathsf{D} \, \boldsymbol{u}}{\mathsf{D} t} &= -\boldsymbol{\nabla} P + \rho \boldsymbol{g} + \eta \boldsymbol{\nabla}^2 \boldsymbol{u}, \\ \frac{\mathsf{D} \, T}{\mathsf{D} t} &= \kappa \boldsymbol{\nabla}^2 \, T, \end{split}$$

So let's get going...?

(71) 20

U

Modified from K. Lambeck (1988)

So let's get going...?

cnrs

-01

 \cup

Modified from K. Lambeck (1988)

1. Introduction \rightarrow definition \rightarrow why does rheology matter for the Earth ? \rightarrow why is difficult to characterize?

2. Investigating and representing rheology for Earth materials

- stress, strain, strain rate lab and numerical experiments
- (micro-)mechanical processes flow "laws" and dependencies

3. Contemplating mantle rheology at long geological time-scales

- from flow laws to "effective" viscosity
- feedbacks between deformation and dynamics
- independent constraints on Earth's upper mantle viscosity

4. (open) Conclusion : complexify or simplify ?

CITS

Chrs

Stress = unit force exerted on a unit surface (in N.m⁻² =bar or Pa)

Snow racket vs. high-heel shoe : same force (weight) but different surfaces

Normal vs. shear (tangential) stress

Géologie BCPST tout-en-un

U

Stress tensor σ (6 ind. Components)

 $\sigma_1 = \sigma_2 = \sigma_3$

Isotropic stress field \rightarrow no deformation Lithostatic stress $\sigma_1 = \sigma_2 = \sigma_3$

Images : Géologie BCPST tout-en-un

CITS

A

Pressure = mean stress P= 1/3 ($\sigma_1 + \sigma_2 + \sigma_3$)

Deviatoric stress tensor = σ - P

Differential stress : $\sigma_d = \sigma_1 - \sigma_3$

Chrs

Differential stress $\sigma_d = \sigma_1 - \sigma_3$

cnrs

Elastic behaviour

> stress and strain are proportional
 (slope = Young modulus E)

Uniaxial strain γ (shortening in %)

Differential stress $\sigma_{d} = \sigma_{1} - \sigma_{3}$ yield "point" **Plastic** (irreversible)

Strain increases rapidly without much stress increase (= **creep**)

Time-dependent deformation > stress related to strain rate

Plastic (irreversible) deformation

CITS

Uniaxial strain γ (shortening in %)

cnrs

Influence of confinment pressure + temperature

Byerlee's "law" of friction and rheology profile

Chrs

6

Deformation by defects motion at micro-scale

CITS

.UN

 \cup

Courtesy of S. Demouchy

Diffusion creep flow' law

Dependencies other than P and T : grain size, mineralogy, chemistry/water (cf Y. Ricard & S. Demouchy's lectures)

Deformation by defects motion at micro-scale

CITS

6

U

Dislocations in olivine from TEM (*Mussi et al., 2015*)

2.5-D dislocation dynamics (DD) numerical experiments on olivine

CITS

U

 → continuity of dislocation dynamics (glide + climb)
 from 800 to 1700 K and from low to high stresses

Gouriet et al., EPSL, 2019

2.5-D dislocation dynamics (DD) numerical experiments on olivine

CITS

U

U

- **Power-law** between strain rate and stress valid at low stress and high T

- **power-law breakdown** at low T, high stress

Gouriet et al., EPSL, 2019

2.5-D dislocation dynamics (DD) numerical experiments on olivine

$$\dot{\varepsilon} = A_{\rm disl} \sigma_d^{\mathbf{n}} \exp\left(-\frac{E_a + PV_a}{RT}\right)$$

- **Power-law** between strain rate and stress valid at low stress and high T

$$\dot{\varepsilon} = A\sigma^{\mathbf{n}} \exp\left[-\frac{E_a}{RT}\left(1 - \left(\frac{\sigma}{\sigma_P}\right)^p\right)^q\right]$$

- **power-law breakdown** at low T, high stress

Frost and Ashby, 1982

CITS

2

U

Kohlstedt et al., 1995

U

Kohlstedt et al., 1995

900 20

CITS

CA

 \cup

1. Introduction \rightarrow definition \rightarrow why does rheology matter for the Earth ? \rightarrow why is difficult to characterize?

2. Investigating and representing rheology for Earth materials

- stress, strain, strain rate lab and numerical experiments
- (micro-)mechanical processes flow "laws" and dependencies

3. <u>Contemplating mantle rheology at long geological time-scales</u>

- from flow laws to "effective" viscosity
- feedbacks between deformation and dynamics
- independent constraints on Earth's upper mantle viscosity

4. (open) Conclusion : complexify or simplify ?

cnrs

CITS

U

polymerdatabase.com

At second order... uni-axial experiments are not nature !

In experiments :

- Uniaxial differential stress > $\sigma_d = \sigma_1 \sigma_3$
- Measured deformation = uniaxial strain in the direction of compression/tension
- Very high strain rates ~ 10⁻⁶ s⁻¹ compared to expected mantle ones ~ 10⁻¹⁵ s⁻¹

In the Earth

CITS

- 3-D \rightarrow deviatoric stress = stress pressure Pressure = (negative) mean stress \neq minimal stress σ_3
- 3-D strain rate tensor
- \rightarrow corrections to incorporate experimental flow laws into dynamical models cf Schmalholz et al., 2019 ; Gerya, 2010

Several coexisting deformation mechanisms \rightarrow minimal viscosity ?

Several coexisting deformation mechanisms \rightarrow addition of strain rates ?

$$egin{array}{lll} \dot{arepsilon}_{
m tot} &=& \dot{arepsilon}_{
m ell}+\dot{arepsilon}_{
m plastic}\ \dot{arepsilon}_{
m plastic} &=& \dot{arepsilon}_{
m brittle}+\dot{arepsilon}_{
m ductile}\ \dot{arepsilon}_{
m ductile} &=& \dot{arepsilon}_{
m disl}+\dot{arepsilon}_{
m diff} \end{array}$$

Several coexisting deformation mechanisms \rightarrow addition of strain rates ?

$$\begin{split} \mu_{\text{eff}} &= \frac{\tau_{II}}{2\varepsilon_{II}} \\ \frac{1}{\mu_{\text{eff}}} &= \frac{2\varepsilon_{II}}{\tau_{II}} \\ &= \frac{2\dot{\varepsilon}_{\text{disl}}}{\tau_{II}} + \frac{2\dot{\varepsilon}_{\text{diff}}}{\tau_{II}} \\ &= \frac{1}{\mu_{\text{disl}}} + \frac{1}{\mu_{\text{diff}}} \end{split}$$
$$\textbf{n} \quad \mu_{\text{eff}} &= \left(\frac{1}{\mu_{\text{disl}}} + \frac{1}{\mu_{\text{diff}}}\right)^{-1} \end{split}$$

pseudoharmonic mear for viscosity

+ rock-scale viscosity of a mineralogic assemblage ? (weak vs. strong phase, grain-boundary sliding, etc.)

+ influence of shape of crystals ?

3-D viscosity tensor cf A. Tommasi's lecture on anisotropic viscosity

Peridotite thin section - courtesy of S. Demouchy

+ melt content

Deformation partitioning (minimal viscosity)

Kohlstedt & Hansen, Treatise on Geophysics, 2015

... but probably <u>coexisting mechanisms</u> rather than bimodal partitioning

CITS

Feedbacks between deformation and dynamics

U

- Dislocation creep

- pseudo-brittle / **yield stress** rheology

with strain-rate dependent viscosity

Reconciling experimental micro-scale rheology and large-scale mantle viscosity (through numerical modelling)

3 parameterizations for dislocation creep rheology... fitting equally well the data !

3 parameterizations for dislocation creep rheology... fitting equally well the data !

Free subduction model

free surface + fixed temperature $T_s = 273$ K

CILLS

(M)

Davies et al., G3, 2011 Kramer et al., PEPI, 2012

- finite-element, parallel-running code solving conservation equations
- developed by the AMCG group (Imperial College London)

 automatic adaptive meshing depending on spatial variations of temperature, velocity, viscosity...

cnrs

1911 20

U

VERY contrasted subduction dynamics

Garel et al., EPSL, 2020

Garel et al., EPSL, 2020

CITS

(M

U

Garel et al., EPSL, 2020

FEEDBACK arising from thermal diffusion time dependent

Slab drag and buoyancy

U

FEEDBACK arising from Slab strain rate dependent sinking rheology velocity part of dislocation creep in total deformation Asthenosphere viscosity

Garel et al., EPSL, 2020

Asthenosphere

Strain rates

Comparison with geological time-scales observables

Dislocation creep parameterization	ERF	TANH	ALGEBRAIC
Subduction dynamics	Thin, cold slab in free fall in low-viscosity upper mantle No time for thermal diffusion		Hot, diffusive slab in high-viscosity asthenosphere No strain-rate weakening
Time for the slab to reach 400-km	~0.5 Myr	~15 Myr	~40 Myr
Mean asthenosphere viscosity post-glacial rebound and geoid modelling (~10 ²⁰⁻²¹ Pa.s)	10 ¹⁸⁻²⁰ Pa.s	10 ²⁰⁻²¹ Pa.s	10 ²⁰⁻²¹ Pa.s
surface velocity of the subducting plate Paleomagnetism and GPS data (1-10 cm/yr)	~200 cm/yr	~1.5 cm/yr	~0.7 cm/yr
Slab morphology tomographic imaging	•	•	
Dislocation creep in the upper mantle Seismic anisotropy	•	•	•

Feedbacks between deformation and dynamics

cf Andrea Tommasi and Yanick Ricard's lectures

Feedbacks between deformation and dynamics

120 km 500 wads brida+fp 1000 Depth [km] 1500 1700 km 2000 2500 Dannberg et al., 2017 ē Viscosity in Pa s

Evolving grain size, LM $V_{diff} = 2e-6$

Positive feedback between - shear-induced grain size reduction and

- grain-size-controlled viscosity reduction (diffusion creep)
- $\rightarrow\,$ deformation localization + low viscosity layer

1. Introduction \rightarrow definition \rightarrow why does rheology matter for the Earth ? \rightarrow why is difficult to characterize?

2. Investigating and representing rheology for Earth materials

- stress, strain, strain rate lab and numerical experiments
- (micro-)mechanical processes flow "laws" and dependencies

3. Contemplating mantle rheology at long geological time-scales

- from flow laws to "effective" viscosity
- feedbacks between deformation and dynamics
- independent constraints on Earth's upper mantle viscosity

4. (open) Conclusion : complexify or simplify ?

Chrs

+ round-table on upper mantle rheology Tuesday 13th July

