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Sadi Carnot (1796–1832)



Convection in planetary interiors

I Solid state convection:
I Solid surface planets and planetary objects (icy satellites, dwarf planets) show signs of

deformation in the solid state, whether active or in their past.
I In many cases: thermal convection.
I Very large viscosity =⇒ slow motion. The bottleneck for the thermal evolution of planetary

objects with solid surface.
I Convection can also happen in solid shells or spheres deep inside planetary objects: inner core,

HP ice layers of Titan, Ganymede.
I Liquid layers:
I In many cases, a liquid layer exists below: metallic core, water ocean.
I Early planets most likely start liquid: magma oceans.
I Dynamics influenced by rotation, magnetic field, imposed externally (magneto-convection) or

self-generated (dynamo).
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General principles

In order to pose a fluid dynamical problem, we write:
I Conservations equations: mass, momentum, energy.
I Well established, universal although several level of approximations are possible.

I Boundary conditions (BC): classical ones (Dirichlet, Neumann, Robin) or more exotic (phase
change BC).

I Constitutive equations: Fourier’s law, rheology, equation of state.
I Can be quite complex.
I Generally poorly constrained for the Earth interior.



Conservation equations

dA

u

V

I Consider a fixed control volume.
I The balance equation for a quantity with mass

density f is written:

∂

∂t

∫
V
ρf dV = −

∫
A

~Jf · ~dA +
∫

V
σf dV

where the flux ~Jf and the production σf
express basic laws of physics.

I Use Gauss’ theorem:
⇒ ∂ρf

∂t = −~∇ · ~Jf + σf
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Mass conservation

I No production: ⇒ σf = 0
I Convective flow only: ~Jf = ρ~u

∂

∂t

∫
V
ρ dV = −

∫
A
ρ~u · ~dA⇒

∫
V

∂ρ

∂t = −
∫

V

~∇ · (ρ~u) dV

⇒ ∂ρ

∂t + ~u · ~∇ρ ≡ Dρ
Dt = ρ~∇ · ~u

I Incompressible flow: ~∇ · ~u = 0.
I Note

D
Dt ≡

∂

∂t + ~u · ~∇.



Momentum

ρ
D~u
Dt = −~∇P + ~∇ · ~~τ + ρ~g

Local expression of Newton’s 2nd law with
I forces applied to the surface: pressure P and deviatoric stress ~~τ .

I Note: total stress ~~σ = −P~~I + ~~τ

I body forces: gravity ρ~g.



Energy conservation

First principle of thermodynamics leads to:

ρ
De
Dt = −~∇ · ~q − P ~∇ · ~u + ~~τ : ~∇~u + ρh

Includes
I Viscous dissipation: ~~τ : ~∇~u
I Radiogenic or tidal heat production: ρh



Entropy balance

I Internal energy e is developed as function of two state variables s and ρ (add composition if
necessary).

de = TdS − PdV → De
Dt = T Ds

Dt + P
ρ2

Dρ
Dt

I Combine the equation for internal energy:

ρT Ds
Dt = −~∇ · ~q + ~~τ : ~∇~u + ρh

I In the generic form of a conservation equation:

ρ
Ds
Dt = −~∇ · ~qT︸ ︷︷ ︸

exchange

+ −1
T2~q · ~∇T +

~~τ : ~∇~u + ρH
T︸ ︷︷ ︸

production≥0



Equation for the temperature

Depending on the choice of state variable, (T ,P) or (T , ρ):

ρCp
DT
Dt = −~∇ · ~q + αT DP

Dt + ~~τ : ~∇~u + ρh

ρCV
DT
Dt = −~∇ · ~q + αTKT ~∇ · ~u + ~~τ : ~∇~u + ρh

In the case of incompressibility (Boussinesq approximation, see below), the two equations become
identical.



Mechanical boundary conditions (BC)

I Solids (ice, rocky mantle) are very viscous compared to liquid or gaseous adjacent layers (ocean,
atmosphere, liquid core):
I No resistance from the boundary: free surface BC applied at the deforming boundaries, z = h

~u(h) · ~̂n = 0.

~~τ · n̂ − Pn̂ = ~0.
I Assuming the boundary is weakly deformed, this BC is approximated by a free–slip BC.

uz(z = 0) = 0,

τxz(z = 0) = τyz(z = 0) = τzz(z = 0)− P(z = 0) = 0.
I Conversely, liquid layers in contact with solids (i.e. laboratory experiments, the liquid core) obey

to a no–slip BC:
~u(z = 0) = ~0



Thermal boundary conditions

I Solids in contact with low viscosity fluids above and/or below that can be considered as well
mixed: uniform temperature.

I Experiments: fluid in contact with a lid. Continuity of temperature and heat flux. In
dimensionless form, it can be shown to be written as a Robin BC:

Biθ + ∂θ

∂z = 0

with θ the temperature anomaly and Bi the Biot number.
I Bi →∞: fixed temperature (Dirichlet BC)
I Bi → 0: fixed flux (Neumann BC)
Reality is often in–between. May apply to the effect of continents on mantle convection (Grigné
et al., 2007a,b) or the upper surface of a magma ocean in contact with an atmosphere (Clarté
et al., 2021).



Constitutive equations 1: Fourier’s law

~q = −k ~∇T

I Second principle:
−1
T2~q · ~∇T = k

(
~∇T
T

)2

≥ 0⇒ k > 0

I Valid for a very wide range of materials and temperature gradients.
I For crystals, usually anisotropic (see J.-P. Montagner’s and A. Tommasi’s lectures):

~q = −~~k · ~∇T ⇔ qi = −kij∂jT

This is probably the case in the Earth’s mantle where seismic anisotropy is measured.

I Second principle : eigenvalues of ~~k > 0
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Constitutive equations 2: Rheology

I Total stress ~~σ has to be related to the strain rate tensor, ~~e = 1
2 (∇~u +∇~uT ) ≡ (∂jui + ∂iuj)/2,

isolating the thermodynamic pressure, P:

~~σ = −P~~I + ~~F(~~e).

I Newtonian rheology: ~~F is a linear function. Assuming isotropy and no bulk viscosity (resistance to
change of volume) leads to

σij = −Pδij + η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3δij∇ · u
)
.

I Second principle of thermodynamics =⇒ viscosity η ≥ 0.
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Constitutive equations 2: Rheology

I Total stress ~~σ has to be related to the strain rate tensor, ~~e = 1
2 (∇~u +∇~uT ) ≡ (∂jui + ∂iuj)/2,

isolating the thermodynamic pressure, P:

~~σ = −P~~I + ~~F(~~e).

I Newtonian rheology: ~~F is a linear function. Assuming isotropy and no bulk viscosity (resistance to
change of volume) leads to

σij = −Pδij + η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3δij∇ · u
)
.

I Second principle of thermodynamics =⇒ viscosity η ≥ 0.
More on this topic to come later and in Fanny Garel’s and Andréa Tommasi’s lectures.



Equation of state

I Origin of motion: change of density (ρ) with temperature (T).
⇒ Thermal expansion coefficient:

α = −1
ρ

(
∂ρ

∂T

)
P

I Minimal (linear) equation:
ρ = ρ0

[
1− α (T − T0)

]
I Effect of pressure

ρ = ρ0

[
1− α (T − T0) + P − P0

KT

]
Important but not leading order since pressure variation is dominated by the hydrostatic, i.e. in
the direction of ~g. Not considered at first!

I Effect of composition: needs additional parameters such as the FeO mass fraction for the Earth
mantle. If it is considered, an additional balance equation is needed to compute its evolution.
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The Oberbeck–Boussinesq approximation

I Boussinesq (1903) and Oberbeck (1879) propose to simplify the full equations by setting the
density constant in all terms but the buoyancy term.

I At the same level of approximation the dissipation is negligible and Cp = Cv ≡ C .
I The minimal set of equations for convection are (neglecting internal heating for now)

~∇ · ~u = 0 (1)

ρ0

(
∂~u
∂t + ~u · ~∇~u

)
= −~∇P + ρ~g + η~∇2~u (2)

∂T
∂t + ~u · ~∇T = κ~∇2T (3)

ρ = ρ0
[
1− α(T − T0)

]
(4)

I And boundary conditions.
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Experiments by Bénard

Bénard (1900a,b, 1901) conducted the first systematic experiments on flow driven by a destabilising
temperature difference.

t'ig. 6. – .4/?pare~ <A<m/~ue t/~ose po; la p~J~et/o~
de courants de convection dans une nappe mince de 7j'ou~c
non i'olalil à 100" el pour assurer 7'ui!)/b7'7H/(c/?&r/a/!c des
conditions dans toute J'étendue de la cu~'e (échelle 1/4'.

CL"'I44I'U;U~

)'ig.i3.–)tt~À'<7'YuJe/t<7't'crcp~sf':La(/~r/.s~&~ct.uA'f/7'e;-e;aj-r(~u~'t.rcest (-<aL7~'e.(t'hutogra-phier'n grandeurnaturelle.Liquide:spermaceti:leslignesnoires sont les coupures Les ce!fu)es,bien deI Organisation of the flow in nearly perfect hexagonal cells (analogy to plant cells).



Rayleigh’s theory
I Rayleigh (1916) proposed the first theory for the linear stability of a steady conductive state in a

gravity field. He showed that a minimum temperature gradient is necessary for the onset of
convection, that depends on several physical parameters.

I Block (1956) showed that the flow in Bénard’s experiments is not driven by gravity but by
temperature–dependence of surface tension, the Marangoni effect. Pearson (1958) developed the
corresponding theory.

I Term “Rayleigh–Bénard convection” is still used to denote convection driven by the
temperature–dependence of density in a gravity field while Bénard’s setup is called
Bénard–Marangoni.



Approaches for thermal convection

The problem is described by a set of coupled non-linear partial differential equations. Several
approaches are possible:
I Linearised equations: Linear stability.
I Weakly non-linear theory: valid only very close to the onset of convection.
I Numerical models.
I Experiments.

Numerical models and experiments allow to study various complexities relevant to planetary interiors.
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Generalities

I The problem (the equations) always admit several solutions, notably a motionless steady
conduction solution

⇒ What controls the onset of motion? The (in–)stability of the steady conduction solution.
I What forms do the solutions take with motion?



Dimensional analysis: the Rayleigh number

d

T=T0

T=T0+ΔT

I Buoyancy: ρgα∆T ∼ ρv/τc ∼ ρd/τ2
c .

⇒ Convective time: τ2
c = d/gα∆T .

I Diffusive time: τd = d2/κ.
I Viscous time: τv = d2/ν = ρd2/η

I Convection if τvτd/τ
2
c >> 1

Ra ≡ α∆Tgd3

κν
> Rc ∼ 103

Gross estimate for Earth’s mantle: Ra ∼ 108
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Perturbation equations

The system of equation admits a motionless (~u = 0) steady (∂t = 0) conduction solution:

~∇P = ρ~g (5)
~∇2T = 0 (6)

ρ = ρ0
[
1− α(T − T0)

]
(7)

T(d) = T0 and T(0) = T0 + ∆T (8)

⇒ Tc = T0 + ∆T − z
d ∆T (9)

ρc = ρ0

[
1− α∆T

(
1− z

d

)]
⇒ Pc = ... (10)

Write equations for the perturbations of the steady conduction solution, θ = T − Tc, p = P − Pc:
~∇ · ~u = 0 (11)

ρ0

(
∂~u
∂t + ~u · ~∇~u

)
= −~∇p − ρ0αθ~g + η~∇2~u (12)

∂θ

∂t + ~u · ~∇θ = ∆T
d uz + κ~∇2θ (13)



Dimensionless equations
I There are several ways of doing it but I choose here

x ′, y′ = x, y
d ; z ′ = z

d + 1
2 ; θ′ = θ

∆T ; t′ = κt
d2 ; p′ = pd2

κη

I We get, after dropping the ′s:
~∇ · ~u = 0 (14)

1
Pr

(
∂~u
∂t + ~u · ~∇~u

)
= −~∇p + ~∇2~u + Raθẑ (15)

∂θ

∂t + ~u · ~∇θ = uz + ~∇2θ (16)

I with

Ra = ρ0gα∆Td3

κη
the Rayleigh number (17)

Pr = η

ρ0κ
the Prandtl number (18)

I and boundary conditions at z = ±1/2

θ = 0; uz = 0; ∂zux = ∂zuy = 0⇒ ∂2
z uz = 0.



Dimensionless equations
I There are several ways of doing it but I choose here

x ′, y′ = x, y
d ; z ′ = z

d + 1
2 ; θ′ = θ

∆T ; t′ = κt
d2 ; p′ = pd2

κη

I We get, after dropping the ′s:
~∇ · ~u = 0 (14)

1
Pr

(
∂~u
∂t + ~u · ~∇~u

)
= −~∇p + ~∇2~u + Raθẑ (15)
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The Prandtl number

Pr = η

ρ0κ

I Characteristics of the working fluid
I Liquid water: Pr ∼ 7
I Earth’s mantle: Pr ∼ 1025

I Water ice: Pr ∼ 1017

⇒ Inertia term negligible for convection in solids!
I Kinetic energy of Earth’s mantle (mass 1× 1024 kg), assuming a mean velocity of 3 cm/yr is
∼ 2× 106 J. Similar to a car driving at 100 km/hr.

⇒ The Prandtl number is taken as infinite in solids.



Mode decomposition for the linear problem

I Considering infinitely small perturbations of the conduction solution, the problem can be linearised:

~∇ · ~u = 0 (19)
1

Pr
∂~u
∂t = −~∇p + ~∇2~u + Raθẑ (20)

∂θ

∂t = uz + ~∇2θ (21)

I The perturbation can be developed in time–dependent Fourier modes and, for a linear problem,
each mode can be analysed independently. The problem is independent of the horizontal
orientation and we choose:

(θ, p, ux , uz) = (Θ(z),P(z),U (z),W (z))eσteikx .

I If <(σ) > 0 the instability grows.
I The conduction solution is stable if all modes of perturbation have <(σ) < 0



Solution for free–slip BCs

I When both boundaries are free–slip,
W = cos(πz) provides the solution.

I Neutral stability:

Rac =
(
π2 + k2)3

k2

I Minimum value

Rc = 27π4

4 ' 657 for kc = π√
2

I First unstable mode has wavelength

λc = 2π
kc

= 2
√

2.

⇒ rolls
√

2 wider than they are tall.



Effect of mechanical BCs on the linear stability

1 2 3 4 5 6 7

Wavenumber, k

1000

2000

3000

4000

5000

6000

N
eu

tra
lR

a

Rigid–Rigid BCs
Ramin = 1707.76; k = 3.12

Free–Rigid BCs
Ramin = 1100.65; k = 2.68

Free–Free BCs
Ramin = 657.52; k = 2.23
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Example calculation close to onset

I Ra = 800, Pr =∞.
I Aspect ratio = 32× 32× 1.
I Initial condition: conductive solution plus

random noise.
I Pattern dynamics with long–distance

interactions between defects.
I Steady–state: Rolls at π/4 angle so that a

natural number of 2
√

2 wavelength fit.


Tmid800_0_32x32_1-10.mpg
Media File (video/mpeg)



Stability of finite amplitude solutions

I Schlüter et al. (1965) showed that only rolls are stable finite solution close to the onset of
convection.

I Busse (1967) showed that a finite range of wavenumber leads to stable roll solution.

(Busse 1967; Busse & Whitehead, 1971)



Origin of the hexagonal flow

I Many experiments (starting with Bénard’s) lead to hexagonal patterns.
I Hexagonal patterns are non–symmetrical with respect to z → −z tranformation, whereas rolls are.
I Hexagonal flow is obtained for asymmetrical conditions such as provided by depth– or

temperature–dependent properties (e.g. η(T)) or volumetric heat generation.
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Example calculation at high Ra

I Ra = 107, Pr =∞, aspect ratio 4× 4× 1
I Initial conditions: T = 1/2 and exponential variation in thin layers to match BCs plus small

random noise.
I Two iso-temperature surface represented.


t1e7_0_4x4_1-6.mpg
Media File (video/mpeg)



Regime diagram in the (Ra, Pr) space

(Krishnamurti, 1973)

Ra = 107

Ra = 105

(Sotin & Labrosse, 1999)



Temperature profiles
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I Efficient mixing in the bulk of the domain ⇒
uniform temperature.

I Matching the boundary conditions ⇒
boundary layers.

I Increasing the Rayleigh number makes the
thickness of boundary layers decrease.



Simple dimensional argument for the heat flow

I Dimensionless heat flow Nu = qd/k∆T = f (Ra) = ARaβ to be valid over large range of Ra
values.

I At very large Ra, boundary layers and the resulting plumes get very small.
I The dynamics of convection and the resulting heat flow should become independent of the total

thickness:

q = Ak∆T
d

(
gα∆Td3

κν

)β
⇒ β = 1

3 .

I More on that during Maylis Landeau’s practical.



Experiments at very high Ra
Niemela et al. (2000)

(Niemela et al, 2000)

Slope β=
0.309 mean field

β=2/7

β=1/3

β=0.309

I Working fluid: cryogenic helium.
I Pr ∼ 1
I 1 m–high tank.
I Exponent β close to but different

from 1/3.
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Plate tectonics



Plate tectonics
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Plate tectonics
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Thermal structure of the oceanic lithosphere
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I A cold front propagates downward in the mantle as the
plate moves away from the ridge

I The temperature follows the solution for the cooling of
an infinite half–space:

T(z) =TM erf z
2
√
κt

= 2TM√
π

∫ z/2
√
κt

0
e−x2

dx

I The heat flux decrease with the age of the plate as

q(t) = kTM√
πκt

= CQt−1/2

I CQ can be determined by fitting the observed flux in well
sedimented areas.



Heat flow data from well–sedimented areas
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I q = CQ/
√

t valid for t up to 80 Myr with 475 ≤ CQ ≤ 500⇒ TM = 1300 ◦C.
I Deviations for ages > 80 Myr: small–scale convection under the lithosphere.



Young oceans

Igneous basement
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(Davis et al 1999)

I Impressive match between theory and observations
when the sedimentary cover is sufficient
I to properly measure the heat flow
I and limit hydrothermal activity.



Another piece of evidence: Topography
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Isostatic theory for the ocean topography
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Test of the theory

(Carlson & Johnson, 1994)



Oceanic heat flow

48 60 80 100 120 140 220 320 5000
mWm−2

I Total: 29± 1 TW from normal oceans.
I Add 2 TW to 4 TW from hotspots.



Total heat flow at Earth’s surface
Jaupart et al. (2015)

I The total heat loss of the Earth is ' 46 TW
I The average heat flow density is 90 mW m−2, corresponding to a mean temperature gradient of

30 K km−1. The gradient must level off to match a central temperature Tc ∼ 6000 K.
⇒ A more efficient heat transfer mechanism is necessary at depth.



Advection in the mantle: order of magnitude
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I Subduction :
I length L = 48 800 km.
I mean temperature anomaly δT ∼ 600 K.
I typical velocity w ∼ 10 cm/yr
I thickness δx ∼ 100 km
⇒ Total advective flux: Q = δxLρCpwδT ' 30 TW

I Plumes: very small surface ⇒ 2 TW



Global geodynamics and seismic tomography

Computation of the predicted temperature variations induced in the mantle by injection of cold plates
in the past ∼ 180 Ma (Ricard et al., 1993) and comparison with tomographic models.

Slabs (Depth 500 km, degrees 1-15)

Slabs (Depth 500 km, degrees 1-3)

SH425.2 (Depth 500 km, degrees 1-3)

(Ricard et al, 1993)

Slabs (Depth 1000 km, degrees 1-15)

Slabs (Depth 1000 km, degrees 1-3)

SH425.2 (Depth 1000 km, degrees 1-3)

(Ricard et al, 1993)

Slabs (Depth 2000 km, degrees 1-15)

Slabs (Depth 2000 km, degrees 1-3)

SH425.2 (Depth 2000 km, degrees 1-3)

(Ricard et al, 1993)



Global geodynamics and seismic tomography

Computation of the predicted temperature variations induced in the mantle by injection of cold plates
in the past ∼ 180 Ma (Ricard et al., 1993) and comparison with tomographic models.

Slabs (Depth 500 km, degrees 1-15)

Slabs (Depth 500 km, degrees 1-3)

SH425.2 (Depth 500 km, degrees 1-3)

(Ricard et al, 1993)

Slabs (Depth 1000 km, degrees 1-15)

Slabs (Depth 1000 km, degrees 1-3)

SH425.2 (Depth 1000 km, degrees 1-3)

(Ricard et al, 1993)

Slabs (Depth 2000 km, degrees 1-15)

Slabs (Depth 2000 km, degrees 1-3)

SH425.2 (Depth 2000 km, degrees 1-3)

(Ricard et al, 1993)

Seismic tomography: Ritsema et al. (1999).



Some peculiarities of mantle convection

I Internally heated by radioactivity and secularly cooled.
I Spherical shell geometry.
I Temperature–dependent viscosity and even complex rheology. Necessary to explain plate-tectonics.
I Depth– and temperature–dependence of all physical parameters
⇒ compressible models may be necessary.

I Variations of composition at various scales.
I Two–phase flow (not covered).
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Internal heating

Earth heat budget (Jaupart et al., 2015):
I Total heat flow at the surface of the solid Earth is ' 46 TW.
I Total radiogenic heat production is ' 20 TW.
⇒ Important to consider internal heating.
I And also secular cooling, which is equivalent (Krishnamurti, 1968): Consider that the average

temperature 〈T〉 decreases with time on a long timescale ta compared to the dynamical one tc.
Time derivative of temperature can be separated in slow and fast contribution so

ρC
(
∂T
∂tc

+ ~u · ~∇T
)

= k ~∇2T + ρh − ρC d〈T〉
dta︸ ︷︷ ︸

effective internal heating

I With the same choice of scaling, the dimensionless equation is

∂T
∂t + ~u · ~∇T = ~∇2T + H with H = ρhd2

k∆T
I At infinite Pr , two dimensionless parameters: Ra and H or Ra and Rah = RaH .



Planform for internally heated convection

I The dynamics is dominated by downwelling
cold plumes.

I Hot plumes are often triggered by the
spreading of cold matter on the bottom
boundary layer.

I Heat transfer is dominated by advection
associated with cold currents.


t3e6_20_19.mpg
Media File (video/mpeg)



Temperature profiles with internal heating
Sotin and Labrosse (1999)
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I Two dimensionless parameters Ra et H .
I Surface heat flux controlled by the stability of

the boundary layer. Local Rayleigh number:
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Toroidal-poloidal decomposition of surface velocity
(Ricard & Vigny, 1989)

I Incompressibility ~∇ · ~u = 0
⇒ ~u can be written as

~u = ~∇× T~ez︸ ︷︷ ︸
Toroidal

+ ~∇× ~∇× S~ez︸ ︷︷ ︸
Poloidal

I For a uniform viscosity, the equation for momentum conservation gives

∇4S = δρg
η

; ∇2T = 0⇒ no transform fault!

I If η is laterally variable:
η∇2ωz + ~∇ωz · ~∇η = −1

η
(~∇η × ~∇p) ·~ez

⇒ Horizontal gradient of viscosity are necessary to produce toroidal motion.



Surface deformation

(Dumoulin et al, 1998)

(Dumoulin et al., 1998)
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I Seafloor ages
→ plate velocities.

I Two types of motion:
I Convergence (subduction) and divergence

(ridges).
I Strike-slip (Transform faults).



Temperature–dependence of viscosity
White (1988)

White (1988):
a : rolls
b, c : bimodal
d, e : square
f, g : hexagones
h : triangles
i, j : spoke

I First effect: breaking the symmetry
between up- and downwelling
currents.

⇒ Allows different flow geometries.
I These experiments: modest

variations of viscosity.



Large temperature-dependence of viscosity I

0.2 0.4 0.6 0.8
Temperature

Ra = 108

η
max

/η
min

 = 106

0.00 0.25 0.50 0.75 1.00
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

R
ad

iu
s

Min temperature

Temperature

Max temperature

0 5 10
Heat flux

Diffusion

Advection

0 1000 2000 3000
Horizontal velocity

I Cold boundary layer too viscous to deform
⇒ stagnant lid: No plate tectonics!
I Another ingredient (mechanism) is required to break the

viscous lid.

(Moresi and Solomatov, 1995) identified
3 regimes:
I I: small viscosity contrast regime
I II: transitional regime
I III: stagnant lid regime



Strain localisation by pseudo-plasticity
Tackley (2000)

I Temperature dependence of viscosity allows to rigidify plates:

η(T) = η0eE/RT

I A yield stress σy is introduced to saturate stress once a critical deformation is reached:

ηeff = min
[
η(T), σy

2ε̇

]
with ε̇ =

√
ε̇ij ε̇ij



Tackley (2000)
I Left: effective viscosity
I Right: temperature
I Yield stress increases from top to bottom,

34 MPa to 340 MPa



Heat flow and plate size
Grigné et al. (2005)
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I Loop model: balance between buoyancy and viscous resistance

⇒ qtop = C (L)Ra1/3
m T4/3

m

⇒ classical scaling supported by convection models with
self-consistent plate tectonics (pseudo-plastic rheology).



Issues and potential solutions

A rather simple rheology (pseudo-plastic) allows to obtain a dynamics mimicking some aspects of plate
tectonics. But...
I How does it relate to the actual rheology of rocks? In particular the yield stress necessary to get

plate-like behaviour is generally smaller than that measured in laboratory.
I On Earth, old deformation structures often get reactivated → the rheology is history dependent.

A damage theory is needed.
I Bercovici & Ricard (Nature 2014): grain-size dependence in a multi-mineral rock with Zener

pinning.
I Anisotropic viscosity with lattice preferred orientation (Pouilloux et al., 2007)? Theory and

models still needed for that.
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The isentropic temperature gradient

I Compression ⇒ increase of temperature → useless part
of the temperature gradient.

I Isentropic gradient (∼ adiabatic)(
∂T
∂P

)
S

= αT
ρCp

⇒ ∂T
∂r = −αgT

Cp

I Solution to subtract from the total ∆T :

T(r) = T0 exp
(
−
∫ r

CMB

αg
Cp

dr
)

I T0 : “foot of the adiabat”.
I Jeffreys (1930) showed that the criterion for Rayleigh–Bénard instability in a “weakly

compressible” fluid is the same as that derived by Rayleigh (1916) provided the temperature
difference is taken as that in excess of the isentropic one.

I Further complexities (i.e. distribution of dissipation) not treated here. See Curbelo, Alboussière et
al recent work.
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Compositional variations in the mantle and fluid dynamics

I Upper mantle: direct observations of strong compositional variations from the largest scale
(continents and oceans) to the smallest (different minerals in a rock).

I Deep mantle: evidence come from geochemistry and geophysics (mostly seismology).
I Two types of compositional variations:
I trace elements do not act on density but can play a role on radiogenic heating (235U, 238U,

232Th, 40K).
I major elements, or oxydes (i.e. FeO and MgO), act on density and most physical parameters,

like viscosity.
I In the fluid dynamics of mantle convection: add a new parameter, the buoyancy number

B = ∆ρχ
ρ0α∆T or Raχ = RaB.

I The buoyancy term in the momentum equation is:

Ra(θ + BC )

with C the dimensionless composition.



Conceptual models for the current snapshot

(Tackley, 2000)



Conceptual models for the current snapshot

(Tackley, 2000)

(Albarède & van der Hilst, 2002)
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Dense partial melt pocket at the base of the mantle

I Large VS anomalies in the lower mantle → thermal and chemical heterogeneity.
I ULVZs at the edges of dense thermo-chemical piles. Interpreted as pockets of dense partial melt.
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Various observations in Cartoon form
Hernlund & McNamara, ToG 2015

Homogeneous outer core

(Hernlund & McNamara, ToG, 2015)
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I Also: possible reflection from the top of LLSVPs (Schumacher, et al 2018)
I Simplest common ingredient to all these observations: Compositional variations.



The present snapshot and the long term evolution

I The present observations only constrain the current “snapshot” of the mantle.
I Different timescales of evolution: short (plate tectonics) and long (thermal evolution, regime

changes?).
I Avoid the uniformitarian bias!



Stability of LLSVPs?
Burke & Torsvik (2004)

I Position of large igneous provinces (LIPs)
when erupted correlates with edges of LLSVPs.

I Suggests “long” (200Ma) term stability of
these structures.



LLSVs and ULVZs in models
McNamara, Garnero, Rost (2010)

I Dense chemical piles move in response to plate and plume flow.
I ULVZs at the edges.
I But important transient effects.



bridgmanite-enriched ancient mantle structures (BEAMS)
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(Ballmer et al, Nat. Geosc. 2017)

I Non-linear viscosity variation depending on Si/Mg ratio.
I For ηmax/ηmin > 100 BEAMS forms.

(Ballmer et al, Nat. Geosc. 2017)



Production of compositional anomalies

I Compositional anomalies are produced at the mineral scale.
I Only a liquid phase permits longer distances separation. This can be
I water → mostly a subduction/mantle corner process, possibly transition zone (Bercovici &

Karato, Nature 2003), not covered here.
I liquid iron → often considered limited by the large density contrast. Alternative have been

proposed (Kanda & Stevenson, 2006; Otsuka & Karato, 2012) but have not been picked up in
geodynamical models.

I magma → fractional melting and freezing creates intermediate (∼ km) scale heterogeneities at
the surface (MORB) and possibly in the deep mantle (ULVZ), now and in the past (magma
ocean).

I Large scale heterogeneities require entrainment and separation by solid mantle flow.
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Crust recycling

I Partial melting at ridges ⇒ production of compositional anomalies.
I Crust minerals become more dense than average mantle at high pressure ⇒ it could segregate

into the deep mantle.



Effect of numerical resolution

I Most models have a thick crust because of resolution issues.
I High resolution calculations (fig. from Li and McNamara, 2013) show that a 6km thick crust is

more difficult to segregate.
I Segregation can be helped by the presence of weak post-perovskite (Nakagawa & Tackley, 2013).
I Also, Wang et al. (2020) show that MORBs at CMB conditions are faster than normal mantle,

not slower!
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Entrainment with time
(Le Bars & Davaille, 2004

(Le Bars & Davaille, 2004)

I Gradual entrainment at the interface of a layered system makes
it undergo regime transitions.

I Doming regime (Davaille, 1999) could explain the anomalous
topography of the Pacific superswell and south Africa.

I An intrinsically denser material can become temporally less dense
because of high temperature and rise ⇒ compatible with
LLSVPs less dense than normal mantle (Koeleimejer et al, 2017).

I What could be the origin of the initial layering?



Crystallisation of a basal magma ocean (BMO)
Labrosse et al. (2007)

4.5 Ga 4.49 Ga ~1.5 Ga Present

ULVZs

Solid mantle

BMO: liquid

Core: liquid

(Labrosse, Hernlund, Coltice, 2007)

I ULVZ: Dense partial melt at present
I Cooling of the core evidenced by the maintenance of the geodynamo for at least 3.5 Gyrs.
I ⇒ More melt in the past!
I Fractional crystallisation ⇒ compositional variations.



Example of evolution

I Change of dynamical regime with time.
I Gradual stabilisation of a dense layer at the bottom.
I Heat producing elements (HPEs) get to the solid only at the very end of crystallisation ⇒ heating

up of thermochemical piles that can destabilize.


Ra3e7_KD_BFe9_Rh10_eta1e3_T_cFe_hpe.mov
Media File (video/quicktime)
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Bonus



Advection and conduction profiles

I Integrate the energy balance equation between the top boundary and any depth z, averaged over
time:

qtop ≡ −
∂T
∂z

(
z = 1

2

)
= − ∂T

∂z (z) + uz(T(z)− T).

I Increase of velocity with Ra makes the advection increase ⇒ thickness of boundary layers
decreases to match the heat flow.
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Balance between conduction at the surface and advection at depth

I Heat balance between the surface and depth z :

q0 ≡
(

k ∂T
∂z

)
0

= k
(
∂T
∂z

)
z︸ ︷︷ ︸

Conduction

+ ρCpwδT︸ ︷︷ ︸
Advection

+ ρHz︸︷︷︸
Radioactivity
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Average temperature
Sotin and Labrosse (1999)
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Two contributions:
I Symmetrical case (no internal heating).
I Additional term from internal heating. Total:

∆Ts

∆T = 1
2 + H 3/4

Ra1/4
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