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This session: practicals!

@ A few introductory slides & exercises.
@ These who are familiar with dimensionless numbers: help others!

@ At least one person familiar with dimensionless numbers sitting
next to these who do not use dimensional analysis on a regular basis.

@ Gong sound at the end of each exercise.
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Dimensional analysis: key to studying the dynamlcs
of Earth’s interior

Earth's interior Modelling

What ingredients
tokeepin

simulations?
Mantle

Outer core

Il Inner core

What fluids to use

. / . .
Magnetic field in experiments?

experiments
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What is a dimensionless number?

@ Dimensionless number = ratio of two physical parameters that have
the same dimension (two forces, two time scales, two length scales,
two energy scales).
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What is a dimensionless number?

@ Dimensionless number = ratio of two physical parameters that have
the same dimension (two forces, two time scales, two length scales,
two energy scales).

o Example : the Reynolds number,

R inertia viscous time UL
e = — = ; ; = —
viscous forces advective time v’

where U a typical velocity, L a typical length scale, v the kinematic
viscosity.
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What is a dimensionless number?

Exercise 1: Reynolds number

o Compare inertia and viscous forces in the momentum
conservation equation (see lecture by S. Labrosse) to show that
Re=UL/v,

o Write the advective and viscous time scales to show that
Re=UL/v.
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The Reynolds number: Application to plumes

=/~ \ Plate motion . L. : g Vo‘lcqlmc
e B SR - .- trail
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The Reynolds number: Application to plumes

Re > 1: turbulent plume when inertia dominates

e.g. Kitamura & Sumita, 2011
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The Reynolds number: Application to plumes

Re < 1: viscous plume when viscosity dominates

Davaille et al., 2010
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The Reynolds number: Application to plumes

Rex~1 Laminar plume
v>107*m?/s -
U=~3-10"%m/s

it _a—
Davaille et al., 2011

Re ~ 9000  Turbulent plume

v =~ 107%m?/s 4cm
Reynolds U ~ 3m/s
UL
Re = —
v

e -

- biez etal., 200—3
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Why are dimensionless numbers useful?
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Why are dimensionless numbers useful?

@ To reduce the number of free parameters.

The Vaschy-Buckingham 7-theorem:

If a physical system has n physical parameters, with k physical
dimensions, the system can be entirely described by a set of
n — k dimensionless parameters.
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Reduce the number of parameters

Exercise 3: Thermal convection
(see lectures of S. Labrosse, T. Alboussiéere)
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Reduce the number of parameters

Exercise 3: Thermal convection
(see lectures of S. Labrosse, T. Alboussiéere)
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Reduce the number of parameters

Exercise 3: Thermal convection
(see lectures of S. Labrosse, T. Alboussiere)

@ Under the Boussinesq approximation, the physical parameters that
govern thermal convection are: the temperature difference AT, the
layer depth H, the buoyancy force a AT g, the kinematic viscosity v
and the thermal diffusion k.

@ Based on the w-theorem, how many dimensionless parameters govern
the system? Write them.
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Reduce the number of parameters

Exercise 3: Thermal convection
(see lectures of S. Labrosse, T. Alboussiere)

@ Under the Boussinesq approximation, the physical parameters that
govern thermal convection are: the temperature difference AT, the
layer depth H, the buoyancy force a AT g, the kinematic viscosity v
and the thermal diffusion k.

@ Based on the w-theorem, how many dimensionless parameters govern
the system? Write them.

Answer:
@ 2 dimensions (length, time),
AT g H?
@ 4 — 2 = 2 dimensionless numbers: Pr = % Ra = asrefn kg
v
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Reduce the number of parameters

Bonus exercise: Diffusion

In the early Earth, giant impacts might have entirely melted the man-
tle into a magma ocean. We consider the diffusion of light elements
(Si, O, etc) from the mantle into the core (no convection).

z
C =)
magma ocean
0 — >
core (liquid) Based on the 7-theorem, how many
dimensionless parameters govern the
C=0 system? What does that imply for the

normalised concentration C(z,t)/Cy?
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Why are dimensionless numbers important ?

@ They tell you what forces dominate — the dynamical regime.
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Control the dynamical regime

Ex. 4: Viscous or turbulent plumes in mantle & outer core?

Re~1 Laminar plume
> 1074m?/s - ‘
U=3-10"3m/s

% 1 P

4icm

e _
Davaille et al., 2011

Re ~ 9000  Turbulent plume

v~ 10"%m?/s

Reynolds U ~ 3m/s
UL
Re = —
v

"

Diez et al., 2003
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Control the dynamical regime

Mantle plume

| £\ Platemotion .

Laminar plume

U~ cm/yr Re ~ 10722
vV~ 1018m2/s

L ~ 100 — 1000km
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Control the dynamical regime

Outer core plume

[

V.3

Schaeffer et al. 2017
v~10""m?/s
U~5-10"*m/s
L ~ 1000km

Re ~ 10°

Turbulent plume

4 cm
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Control the dynamical regime

Exercise 5: Convection in outer core vs mantle

Based on what you learned in previous lectures (T. Alboussiére, S.
Labrosse, N. Schaeffer), estimate ratios of the different forces for
convection in the outer core and in the mantle.

What are the important forces for both cases?



Why useful?
000000000 e0000000000

Control the dynamical regime

Mantle Outer core

Schubert, Turcotte, Olson, 2001 Kageyama et al. 2008
Viscous flow, Turbulent flow, governed by
governed by rotation, buoyancy, inertia

viscosity & buoyancy (& Lorentz force)
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Control the dynamical regime

Exercise 6: Core-mantle differentiation
Core-mantle differentiation

Impactor core

(liquid metal),
Magma ocean ’

(liquid Slllcat/ef)/ N ‘\\ . Diapir in fully molten
- ” magma ocean
/ > Diapirs in solid or

Partially Y v

solid mantle /—\

/

partially solid mantle
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Control the dynamical regime

Exercise 6: Core-mantle differentiation

Core-mantle differentiation

/
/

Impactor core  ,°
(liquid metal) ~

Magma ocean "\
(liquidsilicates)/ ’ \

\

AN

Questions:
Dimensionless numbers ?

Dynamical regime ?

A

w Diapir in fully molten

' magma ocean

/
/ Partially Y v

solid mantle /\

> Diapirs in solid or
partially solid mantle
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Control the dynamical regime

Exercise 6: Core-mantle differentiation

Core-mantle differentiation Questions:
y Dimensionless numbers ?
. Impactor core - Dynamical regime ?
\ /
~ (liquid metal) ~
Magma ocean \\ ) A
(llquld Slllcates)/ . Diapir in fll]ly molten Deguen et al. 2014
magma ocean Landeau et al. 2014
Turbulent Lherm & Deguen, 2018
Wacheul & Le Bars, 2018
A
/ Jé - ¢ L . . o .
/ Partiall > Diapirs in solid or
/  TPartally A\ partially solid mantle Fleck et al 2018

solid mantle /\ Viscous Monteux et al., 2009
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Why are dimensionless numbers important?

© A necessary step to scale down analogue experiments.
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Dimensionless numbers

Motivations

Scaling-down experiments

Exercise 7: Core-mantle differentiation
What fluids to match the dynamical regime of metal fragmentation
in magma oceans?

Earth's Experiment
differentiation
Piston
Needle

P Membrane
o

Impactor core

80 cm
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Scaling-down experiments

Exercise 7: Core-mantle differentiation
What fluids to match the dynamical regime of metal fragmentation
in magma oceans?

Experiment

Earth's
differentiation

Piston
Needle

) Membrane
Impactor core Water + salts —__|

80 cm
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Scaling-down experiments

Landeau et al., AGU 2020.
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Why are dimensionless numbers important?

@ A necessary step to obtain scaling laws.
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Scaling laws: cooling of magma oceans

Cooling rate ? Analog model

Convection

Sedimentation
of crystals

T Cold

T+ Hot

Mantle Magma
ocean
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Scaling laws: cooling of magma oceans

heat flux, ) ?

T Cold

ATH?3 Diffusion time?
Ra = a9

~

VK Advection time?

Height

Nu = Q Convective flux
pCpAT/H  Conductive flux

Temperature
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Scaling laws: cooling of magma oceans

Fully-liquid Ra ~ 1027
magma ocean:
heat flux, ) ?

T

Not achievable in

experiments
or simulations !
Cold

Height

3
Ra — agATH

Diffusion time?
~
VK

T+

Advection time?

Nu— Q Convective flux
pCpeAT/H — Conductive flux
Temperature
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Scaling laws

Exercise 8: Cooling of a magma ocean

Use the scaling law to estimate the cooling time of a magma ocean.

10 F T T T T T T pus
-
i
- /."

.

o -
P
.
R
7
1 1 1 | 1 -
10° 10° 100 100 101
Ra

Castaing et al. 1989

Theory & experiments: Ny ~ 0.1Ra'/?
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Scaling laws

Exercise 8: Cooling of a magma ocean

Use the scaling law to estimate the cooling time of a magma ocean.

Extrapolation of scaling to
fully-liquid magma oceans

./.'
o
L .
»”
-
-

Nu ~ 108
k/ '

— Q ~ 10°W/m?

1 I ] ! m
10 10° 100 107 w
Ra

Castaing et al. 1989

Cooling time ~ 1000 yr

Theory & experiments: Ny ~ 0.1Ra'/?
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Scaling laws

Exercise 9: Maximum elevation on planetary objects

Why is the Earth (left) spherical while asteroids like Vesta (right) have
a more irregular shape?
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Scaling laws

Exercise 9: Maximum elevation on planetary objects

Why is the Earth (left) spherical while asteroids like Vesta (right) have
a more irregular shape?

o Hint:
Compare the pressure below a mountain to the yield strength Y.

For rocks, Y ~ 100 MPa. c
4
The gavitational acceleration at the planet surface is g = %

where r is the planet radius.
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Scaling laws

Exercise 9: Maximum elevation on planetary objects
Why is the Earth spherical while Vesta is irregular?

From Melosh, 2011:

10E —r T L

10 MPa 1 GPa F
7 ]
3 I 4 E
ER =
= ]
< 4
2
= 0.1 L
= ] :
= ]
é 001 3

0.001 P BT R B VT
1 10 100 1000 10000

Mean Radius, km
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Summary

Dimensional analysis & dimensionless numbers are important to:
O Reduce the number of parameters!

@ Predict the dynamical regime in the core and mantle: choose what
forces to include in simulations and what processes in experiments.

© Scale down analogue lab experiments,

@ Extrapolate quantitative scalings to the deep Earth.
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References

o For beginners: Les lois d'échelle, Thomas Séon

o To go further: Similarity, Self-Similarity, and Intermediate
Asymptotics, Barenblatt.

o Laboratory experiments on the dynamics of the core, P. Olson, 2011.

e Dynamical similarity and density (non-) proportionality in experimental
tectonics, N. Ribe, A. Davaille, 2013.
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Working groups

o Ideas of geophysical processes you would like to model?
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Working groups

o Ideas of geophysical processes you would like to model?

@ Examples: convection in mantle or core, convection in icy satellites,
planetary impacts & craters, core-mantle differentiation, dynamic
topography, cooling of magma oceans, convection & stratification in

the outer core, subduction, etc.
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Working groups

o Ideas of geophysical processes you would like to model?

@ Examples: convection in mantle or core, convection in icy satellites,
planetary impacts & craters, core-mantle differentiation, dynamic
topography, cooling of magma oceans, convection & stratification in
the outer core, subduction, etc.

@ Choose 4 or 5 systems — 4 or 5 working groups.

o For each group:
Find the dimensionless numbers,
Estimate them.
What forces dominate?
Propose an analogue experiment or a numerical system.



Extra slides
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Why are dimensionless numbers important ?

@ They control the morphology of the flow and the dynamical regime.

Convection in
magma oceans

Rotation

Sedimentation
of crystals

Mantle Magma
ocean
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Why are dimensionless numbers important ?

@ They control the morphology of the flow and the dynamical regime.

. . Low crystal fraction High crystal fraction
Convection in ¥ \ ghery Y
magma oceans Turbulent flow Ecoulement visqueux

~ outer core ~ solid mantle
v \4
. rotation, buoyancy, inertia buoyancy, viscosity
Rotation 9
10
8 [ ©-]
. ' 107 o 40
Scd.lmcntatlon g 10°¢ VlSCOS}ty pf o
of crystals S 1081 fully liquid o
Z= 5 magma ocean
z2 2 107 ¢
2 2 10t} ~ 1075m?/s
G-RTE) A
15}
= 2
10° £ q
1[0 o} Costa 2005
Mantle Magma 10 AALejeune & Richet, 1995
ocean 100 A—Ba—a a8 27 jeune & ichet,

0 0.2 0.4 0.6 0.8 1
Crystal fraction
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Dimensionless numbers Why useful?

Motivations

Scaling-down experiments

Exercise 7: Core-mantle differentiation

Core-mantle differentiation Analog experiment

in viscous magma ocean )
2 P
Liquid Fluid 1 ——~
v silicates ?
/ Liquid metal Fluid 2 —%
2
ooy .
Partially Fluid 3
solid mantle 2
° Olson & Weeraratne, 2008

What fluids can we use to match the dimensionless numbers of the
geophysical system?
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Scaling-down experiments

Exercise 7: Core-mantle differentiation

Core-mantle differentiation Analog experiment

in viscous magma ocean )
12 cm
Liquid Corn syrup T
v silicates + water
/ Liquid metal Liquid —%
gallium
VN .
Partially Corn syrup
solid mantle

Olson & Weeraratne, 2008

What fluids can we use to match the dimensionless numbers of the
geophysical system?
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Self-similarity
o Self-similarity : most often it refers to scale similarity in time.
F(x,t) = A(t)F ( ~—
x,t) = —
’ 6(t)
Example : Isometry within a species

McMahon & Bonner, 1981
[T TTTI T T TTITT] [T TTT T TTTIT T |HTF§

T TTTTIIT

For a species of
salamander

2

T T TTTT]

|

Surface area (cm?)

T T TTTT

0.67

TTTTI

P S I A TTY RSN T 1 AN I W1 I O W 1| A WA
0 10° 10* 10" 1

T e7arde of different acec Body mass (kg)
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Self-similarity. Example: Turbulent thermal of metal
in magma oceans

Immiscible fluids Miscible fluids

i T =

x

0 g

2cm

Morphologically similar
to miscible experiments

Immiscible turbulent thermals



Turbulent thermals
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Self-similarity. Example:

Model

Turbulent entrainment concept

Morton et al. (1956),
Taylor (1945, public since 1996)

d(pV

dpV) _ apauS

dt
A
entrainment coefficient
+ Self-similarity

r: cloud radius

Experiments

2 centroid

r

equivalent radius
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Self-similarity. Example: Turbulent thermals

Model Experiments

Turbulent entrainment concept ' 2 e

Morton et al. (1956),
Taylor (1945, public since 1996)

—— = ap,uS g
dt Pa T l Ny
A equivalent radius

entrainment coefficient
.  cimilar

Self-similarity 3 a = 0.23 +0.06

7r: cloud radius (over 20 immiscible clouds) o V%?

2.5 v

oY

v
(8% v,yvﬂvw

T T
— .
R /‘7@?\7 o 22 092

7 A Pa
r 1.5 oy v
— =« e v 22 1022
dz . o
i 2 3 4 5 ¢ 71 8 z/R
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Self-similarity. Example: Turbulent thermals

Model Experiments

Turbulent entrainment concept 12 centroia

Morton et al. (1956),
Taylor (1945, public since 1996)

d(pV)
~a - apausS r
A |

entrainment coefficient

. / }
equivalent radius

+ Self-similarit
y 31 a=0.23+£0.06
r: cloud radius 25 (over 20 immiscible clouds) nvv%?
v
. 7

T T « vyvuvw
e 2 /|7/v” A

Entrained silicate volume R Vev“’ a 22 092
=¥ Impactor core volume av? Pa
dr L5 =Y Ap

— =« 2\3 9‘7% v —— =022
dz = (l + “F> -1 Pa

!

1
i 2 3 4 5 ¢ 71 8 z/R
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Self-similarity. Example: Turbulent thermals

Model Experiments

And from dimensional analysis ?
(on the blackboard)
Turbulent entrainment concept

2 centroid

Morton et al. (1956),
Taylor (1945, public since 1996)

d(pV) £ o3
—i = apgusS Tl y
A equivalent radius

entrainment coefficient

3 a=0.23+£0.06

+ Self-similarity
r: cloud radius 25 (over 20 immiscible clouds) nvv%?
. v
T VVVVV%
' 5 2 )O‘/ o
Entrained silicate volume ANV
/Y — R 9‘7& p~0.92
Impactor core volume oy a
1.5 &V Ap
L4 v =L ~0.22
2

dr
- « Z\3 v
dz :<1+(lﬁ>7l 19 “

' i 2 3 4 5 ¢ 71 8 z/R
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1 Reduce the number of parameters

Exercise 4: Metal diapir during Earth’s differentiation

A spherical metal diapir of radius R and density p falls in a viscous
mantle of density p, and viscosity v, under gravity g.

/
Impactor core

(liquid metal)
Magma ocean \

(liquid silicates) /

Based on the m-theorem, how many
‘ dimensionless parameters govern the
“\ system? Write them.

\
AZ

/" Partially v

solid mantle /\

<
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1-Reduce the number of parameters

Exercise 4: Metal diapir during Earth’s differentiation

A spherical metal diapir of radius R and density p falls in a viscous
mantle of density p, and viscosity v, under gravity g.

. Impactor core - Based on the m-theorem, how many
_(liquid metal) . .
Magma ocean \ dimensionless parameters govern the
(liquid silicates) N\ ‘ //“\ system? Write them.
. Answer:

5 physical parameters,

P . < 3 dimensions (length, mass, time),

/ artia . .
ey vV 5 — 3 = 2 dimensionless numbers:

solid mantle
AT p (p—pa)gR®

pPa’ Pa Vg
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3-Scaling-down experiments

Exercise 7: Core-mantle differentiation

Core-mantle differentiation Analog experiment
in viscous magma ocean

12 cm
<
Liquid Corn syrup —
¥ v silicates + water
S Liquid metal Liquid —%
gallium
v ,
Partially Corn syrup
solid mantle
Olson & Weeraratne, 2008
R ~ 100 km 02 /
A RQ E o1s 4¢ ..
U ~ mm/s U~ 2P9 8 o
v Dot 44y
time ~ 100 yr oos | AL25 Ah,=10cm
@ h,=05cm
W h,=025cm
0
] 500 1000

1500
Time (s) Fleck et al. 2018
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