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Normal modes

Introduction

• Seismic modes (elastic feedback)

• Core modes:
− Gravity modes (Archimedean/buoyancy) 1S1 ”Slichter” mode

− Inertial modes (Coriolis)
”core undertones”: gravito-inertial modes
− Alfven or hydromagnetic modes (Lorentz)

• Rotational modes (torques): Chandler wobble (CW), Inner Core wobble
(ICW), Free Core Nutation (FCN), Free Inner Core Nutation (FICN)
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Normal modes

Resonant oscillators

Undamped harmonic oscillator: mass-spring system

- Tension ~T = −k(l − l0)~u, where k stiffness, ~u
unit vector from fix to mobile (towards point at
which the force exerts)
- External force ~F

• Fundamental principle of dynamics on mass m: mẍ (t) = −kx (t) + F (t)

ẍ (t) + ω2
0x (t) = F (t),

where ω0 =
√

k
m

is the eigenfrequency of the harmonic oscillator.

• If F (t) = 0, the solution to the homogeneous equation is
x (t) = A cosω0t +B sinω0t (A, B constant depending on initial conditions).
This is the normal mode (free oscillation) of the system.
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Resonant oscillators

Undamped harmonic oscillator: mass-spring system

• If F (t) 6= 0, the solution of this forced problem consists of the sum of a
particular solution with the solution to the homogeneous problem.

• If F is an infinite harmonic (monochromatic) function, F (t) = F cosωf t ,
then the solution is written:

x (t) =
F

ω2
0 − ω2

f

cosωf t

The solution is a forced oscillation. When ωf = ω0, there is resonance.
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Resonant oscillators

Damped harmonic oscillator: mass-spring piston system

mẍ (t) + bẋ (t) + kx (t) = F (t)

b is the damping coefficient or coefficient of friction.

ẍ (t) + 2αẋ (t) + ω2
0x (t) = 0

Q =
√

km
b

= ω0
2α

= 2π energy stored
energy lost per cycle

◮ Overdamped ( 1
2Q

> 1): The system returns (exponential decay) to
steady state without oscillating.

◮ Critically damped ( 1
2Q

= 1): The system returns to steady state as
quickly as possible without oscillating.

◮ Underdamped ( 1
2Q

< 1): The
system oscillates at frequency

ω0

√

1− 1
4Q2 with amplitude

gradually decreasing to zero.



Normal modes

Resonant oscillators

Coupled harmonic oscillators

Tension ~T = −k(l − l0)~u, where
k stiffness, ~u unit vector from fix
to mobile (towards point at which
the force exerts)

• Fundamental principle of dynamics on mass m1:

m1ẍ1 = −k(l0 + x1 − l0)
︸ ︷︷ ︸

on m1 from 1st spring

−K (l0 + x2 − x1 − l0)× (−1)
︸ ︷︷ ︸

on m1 from K , -ux

= −kx1 +K (x2 − x1)

→ m1ẍ1 + (k +K )x1 = Kx2

• on mass m2: m2ẍ2 = −K (l0 + x2 − x1 − l0)
︸ ︷︷ ︸

from 2nd spring K

−k(l0 − x2 − l0)× (−1)
︸ ︷︷ ︸

from 3rd spring

m2ẍ2 = −K (x2 − x1)− kx2 → m2ẍ2 + (K + k)x2 = Kx1
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Resonant oscillators

Coupled harmonic oscillators

• Coupled differential system:

m1ẍ1 + (k +K )x1 = Kx2

m2ẍ2 + (k +K )x2 = Kx1

We assume m1 = m2 = m. We introduce σ = x1 + x2 and δ = x1 − x2.

• The system becomes a system of decoupled differential equations:







σ̈ + k
m
σ = 0, ωs =

√
k
m

pulsation of the symmetric mode

δ̈ + k+2K
m

δ = 0, ωa =
√

k+2K
m

pulsation of the anti-symmetric mode

Solutions of the form: σ(t) = A cosωs t + B sinωs t and
δ(t) = C cosωa t +D sinωa t . The constants can be obtained with given
initial conditions.
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Resonant oscillators

Coupled harmonic oscillators

Initial conditions: at t = 0, x1 = x0, x2 = 0 and ẋ1 = ẋ2 = 0.

We obtain the solutions:

x1(t) =
x0

2
[cosωs t + cosωa t ]

x2(t) =
x0

2
[cosωs t − cosωa t ]

The solution is a linear combination of the normal modes of the system.

For a chain of oscillators with M masses, there would be M modes.
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Resonant oscillators

Coupled harmonic oscillators

We assume K ≪ k (weak coupling). ωs + ωa ≈ ωs

ωa − ωs =
√

(k + 2K )/m −
√

k/m =
√

k/m
(

√

2K/k − 1
)

≈ ωsK/k ,

ωsK/k ≪ ωs .

The system can be written:

x1(t) = x0 cos(
ωs + ωa

2
t) cos(

ωa − ωs

2
t)

≈ x0 cos(ωs t) cos(ωs

K

k
t)

x2(t) = x0 sin(
ωs + ωa

2
t) sin(

ωa − ωs

2
t)

≈ x0 sin(ωs t) sin(ωs

K

k
t)

Example of beating between two modes

Coupling: We have a transfer of energy between the two modes.
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Resonant oscillators

Summary

◮ A normal mode is the way a system oscillates, given initial conditions.

◮ The signal is harmonic (a spectral peak at the frequency of the mode),
the frequency and damping depend on the properties of the system.

◮ The normal modes represent a decomposition basis for any vibrating
system.

◮ A coupling is a transfer of energy between two oscillators.
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Seismic modes

History

History

• theoretical analysis of Earth’s eigenmodes by Poisson (1829) but equations
were incomplete

• first numerical estimate of the frequency of a free oscillation by Lord Kelvin
(1863) (94 min for a fluid sphere whose only restoring force is mutual gravi-
tation or 69 min for a solid Earth)

• first complete treatment for a non-gravitating sphere by Lamb (1882) in
Cartesian coordinates. He distinguished between vibrations of the first class

(spheroidal modes) and vibrations of the second class (toroidal modes). 0S2

period of 65 min for a Poisson-solid sphere.

• Chree (1889) introduced spherical coordinates

• Bromwich (1898) found that self-gravitation reduce the period of the gravest

0S2 mode from 65 to 55 min

• Love (1911) solved the system of equations for a homogeneous elastic, self-
gravitating sphere (with implicit radially variable properties λ, µ, ρ)

• Hoskins (1920) and Jeffreys (1924) derived explicitly the general equations
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Seismic modes

History

History

• Jeans (1927) was the first to place normal modes in the context of seismol-
ogy: he showed that the superposition of free oscillations or standing waves

excited by earthquakes could be regarded as a superposition of travelling body

and surface waves

• Takeuchi (1950): first numerical integration of radial gravito-elastic equa-
tions for a spherical Earth; ω = 0 to determine static degree-2 Love numbers
h, k , l of a realistic Earth in good agreement with geophysical observations
(fortnightly and monthly tides, Chandler wobble, water-tube tidal tilt)

• first variational calculations of elastic-gravitational eigenfrequencies of a
realistic Earth model by Jobert (1956, 1957, 1961), Pekeris & Jarosch (1958)
and Takeuchi (1959) (0T2 43.5 min, 0S2 52 min)

• Alterman, Jarosch & Pekeris (1959) recast Takeuchi’s radial equations into
a system of 1st-order equations (2 eq. for toroidal and 6 for spheroidal modes)

• Numerical integration codes (like MINEOS, OBANI) by Gilbert et al.
(1966), G. Masters etc. (https://geodynamics.org/cig/software/mineos/)

https://geodynamics.org/cig/software/mineos/
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Seismic modes

Gravito-elastic equations

Equilibrium Earth model

• Earth composed of solid and fluid regions

• Regions separated by non-intersecting, smooth, closed surfaces: interior

boundaries

• Fluid-solid boundaries are frictionless

• Earth initially in a state of mechanical equilibrium

• Cartesian axes (~x1, ~x2, ~x3) rotating uniformly with diurnal angular velocity
Ω about origin O situated at the center of mass

• Position of points or material particles denoted x
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Seismic modes

Gravito-elastic equations

Poisson’s equation

• Initial density distribution ρ0 within V

• Initial gravitational potential φ0 = −G
∫

V

ρ0
′

||x−x′||dV
′

• Initial gravitational field g0 = −∇φ0

Poisson’s equation:

∇2φ0 = 4πGρ0

Continuity conditions:

[φ0]+− = 0, [ñ · ∇φ0]+− = 0

Outside the Earth the potential is harmonic:

∇2φ0 = 0
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Seismic modes

Gravito-elastic equations

• In the fluid regions, initial stress is hydrostatic: T0 = −p0I

• In the solid regions, initial stress: T0 = −p0I + τ0 (isotropic+deviatoric
parts) and pressure p0 = − 1

3
tr(T0)

• Static momentum equation:

∇ · T0 = ρ0∇(φ0 + ψ) (1)

where

ψ = −1

2

[
Ω2

x
2 − (Ω · x)

]

is the centrifugal potential, also written as ∇rψ = Ω× (Ω× r).
In the fluid regions, eq. (1) reduces to the equation of hydrostatic equilibrium:

∇p
0 + ρ0∇

(
φ0 + ψ

)
= 0

• Traction continuity condition on the boundaries: [ñ · T0]+− = 0, on the
outer free surface of the Earth: ñ · T0 = 0
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Seismic modes

Gravito-elastic equations

Linear perturbations

• Lagrangian description of the motion: position vector r(x, t) = x+ s(x, t),
where s is the displacement of particle x away from its equilibrium position
at time t . s is a small quantity and we ignore terms of second order in s.

Dahlen & Tromp (1998)
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Seismic modes

Gravito-elastic equations

Linear perturbations

• Lagrangian and Eulerian perturbations of quantity q are related by:

q
L = q

E + s ·∇q
0 (↔ Dt = ∂t + u

E ·∇r material derivative)

The 1st order change qL1 experience by an observer riding on a moving
particle consists of the change qE1 at a fixed point x in space, plus the
change s · ∇q0 due to the displacement s of the particle through the initial
spatial gradient ∇q0.
∇r is the gradient wrt to the fixed spatial position r.

• dx = F−1 · dr: F is the deformation tensor that relates a vector dr in
the current deformed configuration to a vector dx in the initial undeformed
configuration. It is a cumulative measurement of the deformation experienced
by a small ball of material surrounding a moving particle x.
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Seismic modes

Gravito-elastic equations

Conservation of mass

• Continuity equation (Eulerian form): ∂tρ
E +∇r · (ρEuE) = 0

• Eulerian and Lagrangian perturbations in density ρE1 and ρL1 are defined
by ρE = ρ0 + ρE1, ρL = ρ0 + ρL1

• Linearized continuity equation:

ρE1 = −∇ · (ρ0s) ,

or ρL1 = −ρ0(∇ · s), ρL1 = ρE1 + s ·∇ρ0 (2)

correct to 1st order in ||s||.
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Seismic modes

Gravito-elastic equations

Conservation of momentum

ρE




Dtu

E + 2Ω× u
E

︸ ︷︷ ︸

Coriolis

+Ω× (Ω× r
︸ ︷︷ ︸

centripetal

)




 = ∇r · TE + ρEgE (3)

• Linearized momentum equation:

ρ0
(
∂2
t s+ 2Ω× ∂ts

)
= ∇ · TE1 − ρ0∇φE1 − ρE1

∇(φ0 + ψ) or

ρ0
(
∂2
t s+ 2Ω× ∂ts

)
= ∇ · TPK1 − ρ0∇φE1 − ρ0s ·∇∇(φ0 + ψ) (4)

• First Piola-Kirchhoff stress TPK : measure of the force per unit undeformed
area; Cauchy stresses TE and TL are measures of the force per unit deformed
area; TPK1 = TL1 + T0(∇ · s)− (∇s)T · T0
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Seismic modes

Gravito-elastic equations

Linearized potential theory

• Poisson’s equation:

∇2φE1 = 4πGρE1

• Potential perturbation:

φE1 = −G

∫

V

ρ0
′
s′ · (x− x′)

||x− x′||3 dV
′

• Gravity perturbation:

g
E1 = −∇φE1 = G

∫

V

ρ0
′
s
′ ·

[
I

||x− x′||3 − 3(x− x′)(x− x′)

||x− x′||5
]

dV
′
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Seismic modes

Gravito-elastic equations

Elastic constitutive relation

• Stress-strain relation (Hooke’s law): TPK1 = Λ : ∇s, ∇s is the displace-
ment gradient, Λ is a symmetric fourth-order elastic tensor

• For a hydrostatic Earth model,

◮ T = Γ : ǫ, with Γijkl = (κ − 2
3
µ)δij δkl + µ(δikδjl + δilδjk ), where κ is

the isentropic incompressibility or bulk modulus and µ is the rigidity or
shear modulus.

◮ TPK1 = TL1 − p0(∇ · s)I+ p0(∇s)T

◮ equilibrium condition ∇ρ0 + ρ0∇(φ0 + ψ) = 0,

◮ taking the curl → ∇ρ0 ×∇(φ0 + ψ) = 0,

◮ taking the cross-product → ∇p0 ×∇(φ0 + ψ) = 0.

◮ Level surfaces of density ρ0, pressure p0 and geopotential φ0+ψ coincide.
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Seismic modes

Gravito-elastic equations

Boundary conditions

- Kinematic boundary conditions:
• solid-solid boundaries ΣSS : [s]

+
− = 0, no slip

• fluid-solid boundaries (tangential slip allowed) ΣFS : [ñ · s]+− = 0, no
separation or inter-penetration

- Dynamic boundary conditions:
• solid-solid boundaries ΣSS : [ñ · TPK1]+− = 0

• on the outer free surface ∂V : ñ · TPK1 = 0

• continuity of traction across any slipping boundary:
[ñ · TPK1 −∇

Σ · (sñ · T0)]+− = 0

- Gravitational boundary conditions:
• all boundaries Σ: [φE1]+− = 0 and [ñ ·∇φE1 + 4πGρ0ñ · s]+− = 0
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Radial scalar equations
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Seismic modes

Radial scalar equations

Eigenmodes

Solutions of the gravito-elastic equations are of the form:

s(x, t) = s(x)e iωt ,

where ω are the angular eigenfrequencies of the Earth, and the displacement
fields s(x) are associated eigenfunctions.

Transform equations of motion and boundary conditions to the frequency
domain using

s(x, ω) =

∫ +∞

−∞
s(x, t)e−iωt

dt ,

making the substitution ∂t ↔ iω → enables to separate spatial dependency

from time dependency
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Seismic modes

Radial scalar equations

Eigenmodes

For a non-rotating Earth model, the transformed momentum equation

−ω2ρ0s−∇ · TPK1 + ρ0∇φE1 + ρ0s ·∇∇φ0 = 0 in V , (5)

subject to the boundary conditions

ñ · TPK1 = 0 on ∂V ,
[

ñ · TPK1
]+

−
= 0 on ΣSS ,

[

ñ · TPK1 −∇
Σ · (sñ · T0)

]+

−
= 0 on ΣFS

We introduce the integro-differential operator H so that

Hs = ω2
s .

The quantities ω2 and s are the eigenvalues and associated eigenfunctions of
the linear operator H.
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Seismic modes

Radial scalar equations

SNREI Earth model

SNREI = spherically symmetric, non-rotating, perfectly elastic and isotropic
(“isotropic”: no deviatoric stress and Γ is isotropic) Γijkl = (κ − 2

3
µ)δij δkl +

µ(δikδjl + δilδjk )

• System of spherical polar coordinates (r , θ, φ) with origin at the center of
the SNREI model

• Gravity is radial: g = −gr where g = Φ̇.

g(r) =
4πG

r2

∫ r

0

ρ′r ′2dr ′,Φ(r) = −4πG

r

∫ r

0

ρ′r ′2dr ′

• Mechanical equilibrium (hydrostatic balance): p(r) =
∫ a

r
ρ′g ′dr ′ with

p(a) = 0.
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Radial scalar equations

PREM Earth model

Variation of density with depth in the Preliminary Reference Earth Model
(PREM, Dziewonski and Anderson 1981)
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Radial scalar equations

PREM Earth model

Variation of the acceleration of gravity and hydrostatic pressure with depth
in the Preliminary Reference Earth Model (PREM)

[Dahlen and Tromp (1998)]
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Radial scalar equations

Radial scalar equations
Equations of motion:

−ω2ρs− (κ+
1

3
µ)∇(∇ · s)− µ∇2

s− (κ̇− 2

3
µ̇)(∇ · s)r̃

−2µ̇

[

∂r s+
1

2
r̃× (∇× s)

]

+ (4πGρ2sr )r̃+ ρ∇φ

+ρg
[
∇sr − (∇ · s+ 2r−1

sr )r̃
]
= 0. (6)

Boundary conditions:

r̃ · T = 0 on ∂V ,

[r̃ · T]+− = 0 on ΣSS ,

[r̃ · T]+− = r̃[r̃ · T · r̃]+− = 0 on ΣFS . (7)

Gravitational potential:

∇2φ = −4πG(ρ∇ · s+ ρ̇sr )

[φ]+− = 0,
[

φ̇+ 4πGρsr
]+

−
= 0 on Σ. (8)
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Seismic modes

Radial scalar equations

Radial scalar equations

• Earth ≈ sphere → spherical boundary conditions → spherical harmonics

• System of spherical polar coordinates (r , θ, φ) with origin at the center of
the SNREI model

• We seek separable eigensolutions of the form

s = UPlm + VBlm +WClm , φ = PYlm ,

• The traction is given by

~r · T = RPlm + SBlm + TClm ,

where U ,V ,W ,R,S ,T and P are radial eigenfunctions.

R = (κ+
4

3
µ)U̇ + (κ− 2

3
µ)r−1(2U − kV ),

S = µ(V̇ − r
−1

V + kr
−1

U ),

T = µ(Ẇ − r
−1

W ).
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Radial scalar equations

Ylm are vector spherical harmonics of degree 0 ≤ l ≤ ∞ and order−l ≤ m ≤ l

defined by

Ylm(θ, φ) =

(
2l + 1

4π

)1/2
1

2l l !

[
(l − |m|)!
(l + |m|)!

]1/2

×(sin θ)|m|
(

1

sin θ

d

dθ

)l+|m|
(sin θ)2l

×







√
2 cosmφ if − l ≤ m < 0

1 if m = 0√
2 sinmφ if 0 < m ≤ l

k =
√

l(l + 1), Plm , Blm and Clm are defined by

Plm(θ, φ) = r̃Ylm(θ, φ),Blm(θ, φ) = k
−1

∇1Ylm(θ, φ),

Clm(θ, φ) = −k
−1 (r̃×∇1)Ylm(θ, φ).

∇1 = ~θ∂θ + ~φ(sin θ)−1∂φ: surface gradient operator

r̃×∇1 = −~θ(sin θ)−1∂φ + ~φ∂θ: curl on the unit sphere
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Radial scalar equations

Radial scalar equations

Upon substituting the expansions of s and φ into the linearized equation of
motion

→ three second-order ordinary differential equations depending on U ,V ,W
and P .
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Radial scalar equations

Radial scalar equations

r
−2 d

dr

[

r
2

(

κ +
4

3
µ

)

U̇ +

(

κ −
2

3
µ

)

r(2U − kV )

]

+r
−1

[(

κ +
4

3
µ

)

U̇ +

(

κ −
2

3
µ

)

r
−1

(2U − kV )

]

−3κr
−1

(

U̇ + 2r
−1

U − kr
−1

V
)

− kµr
−1

(

V̇ − r
−1

V + kr
−1

U
)

+ ω
2
ρU

−ρ
[

Ṗ +
(

4πGρ − 4gr
−1

)

U + kgr
−1

V
]

= 0

r
−2 d

dr

[

µr
2
(

V̇ − r
−1

V + kr
−1

U
)]

+ µr
−1

(

V̇ − r
−1

V + kr
−1

U
)

+k

(

κ −
2

3
µ

)

r
−1

U̇ + k

(

κ +
1

3
µ

)

r
−2

(2U − kV )

+
[

ω
2
ρ − (k

2
− 2)µr

−2
]

V − kρr
−1

(P + gU ) = 0

r
−2 d

dr

[

µr
2
(

Ẇ − r
−1

W
)]

+µr
−1

(

Ẇ − r
−1

W
)

+
[

ω
2
ρ − (k

2
− 2)µr

−2
]

W = 0
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Radial scalar equations

Radial scalar equations

We obtain a second-order ordinary differential equation for the Poisson’s
equation.

φE1 = −G

∫

V

ρ0
′
s′ · (x− x′)

||x− x′||3 dV
′

P̈ + 2r−1
Ṗ − k

2
r
−2

P = −4πGġU − 4πGρ
[
U̇ + r

−1(2U − kV )
]

Associated gravitational boundary conditions

[P ]+− = 0

[Ṗ + 4πGρU ]+− = 0 on r = d
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Radial scalar equations

First-order radial equations

U̇ = −2(κ+
4

3
µ)

−1
(κ−

2

3
µ)r

−1
U + k(κ+

4

3
µ)

−1
(κ−

2

3
µ)r

−1
V + (κ+

4

3
µ)

−1
R,

V̇ = −kr
−1

U + r
−1

V + µ
−1

S ,

Ṗ = −4πGρU − (l + 1)r
−1

P + B,

Ṙ = [−ω
2
ρ−4ρgr

−1
+12κµ(κ+

4

3
µ)

−1
r
−2

]U+

[

kρgr
−1

− 6kκµ(κ +
4

3
µ)

−1
r
−2

]

V

−4µ(κ +
4

3
µ)

−1
r
−1

R + kr
−1

S − (l + 1)ρr
−1

P + ρB,

Ṡ = [kρgr
−1

−6kκµ(κ+
4

3
µ)

−1
r
−2

]U−[ω
2
ρ+2µr

−2
−4k

2
µ(κ+

1

3
µ)(κ+

4

3
µ)

−1
r
−2

]V

−k(κ −
2

3
µ)(κ +

4

3
µ)

−1
r
−1

R − 3r
−1

S + kρr
−1

P,

Ḃ = −4πG(l + 1)ρr
−1

U + 4πGkρr
−1

V + (l − 1)r
−1

B

where B = Ṗ + 4πGρU + (l + 1)r−1P (to make boundary conditions homogeneous at
the surface).

Ẇ = r
−1

W + µ
−1

T ,

Ṫ =
[

−ω
2
ρ + (k

2
− 2)µr

−2
]

W − 3r
−1

T .



Normal modes

Seismic modes

Radial scalar equations

First-order radial equations

All variables are continuous everywhere in 0 ≤ r ≤ a except for tangential
displacement V at fluid-solid boundaries.
[U ]+− = [P ]+− = [R]+− = [S ]+− = [B ]+− = 0 on r = dSS and r = dFS .

R = S = 0 and B = 0 on r = a

The shear traction must vanish on slipping interfaces: S = 0 on r = dFS
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Radial scalar equations

The spherical harmonic development of displacement, tractions and potential
is also given in terms of the yi system.

• The displacement

s = UPlm + VBlm +WClm ,

is also written

s = y1,lPlm + ry3,lBlm − y7,lClm ,

• The potential φ = PYlm is written φ+ V = y5,lYlm ,

• The traction

~r · T = RPlm + SBlm + TClm ,

is also given by

~r · T = y2,lPlm + ry4,lBlm − y8,lClm

and y6,l = ẏ5,l − 4πGρy1,l (B = Ṗ + 4πGρU + (l + 1)r−1P)
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yi system for degrees n different from 0 and 1:

ẏ1 = −
2λ

λ + 2µ

y1

r
+

1

λ + 2µ
y2 +

λn(n + 1)

λ + 2µ

y3

r

ẏ2 =

[

−4ρg +
4µ(3λ + 2µ)

(λ + 2µ)r

]

y1

r
−

4µ

λ + 2µ

y2

r
+ n(n + 1)

[

ρg −
2µ(3λ + 2µ)

(λ + 2µ)r

]

y3

r

+
n(n + 1)

r
y4 − ρy6

ẏ3 = −
y1

r
+

y3

r
+

y4

µ

ẏ4 =

[

ρg −
2µ(3λ + 2µ)

(λ + 2µ)r

]

y1

r
−

λ

λ + 2µ

y2

r
+

2µ
[

λ(2n2 + 2n − 1) + 2µ(n2 + n − 1)
]

(λ + 2µ)r

y3

r

−
3

r
y4 −

ρ

r
y5

ẏ5 = 4πGρy1 + y6

ẏ6 = −4πGρn(n + 1)
y3

r
+

n(n + 1)

r

y5

r
−

2y6

r

ẏ7 =
y7

r
+

y8

µ

ẏ8 =
µ(n2 + n − 2)

r

y7

r
−

3y8

r

ẏi(r) = ci,j yj (r) with i , j = 1...6 : spheroidal system,
ẏi(r) = ci,j yj (r) with i , j = 7...8 : toroidal system.
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Spheroidal and toroidal modes

1/ Scalar equations and boundary conditions that determine U ,V and P are
decoupled from those that determine W

→ a SNREI Earth model has two types of normal modes:

◮ spheroidal modes with displacements of the form UPlm + VBlm

◮ toroidal modes with displacements of the form WClm

• Spheroidal oscillations alter the external shape and internal density of the
Earth, hence they are accompagnied by perturbations PYlm in the gravita-
tionnal potential

• Toroidal oscillations have purely tangential displacements and zero diver-
gence: they leave the shape and the radial density distribution ρ of the Earth
unaffected
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Spheroidal and toroidal modes

2/ No dependence upon the azimuthal order m → every eigenfrequency is
degenerate with an associated (2l + 1)-dimensional eigenspace. This 2l + 1
degeneracy is a mathematical consequence of the spherical symmetry of the
model.

3/ For each degree l there is an infinite number of spheroidal and toroidal
modes: we need to introduce the overtone number n = 0, 1, 2, ...We use index
notation such as nωl and nUl , nVl , nWl to identify a particular eigenfrequency
or eigenfunction.
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Spheroidal and toroidal modes

4/ The 2l + 1 oscillations associated with a given eigenfrequency nωl are
referred to as a multiplet, designed by nSl for spheroidal modes and by nTl

for toroidal modes.

5/ Each spheroidal eigenfunction nUlPlm + nVlBlm within a multiplet nSl and
each toroidal eigenfunction nWlClm within a multiplet nTl is referred to as a
singlet.

6/ The lowest-frequency multiplet 0Sl or 0Tl is the fundamental mode. The
next multiplet 1Sl or 1Tl is the first overtone and so on.
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History

• Benioff (1958) reported the 1st evidence for a 57-min oscillation in the
Pasadena electromagnetic strainmeter recording of the 1952 Kamchatka earth-
quake (Mw9)
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Spheroidal and toroidal modes

History
• strainmeter recording at Isabella, California, for the 1960 Chilean earth-
quake (Mw=9.5): one of the three records for the first observations of free
oscillations of the Earth

Smith (1966)
7854 min = 5.45 days
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Toroidal modes: first-order radial equations

The toroidal oscillations of a SNREI Earth model have tangential displace-
ment and traction vectors of the form

s = WClm , ~r · T = TClm , (9)

where T = µ
(
Ẇ − r−1W

)
and Clm = k−1

[
~θ (sin θ)−1 ∂φ − ~Φ∂θ

]

Ylm .

Ẇ = r
−1

W + µ−1
T , Ṫ =

[
−ω2ρ+ (k2 − 2)µr−2]

W − 3r−1
T . (10)

Both displacement and traction must be continuous across solid-solid discon-
tinuities: [W ]+− = 0 and [T ]+− = 0 on r = dSS . Tangential slip is allowed on
the fluid-solid boundaries, but traction must vanish there and on the outer
free surface: T = 0 on r = dFS and r = a.

◮ no dependence upon incompressibility κ (pure-shear nature of toroidal
deformation)
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Toroidal modes

The singlets have motions with l nodal planes on the surface.
m = 0

Note that 0T1 cannot exist because it would require a twist back and forth of
the entire sphere (net rotation), which contradicts the conservation of angular
momentum for a rotating Earth.
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Toroidal modes

m = 0 m = 1 m = 2

The azimuthal order |m| counts the number of nodal surfaces in the lon-

gitudinal direction ~φ. |l − m| counts the number of nodal surfaces in the

colatitudinal direction ~θ.
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Toroidal modes

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Displacements eigenfunc-
tions nWl and shear energy
densities of some funda-
mental toroidal modes.

Toroidal modes are sensi-
tive only to µ.

Sensitivity of a mode to
structure with depth is not
the eigenfunction but the
energy density.
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Energy density

• Total integrated energy of a normal mode of oscillation = kinetic energy +
elastic-gravitational potential energy

• The potential energy can be decomposed into separate elastic compres-

sional, elastic shear and gravitational energies.

νκ =

∫

V

κ(∇ · s)2dV ,

νµ =

∫

V

2µ(d : d)dV ,

where d = 1
2
[∇s+ (∇s)T ]− 1

3
(∇ · s)I is the deviatoric strain.

νg =

∫

V

ρ
[
4πGρs2r + s ·∇φ+ g(s ·∇sr − sr∇ · s− 2r−1

s
2
r )
]
dV
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Toroidal modes

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Displacements eigenfunc-
tions nWl and shear energy
densities of some toroidal
modes.

Toroidal modes are sensitive
only to µ.

The overtone number n

indexes the modes with
increasing frequency and
counts the number of nodal
spheres. n : number of nodes
in W
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Toroidal modes

Remarks:

◮ The toroidal modes 0Tl , 1Tl , 2Tl , etc. correspond in the limit l ≫ 1 to
fundamental and higher-overtone Love surface waves or, equivalently,
to constructively interfering SH body waves that turn into the upper
mantle and are reflected beneath the seafloor.

◮ The depth to which a mode 0Tl , 1Tl , 2Tl penetrates into the mantle
decreases as the angular order l increases along the fundamental and
each overtone branch n.

◮ Toroidal modes cannot be observed on vertical instruments for a SNREI
Earth’s model.



Normal modes

Seismic modes

Spheroidal and toroidal modes

Spheroidal modes

m = 0

Note that 0S1 cannot exist because it requires the displacement of the center
of gravity of the Earth.
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Spheroidal modes

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Eigenfunctions U and V

and compressional shear
energy densities for some
fundamental spheroidal
modes.

Spheroidal fundamental
modes are not very sensi-
tive to κ and µ in the core.
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Spheroidal modes

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Eigenfunctions U and V

and compressional shear
energy densities for some
overtone mantle modes.

Overtone mantle modes
that are primarily sensi-
tive to mantle structure
are also influenced by κ in
the core.
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Spheroidal modes

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Eigenfunctions U and V

and compressional shear
energy densities for some
inner core sensitive modes.

IC sensitive modes that
can be observed at the
Earth’s surface are typ-
ically quite sensitive to
mantle structure.
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Stoneley modes

[Dahlen & Tromp (1998)]

Modes that are
confined in solid-
fluid interfaces
such as the CMB
or ICB
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CMB Stoneley modes

Modes that involve P-SV motion [Koelemeijer et al. (2013)]
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Spheroidal mode: 1S1

The so-called “Slichter” triplet
(Slichter 1960)

◮ feedback mechanism is Archimedean → gravity mode

◮ period ≈ 5.42 h → sub-seismic mode

◮ Never observed

◮ surface amplitude < 1 nGal (10−12g)

◮ IC displacement < 1 mm
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Spheroidal and toroidal modes

Radial modes

Radial modes have l = 0, V = W = 0.
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Seismic modes

Spheroidal and toroidal modes

Radial modes

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Eigenfunction U and com-
pressional shear energy
densities for some radial
modes.
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History

• Rigidity of the Inner Core inferred from normal mode observations

Dziewonski & Gilbert (1971)
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Spheroidal modes

The spheroidal modes 0Sl , 1Sl , 2Sl , etc. correspond in the limit l ≫ 1 to
fundamental and higher-overtone Rayleigh surface waves or, equivalently, to
constructively interfering multiply reflected P and SV body waves that turn
in the upper mantle.

[from Stein & Wysession]
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Spheroidal and toroidal modes

Animation:
https://saviot.cnrs.fr/terre/

https://saviot.cnrs.fr/terre/
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Green tensor

A very important point of normal mode theory is that the basis of eigen-

functions is complete: any displacement at the surface of the Earth can be
expressed as a linear combination of the eigenfunctions

s(r, t) = ℜ
∑

k

ak sk (r)e
inω

m
l t

where ak depends on forcing, sk (r) =n s
m
l (r) are written as

ns
m
l (r) =




~rnUl(r)Ym

l (θ, φ) + k
−1

nVl(r)∇1Ym
l (θ, φ)

︸ ︷︷ ︸

spheroidal mode

− k
−1

nWl(r)~r×∇1Ym
l (θ, φ)

︸ ︷︷ ︸

toroidal mode




 (11)

with radial eigenfunctions, spherical harmonics and eigenfrequencies.
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Green tensor

The response of the Earth to any forcing (e.g. earthquake, surface load)
which excites its free oscillations (and the equivalent travelling body and
surface waves) can be expressed in terms of the second-order Green tensor or
impulse response G(x, x′; t): displacement response at x, t to a unit impulsive
force acting at x′, t = 0.

G is solution to the homogeneous equation

ρ0(∂2
t G+HG) = 0,

where H is the gravito-elastic linear operator and subject to initial conditions
G(x, x′; 0) = 0, ∂tG(x, x′; 0) = (1/ρ0)Iδ(x− x′).

The impulse response G is written

G(x, x′; t) = ℜ
∑

k

(iωk )
−1

sk (x)sk (x
′)e iωk t , for t ≥ 0
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Green tensor

Green tensor

Remarks:

◮ since sk are real, the phase of every oscillation is the same (±π) through-
out the Earth: characteristic of a standing wave.

◮ G is symmetric: G(x, x′; t) = GT (x′, x; t) principle of seismic reciprocity.
(NB: when the Earth is rotating, not true any more: principle of anti-

Earth needed)

The displacement produced by any body force density f and surface force
density t is the convolution of the impulse response G with the entire past
history of the forces

s(x, t) =

∫ t

−∞

∫

V

G(x, x′; t − t
′) · f(x′, t ′)dV ′

dt
′

+

∫ t

−∞

∫

S

G(r, x′; t − t
′) · t(x′, t ′)dΣ′

dt
′ (12)

This embodies the principles of superposition and causality.
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The ”Hum” or continuous background free oscillations

[Kurrle & Widmer-Schnidrig (2008)]

• permanent excitation of fundamental spheroidal (Rayleigh waves) and toroidal
(Love waves) modes
• most likely excitation mechanism: coupling between ocean infragravity
waves and seismic surface waves through seafloor topography +
atmospheric pressure [Nishida 2014]
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Green tensor

Gravitational waves

• mass → space curvature

• moving mass → displacement of this curvature → GWs (ripples in space-
time)

• variation of distance between 2 masses

• GWs have a weak amplitude (relative variation between 10−12 - 10−20 m,
proton size ∼ 10−15 m), but poor interaction with masses → information on
generating sources
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Gravitational waves

Exaggerated effects of GWs on Earth (Credit: LIGO/R. Hurt, Caltech/MIT/LIGO Lab)
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Gravitational waves

0S2
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Gravitational waves

f(r, t) = −∂µ
∂r

er · h(r, t)
︸ ︷︷ ︸

metric
perturbation

[Dyson (1969)]

1 nm/s2 ∼ 10−2 cm

Binary white-dwarfs (h0 ∼ 10−22 → 10−10 cm)

[Majstorovic et al. (2019)]
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Splitting and coupling

• Any departure of the Earth model from spherical symmetry removes the
eigenfrequency degeneracy and causes the multiplets nSl and nTl to split (into
2l + 1 frequencies) and couple (transfer of energy).

• The principal deviations from the spherically symmetric reference state are
Earth’s daily rotation, its hydrostatic ellipticity in response to the rotation
and general aspherical structure (topography of interfaces, lateral variations
in volumetric parameters).
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Mode splitting and coupling

Rotation
(Coriolis)

Ellipticity

3D

Waves in the di-
rection of rotation
travel faster

Waves from pole to
pole run a shorter
path (67 km) than
along the equator

Waves slowed
down (or ac-
celerated) by
heterogeneities
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First-order Coriolis splitting

We ignore the centrifugal potential and associated ellipticity perturbation.

χ is the Coriolis splitting parameter

χ = k
−2

∫ a

0

ρ(V 2 + 2kUV +W
2)r2dr , where k =

√

l(l + 1).

First-order Coriolis splitting is analogous to the Zeeman splitting of the quan-
tum energy levels of a hydrogen atom in a magnetic field.

The eigenfrequency of the mth singlet within a k th multiplet on a rotating
Earth in hydrostatic equilibrium is given

ωm
k = ωk +mχΩ with − l ≤ m ≤ l
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First-order Coriolis splitting

• The eigenfrequency perturbations are uniformly spaced.

• For toroidal modes nTl ,
∫ a

0
ρW 2r2dr = 1 implies that χ = [l(l+1)]−1, then

ωm
k = ωk − m

l(l+1)
Ω with − l ≤ m ≤ l

• Radial modes nS0 (since they are non-degenerate) are unaffected by Coriolis
force to first order in Ω/ωk .

• First-order Coriolis splitting dominates for low-frequency seismic modes
(below 1 mHz).
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Rotational splitting: History

• Double-peak 0S2 and 0S3 modes after 1960 Chile earthquake explained as
rotational splitting by Backus & Gilbert (1961) and Pekeris et al. (1961)

Benioff et al. (1961)

16000 min = 11.1 days

• Unbeknownst to them, the rotational splitting had been investigated by
Cowling & Newing (1949) and Ledoux (1951) in an astrophysical context.



Normal modes

Seismic modes

Splitting and coupling of modes

First-order Coriolis splitting
Example: Zeeman splitting of

0S2. Fourier amplitude spectrum
of a 500 h long record of the
2004 Mw9.3 Sumatra event by the
superconducting gravimeter at
Strasbourg, France.

[Rosat et al. (2005)]

Example: Zeeman splitting of 0S3.
Fourier amplitude spectrum of a
600 h long record of the 2004 Mw9.3
Sumatra event by the supercon-
ducting gravimeter at Sutherland.
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Splitting due to rotation and ellipticity

Combined effects of rotation and hydrostatic ellipticity.

ωm
k = ωk

(
1 + a + bm + cm

2) with − l ≤ m ≤ l ,

where ωk is the multiplet degenerate frequency, a and c the ellipticity split-
ting coefficients and b the rotational splitting coefficient.

Ψ = 1
3
Ω2r2: centrifugal potential

a =
1

3
(1− k

2χ)(Ω/ωk )
2

︸ ︷︷ ︸

spherical part of Ψ

+
1

2
ω−2

k (ν − ω2
kτ)

︸ ︷︷ ︸

degree-2 perturbations

in Ψ and ellipticity

,

b = χ(Ω/ωk ), c = −3

2
ω−2

k k
−2(ν − ω2

kτ)

ν and τ depends on ellipticity, density, incompressibility and rigidity.
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Splitting due to rotation and ellipticity

◮ Shift in the mean frequency of the multiplet:

1

2l + 1

∑

m

δωm =
1

3
(1− k

2χ)(Ω2/ωk )

◮ A toroidal multiplet nTl does not exhibit any net shift (k2χ = 1)

◮ Every radial mode eigenfrequency is increased by an amount
ωk → ωk

[
1 + 1

3
(Ω/ωk )

2
]
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Splitting due to rotation and ellipticity

◮ splitting due to ellipticity is asymmetric wrt degenerate frequency

◮ ellipticity removes the degeneracy only partly: ωm
k = ωk

(
1 + a + cm2

)

◮ rotational splitting is symmetric wrt degenerate frequency

◮ rotation removes the degeneracy completely

◮ Coriolis force exerts a perturbation of order Ω/ωk

◮ centrifugal force is a perturbation of order (Ω/ωk )
2

◮ rotation dominates at low frequencies (b ≫ c)

◮ 2nd-order Coriolis splitting should be considered for a complete
treatment of Earth’s rotation
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Coriolis coupling

◮ Coupling exists between modes

◮ Strength of coupling is larger for modes of nearby frequencies

∝
∑

k 6=0

ω2
0

ω2
0−ω2

k

|
∫

V
ρs∗k · (iΩ× s0)dV |2

◮ Coriolis coupling is significant for several of the Earth’s gravest modes
(e.g. 0T2)
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Coriolis coupling
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Coupling due to rotation and ellipticity

Selection rules for a rotating, elliptical but laterally homogeneous Earth:

◮ Coriolis force causes spheroidal-toroidal coupling between mode pairs of
the form nSl − n′Tl±1 and nTl − n′Sl±1, that is between multiplets that
differ by a single angular degree (|l − l ′| = 1)

◮ Earth’s ellipticity gives rise to spheroidal-toroidal coupling for |l−l ′| = 1

◮ rotation causes spheroidal-spheroidal coupling for |l − l ′| = 0 (pairs of
same angular order)

◮ ellipticity causes same-type (spheroidal or toroidal) mode coupling for
|l − l ′| = 0 (i.e. pairs of the form nSl − n′Sl and nTl − n′Tl and for
|l − l ′| = 2 (i.e. pairs of the form nSl − n′Sl±2 and nTl − n′Tl±2
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[Zürn et al. (2000)]

Amplitude spectra after 1998 Mw8.1
Balleny Islands earthquake at BFO.

(a): synthetic (rotation, ellipticity and
3D-mantle model S16B30 (Masters et al.
1996)

(b): superconducting gravimeter at Stras-
bourg (France)

(c): Lacoste-Romberg ET19 gravimeter at
BFO (pressure corrected)

(d): Lacoste-Romberg ET19 gravimeter at
BFO (without pressure correction)

(e): superconducting gravimeter at Boulder
(USA)

(f): borehole-tiltmeter at BFO
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[Zürn et al. (2000)]

Synthetic spectra of 100-h long vertical
acceleration computed for 1998 Mw8.1
Balleny Islands earthquake at BFO.

Top: only 3D-mantle model S16B30 (Masters
et al. 1996)

Middle: only ellipticity

Bottom: only rotation

Rotation is clearly the most effective mech-

anism for peaks to appear at toroidal mode

frequencies.
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Effect of lateral heterogeneities

ωm
k = ωk

(
1 + a + bm + cm

2)+ H
lat
mm′ ,

with H
lat
mm′ = ωk

∑

st

cst

∫

V

YlmYstYl′m′dV ,

where cst represent perturbations (beyond first-order ellipsoidal perturba-
tions) in incompressibility, rigidity, density expanded in real surface spherical
harmonics. s represents the degree of the heterogeneity.

The real Gaunt integrals satisfy the selection rules

∫

V

YlmYstYl′m′dV = 0 unless







s is even
0 ≤ s ≤ 2l
t = m −m ′

◮ the splitting of an isolated multiplet depends upon the even-degree struc-
ture of the Earth
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Effect of lateral heterogeneities

ωm
k = ωk

(
1 + a + bm + cm

2)

︸ ︷︷ ︸

rotation and ellipticity

+ωk

2l∑

s=0
s even

s∑

t=−s

γmm′t
ls cst

↓
lateral heterogeneities

(13)

We define the splitting matrix H such as

Hmm′ = ωk

[(
a + bm + cm

2) δmm′

]
+ωk

2l∑

s=0
s even

s∑

t=−s

t=m−m′

γmm′t
ls cst+ anisotropy

The matrix H is called self-coupling matrix with dimension (2l + 1) x
(2l + 1) in this case of an isolated multiplet.
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Effect of lateral heterogeneities

Predicted 0S2 amplitude FFT spectrum

SNREI: spherically symmetric, non-rotating, perfectly elastic and isotropic
Earth’s model

1D Earth: consider splitting due to rotation and ellipticity

3D Earth: includes in addition the self-coupling due to lateral heterogeneity
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Effect of lateral heterogeneities

Estimation of the second-order axisymmetric structure
coefficient c20 for 0S2 multiplet

Majstorovic et al. (2019) used long-period seismometer and Superconducting Gravime-
ter records
Häfner & Widmer-Schnidrig (2013) used Superconducting Gravimeter records
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Multiplet coupling

In a rotating, elliptical, anelastic and heterogeneous Earth’s model, coupling
exists between multiplets.

The splitting matrix H is extended to dimension
∑

k
(2lk + 1) x

∑

k
(2lk + 1)

where lk denotes the degree of the multiplet k .

Synthetic seismogram computation:

◮ self-coupling: one multiplet considered isolated

◮ group coupling: chains of multiplets (e.g. 0S2 − 0T2 − 2S1 − 0S3,

0T5 − 2S2 − 1S3 − 3S1)

◮ full coupling (e.g. all 140 spheroidal and toroidal modes up to 3 mHz)
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Effect of lateral heterogeneities

Selection rules for a non-rotating, spherical but laterally heterogeneous Earth:

◮ A multiplet nSl or nTl is coupled to a multiplet n′Sl′ or n′Tl′ by a lateral
variation of degree s only if |l − l ′| ≤ s ≤ l + l ′

◮ Two spheroidal multiplets nSl and n′Sl′ are coupled by a lateral variation
of degree s only if l + l ′ + s is even

◮ Two toroidal multiplets nTl and n′Tl′ are coupled by a lateral variation
of degree s only if l + l ′ + s is even

◮ A spheroidal multiplet nSl is coupled to a toroidal multiplet n′Tl′ by a
lateral variation of degree s only if l + l ′ + s is odd



Normal modes

Seismic modes

Splitting and coupling of modes

Effect of lateral heterogeneities

[Widmer-Schnidrig & Laske (2007).

Normal Modes and Surface Wave Measurements, in: Treatise on Geophysics]
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Example of multiplet coupling: 0S0

The circumference of the Earth gets bigger and the
crust must get thinner. Amplitude variations of 0S0

(Q ≈ 5000) could be due to lateral variations of the
Poisson ratio.

ν = thinning
elongation

After 2004 Mw 9.3 Sumatra-Andaman earthquake
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Example of multiplet coupling: 0S0

Ellipticity and rotation → 1% higher at the pole than at the equator (latitude
dependency)

◮ Two spheroidal multiplets nSl and n′Sl′ are coupled by a lateral variation
of degree s only if l + l ′ + s is even

Predicted 0S0 amplitude after
2004 Mw9.3 Sumatra-Andaman
event showing latitude and longi-
tude dependency

[Rosat et al. (2007)]

→ Coupling between 0S0 and 0S5 through degree-5 structure coefficients
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Multiplet coupling: synthetic seismogram computation

[Al-Attar et al. (2012)]
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Splitting functions

Splitting function coefficients were introduced by Woodhouse et al. (1986)
as a convenient way to describe the splitting of normal modes in a complete
way.

These cst are linearly dependent to the perturbations of the reference Earth
model

cst =

∫ a

0

δmst(r)Ks(r)dr +
∑

d

δhd
stH

d
s ,

where δmst angular order s and azimuthal order t perturbations in S-wave
velocity, P-wave velocity, density and anisotropy. δhd

st represent topography
on discontinuities d . Ks(r) and H d

s are associated sensitivity kernels (Wood-
house 1980).
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[Deuss et al. (2013)]

Observed splitting function
maps and predictions for
mantle model S20RTS.

These maps show the local
variation in splitting due to
the underlying heterogeneity.

Ns : total number of spectra
used for the splitting function
measurement.
Left panels: sensitive kernels
(red is vp , solid black is vs ,
dashed is density).
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• Spheroidal modes nSl : volume change (alter shape and density distribution)

• Toroidal modes nTl : purely tangential displacements and divergent-free
(do not alter shape and density)

• Rotation, ellipticity, lateral heterogeneities → remove the 2l+1 degeneracy
→ splitting and coupling of modes

• Below 1 mHz, Coriolis coupling dominates and modes have strong sensitiv-
ity to density

• Coupling: toroidal modes can be observed on vertical instruments

• Frequency analysis of modes to retrieve even degree structure coefficients
→ Coupling between multiplets must be considered to retrieve odd degree
structure coefficients → tomography models

• Seismic modes provide information about density but trade-off with P-wave

velocity structure not solved yet (debate going on)

• Normal modes form a complete basis to compute Earth’s deformation from
various excitation sources
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Orthonormality

V denotes the unit sphere. Real surface spherical harmonics are orthonormal.

∫

V

YlmYl′m′dV =

∫

V

Plm · Pl′m′dV = (14)

∫

V

Blm · Bl′m′dV =

∫

V

Clm · Cl′m′dV = δll′δmm′

The displacement eigenfunctions of a SNREI Earth model must satisfy the general or-
thonormality relation

∫

V

ρ sk · sk′dV = δkk′ ,

where k is used to identify a quadripartite {n, l,m;S or T}. The spheroidal and toroidal
eigenfunctions of different degree or order as well as spheroidal-toroidal pairs of eigen-
functions are orthogonal. The spheroidal and toroidal radial eigenfunctions of the same

degree l must be orthonormal.

∫

a

0

ρ
(

nUl
′

nUl + nVl
′

nVl

)

r
2
dr = δnn′ ,

∫

a

0

ρ
(

nWl
′

nWl

)

r
2
dr = δnn′ (15)
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Splitting and coupling of modes below 1 mHz

◮ high sensitivity to density heterogeneities (destabilizing effect of
self-gravitation)

◮ frequency closer to the frequency of Earth’s rotation leading to a
pronounced Zeeman splitting

◮ Zeeman splitting depends on spherically averaged density structure:
ωm
k = ωk (1 + bm) for − l ≤ m ≤ l

From measured ωm
k , we can estimate b for a given multiplet k .

ωk

Ω
bk = k

−2

∫ a

0

ρ(V 2 + 2kUV +W
2)r2dr .

→ linear constraints on the 1D density profile without any trade-off with
elastic parameters [Zürn et al. 2000, Widmer-Schnidrig 2003]
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Multiplet coupling: synthetic seismogram computation

[Deuss & Woodhouse (2001)]

Normal mode spectrum at station PAB for the large Mw8.3 and deep Bolivia
event of 9 June 1994.

The differences between full- and self-coupling synthetics (right) are of the same
order as the differences between the observed data and full-coupling synthetics (left).
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