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e Seismic modes (elastic feedback)

e Core modes:

— Gravity modes (Archimedean/buoyancy)
— Inertial modes (Coriolis)

”core undertones”: gravito-inertial modes

— Alfven or hydromagnetic modes (Lorentz)

151 ”Slichter” mode

e Rotational modes (torques): Chandler wobble (CW), Inner Core wobble
(ICW), Free Core Nutation (FCN), Free Inner Core Nutation (FICN)
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Undamped harmonic oscillator: mass-spring system

! F(t -
k . (©) - Tension T = —k(I — k)4, where k stiffness, @
g unit vector from fix to mobile (towards point at

I which the force exerts)
X5 f(t) - External force F
e Fundamental principle of dynamics on mass m: mz(t) = —kz(t) + F(t)

i(t) +wz(t) = F(t),
where wg = ,/% is the eigenfrequency of the harmonic oscillator.
o If F(t) = 0, the solution to the homogeneous equation is

z(t) = Acoswot + Bsinwot (A, B constant depending on initial conditions).
This is the normal mode (free oscillation) of the system.



Undamped harmonic oscillator: mass-spring system

e If F(t) # 0, the solution of this forced problem consists of the sum of a
particular solution with the solution to the homogeneous problem.

e If F is an infinite harmonic (monochromatic) function, F(t) = F coswyt,
then the solution is written:

F
r(t) = ————5 coswrt
(1) wg_w? f

The solution is a forced oscillation. When wy = wo, there is resonance.



Damped harmonic oscillator: mass-spring piston system

k : ﬁ(t) mz(t) + bx(t) + kz(t) = F(¢)

l_;[jg‘n\:._’ b is the damping coefficient or coefficient of friction.

+ »:

" i(t) + 20 (t) + woz(t) =0
Xo X(1)

_ VEkm __ wo __ 2 energy stored
= MM — X0 — Qo =UIEY BORTC
b 2a energy lost per cycle

» Overdamped (i > 1): The system returns (exponential decay) to
steady state without oscillating.

» Critically damped (% = 1): The system returns to steady state as
quickly as possible without oscillating.

Réponse en fréquence d'un systéme oscillant

T
Q=10
I Resonance when
" \ w = Wy

10

»> Underdamped (% < 1): The
system oscillates at frequency

wo4/1 with  amplitude

1
- 157
gradually decreasing to zero.

klH|
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Tension T = —k(l — )@, where

x k stiffness, 4 unit vector from fix
ly . L to mobile (towards point at which
X0 x1(0) x,(t) the force exerts)

e Fundamental principle of dynamics on mass mj:

mii= —k(b+x—b) " K(o+z2—21—lb) X (1) = —kz1 + K(z2 — 21)
on mj from 1st spring on mj from K, -ug

— mil + (k + K)Il = Ko

e on mass mg: mpls = —K(lb+ a2 —z1 — b)) —k(lo — 22 — b) x (1)

from 2nd spring K from 3rd spring
Mads = —K($2 - :L‘1) — kxa — mads + (K + k);z:z = Kn



esonant oscillators

Coupled harmonic oscillators

e Coupled differential system:
miZ1 + (k =+ K)Z‘l = Ko
Mol + (k + K)xz = Kz,
We assume m1 = me = m. We introduce o0 = 1 + 22 and 6 = 71 — 2».
e The system becomes a system of decoupled differential equations:
o+ %O’ =0,ws = % pulsation of the symmetric mode
5+ %6 =0,w, = ,/% pulsation of the anti-symmetric mode
Solutions of the form: o(t) = Acoswst + Bsinwst and

d(t) = Ccoswat + Dsinwat. The constants can be obtained with given
initial conditions.



esonant oscillators

Coupled harmonic oscillators
Initial conditions: at ¢t = 0,21 = 29,22 = 0 and 21 = 22 = 0.
We obtain the solutions:

21 (t) = % [coswst + coswqt]

z2(t) = % [coswst — coswat]

The solution is a linear combination of the normal modes of the system.

For a chain of oscillators with M masses, there would be M modes.



Coupled harmonic oscillators

We assume K < k (weak coupling). ws + wq = ws

o —ws = /(b1 2K)/m — \/k/m = \/k/m (\/21(/1{ - 1) ~ w K /k,

wsK/k < ws.

The system can be written: .

i os S
ws +w We —w
z1(t) = @o cos(— 5 2 t) cos(—2 5 ) 0
0s
K Yo 1w 2 0 w0 s e w0 % % 1o
= @o cos(wst) cos(wszt) :
ws + w Wy — W ""
o2 (t) = x0 sin( — 5 %) sin(— = 0
0s
. . K 4 -
= o sin(w,t) S]n(wa?t) o 2w oW W e wow W w

Example of beating between two modes

Coupling: We have a transfer of energy between the two modes.
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L Resonant oscillators

Summary

» A normal mode is the way a system oscillates, given initial conditions.

» The signal is harmonic (a spectral peak at the frequency of the mode),
the frequency and damping depend on the properties of the system.

» The normal modes represent a decomposition basis for any vibrating
system.

» A coupling is a transfer of energy between two oscillators.
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History

e theoretical analysis of Earth’s eigenmodes by Poisson (1829) but equations
were incomplete

e first numerical estimate of the frequency of a free oscillation by Lord Kelvin
(1863) (94 min for a fluid sphere whose only restoring force is mutual gravi-
tation or 69 min for a solid Earth)

e first complete treatment for a non-gravitating sphere by Lamb (1882) in
Cartesian coordinates. He distinguished between vibrations of the first class
(spheroidal modes) and wvibrations of the second class (toroidal modes). ¢Sz
period of 65 min for a Poisson-solid sphere.

e Chree (1889) introduced spherical coordinates

e Bromwich (1898) found that self-gravitation reduce the period of the gravest
052 mode from 65 to 55 min

e Love (1911) solved the system of equations for a homogeneous elastic, self-
gravitating sphere (with implicit radially variable properties A, p, p)

e Hoskins (1920) and Jeffreys (1924) derived explicitly the general equations



History

e Jeans (1927) was the first to place normal modes in the context of seismol-
ogy: he showed that the superposition of free oscillations or standing waves
excited by earthquakes could be regarded as a superposition of travelling body
and surface waves

e Takeuchi (1950): first numerical integration of radial gravito-elastic equa-
tions for a spherical Earth; w = 0 to determine static degree-2 Love numbers
h,k,l of a realistic Earth in good agreement with geophysical observations
(fortnightly and monthly tides, Chandler wobble, water-tube tidal tilt)

e first variational calculations of elastic-gravitational eigenfrequencies of a
realistic Earth model by Jobert (1956, 1957, 1961), Pekeris & Jarosch (1958)
and Takeuchi (1959) (0 72 43.5 min, ¢.S2 52 min)

e Alterman, Jarosch & Pekeris (1959) recast Takeuchi’s radial equations into
a system of 1st-order equations (2 eq. for toroidal and 6 for spheroidal modes)

e Numerical integration codes (like MINEOS, OBANI) by Gilbert et al.
(1966), G. Masters etc. (https://geodynamics.org/cig/software/mineos/)


https://geodynamics.org/cig/software/mineos/
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(= Gravito-elastic equations

Equilibrium Earth model

e Farth composed of solid and fluid regions

e Regions separated by non-intersecting, smooth, closed surfaces: interior
boundaries

e Fluid-solid boundaries are frictionless
e Earth initially in a state of mechanical equilibrium

e Cartesian axes (71, Iz, 73) rotating uniformly with diurnal angular velocity
Q about origin O situated at the center of mass

e Position of points or material particles denoted x



es

elastic equations

Poisson’s equation

o Initial density distribution p° within V
e Initial gravitational potential ¢° = —G fV ﬁdV’
o Initial gravitational field ¢° = —V¢"
Poisson’s equation:
V2¢® = 4rGp°
Continuity conditions:
(@)L =0,/ Ve']L =0
Outside the Earth the potential is harmonic:

Vie® =0



(= Gravito-elastic equations

o In the fluid regions, initial stress is hydrostatic: T® = —p°I
e In the solid regions, initial stress: T = —p°I + 7° (isotropic+deviatoric
parts) and pressure p° = — X t¢r(T°)

e Static momentum equation:
VT ="V (6 + ) e))
where
12 2
¢:—§ [z — (Q-x)]

is the centrifugal potential, also written as V,1 = Q x (€ xr).
In the fluid regions, eq. (1) reduces to the equation of hydrostatic equilibrium:

V' +p°V (8" +9) =0

e Traction continuity condition on the boundaries: [ - T°]T = 0, on the
outer free surface of the Earth: @i - T® = 0



Norn

Gravito-elastic equations

Linear perturbations

e Lagrangian description of the motion: position vector r(x,t) = x + s(x, t),
where s is the displacement of particle x away from its equilibrium position
at time ¢. s is a small quantity and we ignore terms of second order in s.

Figure 2,5. The surface forces df¥ and df" act upon the deformed patch A‘dT
at r and the undeformed patch A°dE” at x, respectively.

Dahlen & Tromp (1998)



(= Gravito-elastic equations

Linear perturbations

e Lagrangian and Eulerian perturbations of quantity ¢ are related by:
L E 0 E . s
¢"=q +s-Vq (+> Dy = 0+ +u” - V, material derivative)

The 1st order change ¢! experience by an observer riding on a moving
particle consists of the change ¢”' at a fixed point z in space, plus the
change s - V¢° due to the displacement s of the particle through the initial
spatial gradient V ¢°.

V., is the gradient wrt to the fixed spatial position r.

o dx = F~'. dr: F is the deformation tensor that relates a vector dr in
the current deformed configuration to a vector dx in the initial undeformed
configuration. It is a cumulative measurement of the deformation experienced
by a small ball of material surrounding a moving particle x.



es

elastic equations

Conservation of mass

e Continuity equation (Eulerian form): 8;p” + V.. - (p®u®) =0

e Eulerian and Lagrangian perturbations in density p”! and p! are defined
by p¥ = p° + pPt, pt = p° + p"!

e Linearized continuity equation:

p?t ==V (p")|,

or ptt = —p’(V -5),p" = p" +5- V)" (2)

correct to 1st order in |s|.
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Gravito-elastic equations

Conservation of momentum

p” | Du” 420 xu” + Q@ x (Qx1)| =V, T + p°g” (3)
—_ —-
Coriolis centripetal

e Linearized momentum equation:

P’ (07s+ 29 x 9ys) = V- T — p" V"' — p"'v(4° + ) or

P (975 + 29 x 01s) = V- TP - WP — %5 vV’ + )| )

o First Piola-Kirchhoff stress T"X: measure of the force per unit undeformed
area; Cauchy stresses TP and T* are measures of the force per unit deformed
area; TFXT = T + TV -s) — (Vs)T - T°
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Gravito-elastic equations

Linearized potential theory

e Poisson’s equation:

‘VQ(bEl — 4r Gt ‘

e Potential perturbation:

G/ P (x=x)

|| —x[[?

e Gravity perturbation:

/ /
gE1:_V¢E1:G/pO’S/,[ 1/3_3(3‘ X)(’/‘E)X) v’
v [|x —x']] | — x|
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Gravito-elastic equations

Elastic constitutive relation

e Stress-strain relation (Hooke’s law): TPX' = A : Vs, Vs is the displace-
ment gradient, A is a symmetric fourth-order elastic tensor

e For a hydrostatic Earth model,

> T =T :e€ with Fijkl = (Ii — %,u)éijékl + ,u(éikéjl + (Sil(;jk), where k is
the isentropic incompressibility or bulk modulus and p is the rigidity or
shear modulus.

TPEY = T — p0(V - $)T + p°(Vs) 7

equilibrium condition Vpo + pOV(qbo + ) =0,
taking the curl — Vp° x V(¢° + ) = 0,

taking the cross-product — Vp® x V(¢° +¢) = 0.

vV vyvVvyVvyeswy

Level surfaces of density p°, pressure p° and geopotential ¢°+1 coincide.



elastic equations

Boundary conditions

- Kinematic boundary conditions:

e solid-solid boundaries Ygs: [s]* = 0,no slip

o fluid-solid boundaries (tangential slip allowed) Lrs: [i-s]” =0, no
separation or inter-penetration

- Dynamic boundary conditions:
e solid-solid boundaries X gs: [ - TPt =0
e on the outer free surface dV: - TF¥! =0

e continuity of traction across any slipping boundary:
- TP — v . (sia- T =0

- Gravitational boundary conditions:
e all boundaries ¥: [¢”']T =0 and [A- V&' +47Gp’h-s|T =0
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|—Radial scalar equations

Eigenmodes

Solutions of the gravito-elastic equations are of the form:
s(x, t) = s(x)e™",

where w are the angular eigenfrequencies of the Earth, and the displacement
fields s(x) are associated eigenfunctions.

Transform equations of motion and boundary conditions to the frequency
domain using

+oo )
s(x,w) = / s(x, t)e " dt,

making the substitution 0; <> iw — enables to separate spatial dependency
from time dependency



|—Radial scalar equations

Eigenmodes

For a non-rotating Earth model, the transformed momentum equation

—w?p’s — V- TP 4 0V eP! 4+ p% - vV’ =0in V, (5)
subject to the boundary conditions
a- T =0on v,
[ﬁ : TPK1]+ — 0 on Ngs,

+
[ﬁ STPKL v (si - TO)] =0 on Sps

We introduce the integro-differential operator H so that

2
(s = 7s]

The quantities w? and s are the eigenvalues and associated eigenfunctions of
the linear operator H.



SNREI Earth model

SNREI = spherically symmetric, non-rotating, perfectly elastic and isotropic
(“isotropic”: no deviatoric stress and I is isotropic) I'ym = (k — %u)&jékl +
w(0iwds + 0adji)

e System of spherical polar coordinates (7,0, ¢) with origin at the center of
the SNREI model

e Gravity is radial: g = —gr where g = ®.

4 " 4 "
g(r) = 7r2G / p/r/zdr/,‘i'(r) = _AnG o' dr’
r 0 r 0

o Mechanical equilibrium (hydrostatic balance): p(r) = [ p'g'dr’ with
p(a) =0.
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Radial scalar equations

PREM Earth model

3
Praay ~ 5510 kg/m .~ 6371 km
- [ B L I | I | I T="_
6000 -| 1
50004 mantle
. (p ~ 3300 - 5500 kg/m’)
£ 4000 4
< o cmB
w
3 3000 . J
g fluid core
& 20001 (p ~ 11000 kg/m®) i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 18
1000+ inner core
(o~ 12000 kg/m )

2000 4000 6000 8000

Variation of density with depth in the Preliminary Reference Earth Model

10000 12000
Density (kg/m3)

crust

(p~ 1020 - 2900 kg/m’)

3480 km

-| 1221 km

(PREM, Dziewonski and Anderson 1981)



Radial scalar equations

PREM Earth model

&

. 670 cra
2y
S0
B
= B
g
° 0 2000
depth (km)
400 icB
=
a8
] 300
£
g 200 cmB
£
1o 670
o
0 2000
depth (km)

Variation of the acceleration of gravity and hydrostatic pressure with depth
in the Preliminary Reference Earth Model (PREM)

[Dahlen and Tromp (1998)]
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Radial scalar equations

Radial scalar equations

Equations of motion:
2 1 2 .2, -
—w ps — (k + gu)V(V -8) — uVis — (h— g,u)(V -s)F

—2/ |Ors + %f X (V xs)| + (4rGp*s, ) + pV

+pg [Vsr — (V -s+2r s,)F| =0. (6)
Boundary conditions:
r-T=00ondV,
[f-T]T =0 on Zgs,
[f-T)]F =#fF- T -7 =0 on Tps. (7)

Gravitational potential:
V2= —4rG(pV -5+ ps;)
. +
[¢]T =0, [qﬁ + 47ersr] =0on X. (8)
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Radial scalar equations

Radial scalar equations

e Earth ~ sphere — spherical boundary conditions — spherical harmonics

e System of spherical polar coordinates (7,0, ¢) with origin at the center of
the SNREI model

e We seek separable eigensolutions of the form
s = UPun + VB + WCin,d = PYVim,

e The traction is given by
¥ T = RPy, + SBim + TCpn,

where U, V, W, R, S, T and P are radial eigenfunctions.
4 . 2 .
R:(K+§M)U+(K—§M)T 2U — kV),

S=u(V-—r'V4+k'U),
T=pu(W—r""W).
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Radial scalar equations

YVim are vector spherical harmonics of degree 0 < | < oo and order —1 < m <[
defined by

mi (1 d e 21
X (sin @) (m @> (sin @)
V2cosme if —1<m<0
X 1 ifm=0
V2sinmg if0<m<1
k=+/l(l+1), Pim, Bim and Cyy, are defined by

Pin(0,0) = FVim (0, ), Bum(0,0) = k™ V1V (0, ¢),
Cim(0,¢) = =k~ (F x V1) Vim (0, ¢).

V1 = 00y + P(sin )~ '8: surface gradient operator
T x Vi =—0(sinf) '8y + ¢dp: curl on the unit sphere



|—Radial scalar equations

Radial scalar equations

Upon substituting the expansions of s and ¢ into the linearized equation of
motion

— three second-order ordinary differential equations depending on U, V, W
and P.
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|—Radial scalar equations

Radial scalar equations

[ (n+ u) (n—§u>r(2v—kv)]
o (G DS G DR ET

—357‘_1([.]—}-27" U—kr ! )—k/,“" ( r_1V+kT_1U)+w2pU
—p

[P+ (47erf4gr ) U+kgT_1V] =0
’(‘_2% [urQ (Vfr_lVJrkr_lU)] +ur_1 (Vfr_1V+kr_1U)
2 1 1 —2
+k<m—§u>r U+k<m+§u>r (2U —kV)

—+ [wzp —(k? - 2);LT_2] V —kpr Y (P +gU)=0

’(‘_2% [urQ (W — 7‘_1W)]+p,r_1 (W — ! W>+[w2p — (k2 — Q)M'r_?] W =0
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Radial scalar equations

Radial scalar equations

We obtain a second-order ordinary differential equation for the Poisson’s
equation.

El:—G/ s X

[ = x[[?

P4+2r7'P—k*r?P = —4nGgU — 4nGp [U + v~ (2U — kV)]
Associated gravitational boundary conditions

[PIT =0
[P+4nGpUlf =0onr=d
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First-order radial equations

2 . 4 2 _ 4
ST U k(s o) T = SV (et ) TR,

V=-krlUu+rtv +[l.715,
P=—4rGpU — (1+1)r 'P+ B,

. 4
U= 20+ S0 (n -

. 4 4
R= [—wzp—4pgr71+12nu(m+§u)717‘72] U+ |:kpgr71 — 6krp(k + gu)71T72:| %

4

—4p(k + gy)_lr_1R+ kr— s — 1+ 1)pr_1P + pB,

R _ 4 4 _ _ 1 4 4 _

§ = [kpgr™ " =6knp(nt o)~ r P U—[w® pt2ur 7 = Ak p(rt o) (st o) TPV
2 4

—k(k — g,u)(n + gu)_lr_lR —3r7 'S 4+ kpr~ ' P,

B=—4xG(U+1)pr 'U+4nGkpr 'V + (I —1)r 'B

where B = P 4+ 47 GpU + (I +1)r~' P (to make boundary conditions homogeneous at
the surface).

W=r‘Ww4+p T,
T = [—wzp + (K — 2);““_2] W —3r 'T.
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Radial scalar equations

First-order radial equations

All variables are continuous everywhere in 0 < r < a except for tangential
displacement V at fluid-solid boundaries.
[UlT =[P]* =[R]T =[S]T =[B]f =0o0n r = dss and r = dps.

R=S=0and B=0onr=ua

The shear traction must vanish on slipping interfaces: S =0 on r = drs



|—Radial scalar equations

The spherical harmonic development of displacement, tractions and potential
is also given in terms of the y; system.

e The displacement
s = UPyn + VB + WCp,
is also written
s = y1,1Pwm + 7y3,1Bim — ¥7,1Cm,
e The potential @ = Py, is written ¢ + V = y5,1Vim,
e The traction
r-T = RPyp + SBim + TCim,
is also given by
¥ T = y2,Pim + 7y2,1Bim — ¥3,i1Cim

and ys,1 = 5,1 — 4Gy, (B =P +4nGpU + (1+1)r~'P)



W

Y2

Y3

Ya

Ys

e

Radial scalar equations

y; system for degrees n different from 0 and 1:

_ 22X y71+ 1 An(n +1) ys
oA+ 2ur /\+2uy2 A+2p 1
4#(3/\4—2#)]?41 Y2 [ 2p(3X +21) 7 ys
= |-4 oA AR TR 22 1 [l A el A I )
{ P9+ (N4 2p)r r A+2p T +nlnt1){rg ()\+2,u)ri| T
n(n +1
+¥y4—9y6
T
o mL o m
T r n
. |: B 2;1,(3)\+2M):| v A 2 2p [A(2n2+2n—1)+2u(n2+n—1)} Y3
(A +2p)r r A+2u r (A +2p)r T
3 P
——Y4 — —Ys
r T
=4rGpy1 + ye

1 2
= —4nGpn(n+ 1)L + nnt1)ys  2vs
T

r T r
Y7 8
_w,ws
roou
7;1,(n2+n72)£_3y3
r r r

¢i;y;(r) with 4,5 = 1...6 : spheroidal system,
¢i,jy;(r) with 4,7 = 7...8 : toroidal system.
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Spheroidal and toroidal modes

Spheroidal and toroidal modes

1/ Scalar equations and boundary conditions that determine U, V and P are
decoupled from those that determine W

— a SNREI Earth model has two types of normal modes:
» spheroidal modes with displacements of the form UPy, + VB,

» toroidal modes with displacements of the form WCy,

e Spheroidal oscillations alter the external shape and internal density of the
Earth, hence they are accompagnied by perturbations P), in the gravita-
tionnal potential

e Toroidal oscillations have purely tangential displacements and zero diver-
gence: they leave the shape and the radial density distribution p of the Earth
unaffected



s

and toroidal modes

Spheroidal and toroidal modes

2/ No dependence upon the azimuthal order m — every eigenfrequency is
degenerate with an associated (2! + 1)-dimensional eigenspace. This 2] + 1
degeneracy is a mathematical consequence of the spherical symmetry of the
model.

3/ For each degree [ there is an infinite number of spheroidal and toroidal
modes: we need to introduce the overtone number n = 0,1, 2, ... We use index
notation such as ,w; and Ui, »Vi, »W; to identify a particular eigenfrequency
or eigenfunction.
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Spheroidal and toroidal modes

Spheroidal and toroidal modes

4/ The 2] + 1 oscillations associated with a given eigenfrequency ,w; are
referred to as a multiplet, designed by ,5; for spheroidal modes and by 7T}
for toroidal modes.

5/ Each spheroidal eigenfunction nUiPim + »ViBim within a multiplet ,5; and
each toroidal eigenfunction ,,W;C,, within a multiplet ,, T} is referred to as a
singlet.

6/ The lowest-frequency multiplet oS; or o7} is the fundamental mode. The
next multiplet 1S; or 177 is the first overtone and so on.
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I—Spheroidal and toroidal modes

History

e Benioff (1958) reported the 1st evidence for a 57-min oscillation in the
Pasadena electromagnetic strainmeter recording of the 1952 Kamchatka earth-
quake (M,9)

COMPRESSION

RATE OF GHANGE OF STRAIN.

I 4 5 € 8 9 0 n 1’ 13 “ 15
HOURS AFTER ORIGIN TIME

Fig. 8--Seismogram of Kamchatka earthquake, November 4, 1952, recorded by Benioff
strain seismograph at Pasadena, drafted with 22 fold reduced recording rate
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I—Spheroidal and toroidal modes

History

e strainmeter recording at Isabella, California, for the 1960 Chilean earth-
quake (M,=9.5): one of the three records for the first observations of free
oscillations of the Earth

S, Sz S4 Ss

Sio S Siz Si3 Sia Si5 Sig Si7 Sis
H T H H T

2.0 T 1
2 1o} \/‘f i
Q CHILE ]
w1960
z 0 i '
g 20 !
& !
= i
210 i ‘
: i
g o | ALASKA W j
o 1964 ; ; \}
w ! H
%—I.O- | 1
© | ! | i |
9 T2 T3 Tq T . 12 T3 Tia Tis 8 |
[o] 02 04 06 0.8 1.0 1.2 1.4 3 1.6 1.8 20 2.2 24 26 28
cPSxI0

Fig. 4. Comparison of Chilean and Alaskan earthquake. Record length, 7854 min beginning
285 min after origin time for both events; sample interval, 3 min; bandwidth, 180,000 cps.
Smith (1966)
7854 min = 5.45 days
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Spheroidal and toroidal modes

Toroidal modes: first-order radial equations

The toroidal oscillations of a SNREI Earth model have tangential displace-
ment and traction vectors of the form

s = WCin, £ T = TCpp, (9)

where T = (W — ! W) and Cp, = k71 [é (siné?)f1 0p — 589} Vim.

W=r"W+p'T,T=[-wp+ (K —2ur )] W-3""T. (10

Both displacement and traction must be continuous across solid-solid discon-
tinuities: [W]" = 0 and [T]T = 0 on r = dss. Tangential slip is allowed on
the fluid-solid boundaries, but traction must vanish there and on the outer
free surface: T'=0on r = drg and 7 = a.

» no dependence upon incompressibility < (pure-shear nature of toroidal
deformation)
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Toroidal modes

The singlets have motions with ! nodal planes on the surface.

m =0
2 nodal planes along
surface (1=2) 1 zero crossing along
the radius (n=1)
O
T, (44 min)
0+2 .
« twist mode » T, (12.6 min) 0T5(28.4 min)

Note that ¢ 71 cannot exist because it would require a twist back and forth of
the entire sphere (net rotation), which contradicts the conservation of angular
momentum for a rotating Earth.
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Spheroidal and toroidal modes

Toroidal modes

m =20 m=1

0T3 (284 mm) 0-'[\:’:‘I_ 0T32

The azimuthal order |m| counts the number of nodal surfaces in the lon-
gitudinal direction ¢. |l — m| counts the number of nodal surfaces in the
colatitudinal direction 6.
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Spheroidal and toroidal modes

Toroidal modes

Fund. toroidal modes

1022, 102w
osf o8}
06} 06
04} 04l
oz} 02}
i jm— o
osl 7 osf.
osf /| osf
04} 04l
02} 02}
ol .
0.3792 1.6133
mHz

Eigenfunction

— W

Energy density

[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Displacements eigenfunc-
tions , W, and shear energy
densities of some funda-
mental toroidal modes.

Toroidal modes are sensi-
tive only to pu.

Sensitivity of a mode to
structure with depth is not
the eigenfunction but the
energy density.



m

mic modes

Spheroidal and toroidal modes

Energy density

e Total integrated energy of a normal mode of oscillation = kinetic energy +
elastic-gravitational potential energy

e The potential energy can be decomposed into separate elastic compres-
sional, elastic shear and gravitational energies.

VR:/ w(V -s)2dV,
14

vy =

—~

2u(d:d)dV,

where d = 2[Vs + (Vs)"] — 2(V - s)Lis the deviatoric strain.

Vg:/ p[477Gpsf+s-V¢+g(s-V5T—sTV-s—erlsf)] av
v
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Spheroidal and toroidal modes

Toroidal modes

1.0
0.8
0.6
0.4
0.2

0.0
1.0

0.8}
0.6

Displacements eigenfunc-
tions , W, and shear energy
densities of some toroidal
modes.

Toroidal modes are sensitive
only to p.

0.6}- 0.6

The overtone number n

[ [
o4p O4p 04F indexes the modes with
0.2} 0.2f 0.2 0.2 increasing frequency and
i | ‘ ]
s g ol g ol g ol counts the number of nodal
2.1878 3.2702 3.2035 4.3046

spheres. n : number of nodes
mHz in W
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]
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Toroidal modes

Remarks:

» The toroidal modes o713, 171, 271, etc. correspond in the limit [ > 1 to
fundamental and higher-overtone Love surface waves or, equivalently,
to constructively interfering SH body waves that turn into the upper
mantle and are reflected beneath the seafloor.

» The depth to which a mode ¢T;, 111, 2T penetrates into the mantle
decreases as the angular order [ increases along the fundamental and
each overtone branch n.

» Toroidal modes cannot be observed on vertical instruments for a SNREI
Earth’s model.



3 nodal planes along
2 nodal planes along surface (/=3)
surface (/=2) —

0S5 (54 min) 053 (35 min)
« football mode » Pear-shaped mode 1S5 (18 min)

Note that ¢S1 cannot exist because it requires the displacement of the center
of gravity of the Earth.
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Spheroidal modes

Fund. spheroidal modes

1.0 1.0
0.8 0.8
0.6 0.6
04 0.4
0.2 0.2
0'00.0 0.0 X
1.0 1.0
3 L
0.8 |/ 0.8/
o6f .| 08l
04 0.4
02 0.2
0 0.0
0.3093 0.4686

mHz

Eigenfunction

Energy density

~———— Compressional

[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements,

in: Treatise on Geophysics]

Eigenfunctions U and V
and compressional shear
energy densities for some
fundamental spheroidal
modes.

Spheroidal ~ fundamental
modes are not very sensi-
tive to x and p in the core.



Spheroidal and toroidal modes

Spheroidal modes

1.0

0.0

[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics)

Overtone mantle modes

254

1.0
0.8
0.6
0.4
0.2

1.0
0.8

0.6 |

0.4
0.2

0.0

0.0

1.0 1.0
0.8 [ 0.8
06 _= 0.6
0.4 | ' 0.4
02} 0.2}
1.3792 : 2.2796 0 1.5149
mHz

Eigenfunctions U and V
and compressional shear
energy densities for some
overtone mantle modes.

Overtone mantle modes
that are primarily sensi-
tive to mantle structure
are also influenced by k in
the core.
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Spheroidal and toroidal modes
Spheroidal modes

Overtone IC sensitive modes

1884

1.0

0.8
0.6
0.4
0.2

0.0
1.0

0.8 |
0.6 [5-
0.4

ol ; i
4.4957 4.8453 7.2410

mHz
[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Eigenfunctions U and V
and compressional shear
energy densities for some
inner core sensitive modes.

IC sensitive modes that
can be observed at the
Earth’s surface are typ-
ically quite sensitive to
mantle structure.
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Stoneley modes

670 - - 670
b
' $ 3
M8 - - = & & e >=— =5  -cMB
1CB - -ICB
S, S S Su S 55 oS
670 “ 670
cMB -t cMB
‘

ic8 N . -~—-r; %» ﬁ:-- ﬁ» ﬁ’—--ma

Figure 8.15. Eigenfunctions ,U; (solid line) and »V; (dashed line) of a number of
core-mantle boundary (CMB) Stoneley modes (top row) and inner-core boundary
(ICB) Stoneley modes (bottom row). Vertical axis extends from the free surface
to the center of the Earth.

[Dahlen & Tromp (1998)]

Modes that are
confined in solid-
fluid interfaces
such as the CMB
or ICB



CMB Stoneley modes

(a) 1512 (b) 2546 (€) 5526
Surface | \,‘ j
i,
D" W X
— = — = e
cMB cwMB
— V, sensitivity - V; sensitivity — p sensitivity

Figure 1. Sensitivity kernels for V), (solid), V; (dashed),
and p (red) for representative CMB Stoneley modes ,.S; and
a zoom of the sensitivity in the D” region. Note that the
Stoneley mode sensitivity becomes more focused at the
CMB with increasing angular order /.

Modes that involve P-SV motion [xoclemecijer ot al. (2013)]



displacements tractions

670 670
cMB ; CMB
ICB RS- -1 ICB
The so-called “Slichter” triplet !
(Slichter 1960) . 1
[
— U

feedback mechanism is Archimedean — gravity mode
period ~ 5.42 h — sub-seismic mode

Never observed

surface amplitude < 1 nGal (107*2g)

IC displacement < 1 mm

vVvyVvyVvyypwy



Spheroidal and toroidal modes

Radial modes

Radial modes have [ =0, V =W = 0.

050 (20.5 min)
« breathing mode »



Radial modes

Radial modes

()SO

1.0
0.8
0.6
0.4
0.2

0.0

1.0 1.0
o8 ™ |os}f
| N <
0.6 Josf
| )
04l /04
i Py
02|~ 02
ol ook
0.8143 5.7403
mHz

[Widmer-Schnidrig & Laske (2007). Normal Modes and

Surface Wave Measurements, in: Treatise on Geophysics]

Eigenfunction U and com-
pressional shear energy
densities for some radial
modes.
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|—Spheroidal and toroidal modes

History

e Rigidity of the Inner Core inferred from normal mode observations

Table1 Observed Normal Modes of the Earth sensitive to the Structure of the Inner Core

UTD124B"—Solid UTD124B’—Liquid
inner core inner core 5.08M HB,

Mean No. of el. Inner core Rel. Rel. Rel.

Mode period obser- s.e.m. Comp. error energy Comp. error Comp. error Comp. error

s vations ) period (%) Compr. Shear period (%) period (%) period (%)

180 613.57 11 0.236 614.59 0.17 0.181  0.000 607.39 —1.02 610.06 —0.57 607.4 —1.01
28, 398.54 40 0.084 397.59 —-0.24 0.206  0.001 392.31  —1.59 39142 -—1.81 3940 -—1.14
3So  305.84 7 0.129 306.00 0.05 0.233  0.003 301.36 —1.48 301.84 —1.31 3009 —1.62
aSo  243.59 12 0.067 243.80 0.09 0.192  0.007 241.11 —-1.03 241.55 -—-0.84 2399 —1.51
28 904.23 21 0.487 904.43 0.02 0.001 0.080 914.94 1.17 917.80 1.50 915.1 1.20
sS2  397.36 11 0.157 397.03 —-0.09 0.015  0.102 399.93 0.67 398.20 0.21 399.1 0.44
6S1 34841 21 0.046 348.23 —0.05 0.068  0.011 347.10 —0.38 347.38  —0.30 346.6 -—0.52
2Ss 28137 11 0.113 281.59 0.08 0.004  0.022 282.77 0.50 283.34 0.70 282.1 0.22
881 27210 11 0.144 27179 ~0.11 0.115 0,052 271.00 -0.40 270.92 —0.43 270.5 —0.59
Nine modes—r.m.s. 0.12 1.01 1.00 1.02

Dziewonski & Gilbert (1971)



Spheroidal modes

The spheroidal modes ¢S, 151, 25, etc. correspond in the limit [ > 1 to
fundamental and higher-overtone Rayleigh surface waves or, equivalently, to
constructively interfering multiply reflected P and SV body waves that turn
in the upper mantle.

Standing waves

Propagating Rayleigh waves (oscillating mode)

A few minutes after A few hours after
the earthquake the earthquake

[from Stein & Wysession]



and toroidal modes

Spheroidal and toroidal modes

Animation:
https://saviot.cors.fr/terre/
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L Green tensor

A very important point of normal mode theory is that the basis of eigen-
functions is complete: any displacement at the surface of the Earth can be
expressed as a linear combination of the eigenfunctions

s(r, t) = %Z axsi (1) el
k

where a;, depends on forcing, si(r) =,si"(r) are written as

W87 () = | B U (M) Y0, 0) + kT V() V™ (0, ¢)

spheroidal mode

- k_171Wl(T'>I_: X Vly[m(ea ¢) (11)

toroidal mode

with radial eigenfunctions, spherical harmonics and eigenfrequencies.



L Green tensor

Green tensor

The response of the Earth to any forcing (e.g. earthquake, surface load)
which excites its free oscillations (and the equivalent travelling body and
surface waves) can be expressed in terms of the second-order Green tensor or
impulse response G(x,x’; t): displacement response at x, ¢ to a unit impulsive
force acting at x’, ¢t = 0.

G is solution to the homogeneous equation
0/ 52
(972G +HG) =0,

where H is the gravito-elastic linear operator and subject to initial conditions
G(x,x';0) = 0,0;G(x,x’;0) = (1/p")I6(x — x').

The impulse response G is written

G(x,x';t) ?RZ iwg) g (x)sk(x )W’“t, for t >0




L Green tensor

Green tensor

Remarks:

> since s;, are real, the phase of every oscillation is the same (£7) through-
out the Earth: characteristic of a standing wave.

» G is symmetric: G(x,x';t) = GT(¥',x; t) principle of seismic reciprocity.
(NB: when the Earth is rotating, not true any more: principle of anti-
Earth needed)

The displacement produced by any body force density f and surface force
density t is the convolution of the impulse response G with the entire past
history of the forces

t
s(x, t) = / / Gx,x'st —t")-f(x', t)dV'dt’
—oo JV

t
+/ /G(r,x’; t—t)-t(x',t)d¥ dt’ (12)
—o0 J S

This embodies the principles of superposition and causality.
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L Green tensor

The "Hum” or continuous background free oscillations

-160
-165
= A v
2 BJT VHN +10dB
£ |
— -170
3 MAJO VHE +8 dB
° h
TTO LHN +6 dB
D s
3 | BFO LHE +3 dB
Q
c.
| BFO VHE
o
@
£ /
185 | BFO VHZ
-190
2 3 4 5 6 7

frequency (mHz)

Figure 1. Comparison of median power spectral densities of the 1000 least noisy time windows from each of the sensors.
For clarity, the spectra have been vertically shifted. Vertical lines mark the frequencies of fundamental spheroidal and
toroidal modes. The underlying gray spectra were computed after the rejection of time windows affected by earthquakes
with My, > 55

[Kurrle & Widmer-Schnidrig (2008)]

e permanent excitation of fundamental spheroidal (Rayleigh waves) and toroidal
(Love waves) modes

e most likely excitation mechanism: coupling between ocean infragravity
waves and seismic surface waves through seafloor topography +

atmospheric pressure [Nishida 2014]
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Gravitational waves

vo things are
infinite. The universe
and human stupidy. ;*

..and i'm not s
about the univ

® mass — space curvature

e moving mass — displacement of this curvature — GWs (ripples in space-
time)

e variation of distance between 2 masses

e GWs have a weak amplitude (relative variation between 10712210729 m,

. —1 . . . . .
proton size ~ 107'% m), but poor interaction with masses — information on
generating sources
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L Green tensor

Gravitational waves

Exaggerated effects of GWs on Earth (Credit: LIGO/R. Hurt. Caltech/MIT/LIGO Lab)
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L Green tensor

Gravitational waves

Polarisation 7,
t=0

Polarisation A,

Swdr:




Green tensor

Gravitational waves

3

Sy

Sumatra, 2004, Strashourg

0
f(r, ) = —8—/:& - h(x, t)
metric
perturbation

[Dyson (1969)]

1 nm/s* ~ 1072 cm

2 25 3
f[mHz]
Binary white-dwarfs (hg ~ 1072% — 107% cm)

T 1017

3 x10 T T T T T
ol Excited degree-2 seismic modes
%
51 | Amplitude 10% smaller!!!

0 L 1 L L L J\

0.5 1 15 2 25
f [mHz]

[Majstorovic et al. (2019)]
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|—Splitting nd coupling of modes

Splitting and coupling

e Any departure of the Earth model from spherical symmetry removes the
eigenfrequency degeneracy and causes the multiplets ,S; and , 7} to split (into
21 + 1 frequencies) and couple (transfer of energy).

e The principal deviations from the spherically symmetric reference state are
Earth’s daily rotation, its hydrostatic ellipticity in response to the rotation
and general aspherical structure (topography of interfaces, lateral variations
in volumetric parameters).



rde

mod

plitting and coupling of modes

Rotation
(Coriolis)

Ellipticity

3D

Waves in the di-
rection of rotation
travel faster

Waves from pole to
pole run a shorter
path (67 km) than
along the equator

Waves slowed
down  (or  ac-
celerated) by
heterogeneities
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Splitting and coupling of modes

First-order Coriolis splitting

We ignore the centrifugal potential and associated ellipticity perturbation.

x is the Coriolis splitting parameter

X = k72/ p(VZ 4 2kUV + W?)r?dr, where k = +/1(1+1).
0

First-order Coriolis splitting is analogous to the Zeeman splitting of the quan-
tum energy levels of a hydrogen atom in a magnetic field.

The eigenfrequency of the m'™ singlet within a £*® multiplet on a rotating
Earth in hydrostatic equilibrium is given

wp' =W +mxQ with —1<m <1
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Splitting and coupling of modes

First-order Coriolis splitting

e The eigenfrequency perturbations are uniformly spaced.

e For toroidal modes Ty, [ pW?2r2dr = 1 implies that x = [I(I+1)]7*, then

e Radial modes ,,Sp (since they are non-degenerate) are unaffected by Coriolis
force to first order in Q/w;.

e First-order Coriolis splitting dominates for low-frequency seismic modes
(below 1 mHz).
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Rotational splitting: History

e Double-peak ¢S2 and (.53 modes after 1960 Chile earthquake explained as
rotational splitting by Backus & Gilbert (1961) and Pekeris et al. (1961)

FOURIER ANALYSIS H
e f .
oo St e Benioff et al. (1961)
THF285F2$38s5:F
rz
32 FOURIER ANALYSIS . =
ISABELLA STRAIN @ °
Te16000 MIN 22 H -]
SPLIT S5 MODE 1= | S
3 g 1508 T2%,s4F, H 3
z g 3
g \ a3 “ | |
H B L /\A E
k UL '\ 14 \ g
A ’ A\
A A
VV V \1 \ ! r\/\ VoV \\/\/\ \/\/
FREQUENCY IN CYCLES PER MINUTE
o8ias Goez 00@s Goiee OOBS 00RG 0082 Fig.3. High resolution Fourier analysis of Tsabella strain sei to show split spectral peak.
FREQUENCY IN CYCLES PER MINUTE Filter T5F,8,F38:8:8:Fs, record length 16,000 minutes.
Fig. 2. High resolution Fourier snalysis L )
of Isabella strain seismograms to show split 16000 min = 11.1 days

spectral peak. Filter TF;8.F38,8,8:Fs, record
length 16,000 minutes.

e Unbeknownst to them, the rotational splitting had been investigated by
Cowling & Newing (1949) and Ledoux (1951) in an astrophysical context.
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Example: Zeeman splitting of
1 s 0S52. Fourier amplitude spectrum
<§.‘ 702 0 of a 500 h long record of the
£ m=-2 N 2004 M,9.3 Sumatra event by the
2 superconducting  gravimeter at
2 1 - Strasbourg, France.
g 11
£ [Rosat et al. (2005)]
g
©
s |
. A/jﬁ'\ﬂ/\/w,\
— 4
0

1 1
0.28 0.30 0.32 0.34
Frequency (mHz)

G 04p@00N 1050 32 -1 0 1 23
£
Example: Zeeman splitting of ¢S3. ;J 0109 |
Fourier amplitude spectrum of a % 0.08 1 |
600 h long record of the 2004 M,,9.3 E ool | i
Sumatra event by the supercon- 8 “ |
ducting gravimeter at Sutherland. 5 0% |
§ 002 |

0.00 - AMR, . oS . A 0. (
0.450 0.455 0.460 0465 0470 0475 0480 0.485
Frequency (mHz)
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Splitting and coupling of modes

Splitting due to rotation and ellipticity

Combined effects of rotation and hydrostatic ellipticity.
Wy = Wk (1—|—a—|—bm—|—cm2) with — 1 <m <1,

where @y, is the multiplet degenerate frequency, a and c the ellipticity split-
ting coefficients and b the rotational splitting coefficient.

T = 10?r?: centrifugal potential

a =

W =

2
~—_———
degree-2 perturbations
in ¥ and ellipticity

b=x(Q/m), ¢ = — 5@ k(v ~ D7)

(1 K@@+ sop2w —air)

spherical part of ¥

v and 7 depends on ellipticity, density, incompressibility and rigidity.
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Splitting due to rotation and ellipticity

» Shift in the mean frequency of the multiplet:
S o = 21— (@)
20414~ 7 3 X b
» A toroidal multiplet ,,7; does not exhibit any net shift (k2X =1)

» Every radial mode eigenfrequency is increased by an amount
Wi — Wk [1+ 2(Q/wr)?)
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Splitting due to rotation and ellipticity

>

>

>

splitting due to ellipticity is asymmetric wrt degenerate frequency
ellipticity removes the degeneracy only partly: wy' = Wy, (1 + a4+ cm2)
rotational splitting is symmetric wrt degenerate frequency

rotation removes the degeneracy completely

Coriolis force exerts a perturbation of order /@,

centrifugal force is a perturbation of order (2/wy)?

rotation dominates at low frequencies (b > ¢)

2nd-order Coriolis splitting should be considered for a complete
treatment of Earth’s rotation
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Coriolis coupling

» Coupling exists between modes

» Strength of coupling is larger for modes of nearby frequencies

O(Zk;éow 2|fv/)s k- (i x s0)dV|?

» Coriolis coupling is significant for several of the Earth’s gravest modes
(e.g. oTz)
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Coriolis coupling

Strasbourg, SG C026 (Sumatra 2004, 240 h, 2 sec)

0.5 o ~ 132 <o
2] 2] w 0 m
o N o [«
0.4 ‘
—
£
£ 0.34
()] 4
© o~ © <~
2 02 r 5 5 5
ey |
§ I
©
0.1 \
0.0 st \l L ILJIM . b L J\M .
0.2 0.4 0.6 0.8

mHz
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Coupling due to rotation and ellipticity

Selection rules for a rotating, elliptical but laterally homogeneous Earth:

» Coriolis force causes spheroidal-toroidal coupling between mode pairs of
the form ,S; — ,/Ti+1 and , 77 — ,/Si+1, that is between multiplets that
differ by a single angular degree (|l —I'| = 1)

» Earth’s ellipticity gives rise to spheroidal-toroidal coupling for [[—1'| = 1

> rotation causes spheroidal-spheroidal coupling for |l — I'| = 0 (pairs of
same angular order)

> ellipticity causes same-type (spheroidal or toroidal) mode coupling for
|l — 1| =0 (i.e. pairs of the form ,,S, — .S and ,T; — ,»T; and for
|l —I'| =2 (i.e. pairs of the form , 8 — ,/Six2 and T} — ,/Tixo



(a)synthetic \“ [ “ 1

(b)J9

(c)ET-19p

(HET-19

()C024

iy

() Askania

(@strain |

: d
0.2 0.4 0.6 0.8 1.0 1.2
Frequency [mHz]

[Ziirn et al. (2000)]

Amplitude spectra after 1998 M,8.1
Balleny Islands earthquake at BFO.

(a):  synthetic (rotation, ellipticity and
3D-mantle model S16B30 (Masters et al.
1996)

(b): superconducting gravimeter at Stras-
bourg (France)

(¢): Lacoste-Romberg ET19 gravimeter at
BFO (pressure corrected)

(d): Lacoste-Romberg ET19 gravimeter at
BFO (without pressure correction)

(e): superconducting gravimeter at Boulder

(USA)

(f): borehole-tiltmeter at BFO
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§ a3

183/381/282
086

352

154
0871253

S16B30

ol

=%
i

o3 0Ty 0T§ 0Te

Ellipticity

4::5““““

Rotatiorf

Ly

0.2 0.4 0.6 0.8 1.0 1.2

Frequency [mHz]
[Ziirn et al. (2000)]

Synthetic spectra of 100-h long vertical
acceleration computed for 1998 M,8.1
Balleny Islands earthquake at BFO.

Top: only 3D-mantle model S16B30 (Masters
et al. 1996)

Middle: only ellipticity

Bottom: only rotation

Rotation is clearly the most effective mech-
anism for peaks to appear at toroidal mode
frequencies.
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Effect of lateral heterogeneities

wi' =W (1—|—a—|—bm—|—cm2) + HB

with Hrlr?rtn’ = Wk Z Cst/ Vi Vst Virmr dV,
st v

where cs; represent perturbations (beyond first-order ellipsoidal perturba-
tions) in incompressibility, rigidity, density expanded in real surface spherical
harmonics. s represents the degree of the heterogeneity.

The real Gaunt integrals satisfy the selection rules

s is even

/ VinYVstVymrdV =0 unless ¢ 0<s<2]
v t=m-—m'

» the splitting of an isolated multiplet depends upon the even-degree struc-
ture of the Earth
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Effect of lateral heterogeneities

21 s

m —_ 2 — mm’t
Wy = Wk (1 +a+bm+cm ) +wg E E Vs Cst (13)
s=0 t=—s l,
rotation and ellipticity s even

lateral heterogeneities

We define the splitting matriz H such as

21 s
Hypr = @i [(a + bm + cm?) 8, |+ Z Z Yt e+ anisotropy
ss:/(e)n t:t:L:in/
The matrix H is called self-coupling matriz with dimension (21 + 1) x
(21 + 1) in this case of an isolated multiplet.
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Effect of lateral heterogeneities

— SNREI Earth
——1D Earth
— 3D Earth 1

0.2}

015

Amplitude

01

0 " n h . .
029 0295 0.3 0305 031 0315 032 0325 033

f [mHz]
Predicted ¢Sz amplitude FFT spectrum

SNREI: spherically symmetric, non-rotating, perfectly elastic and isotropic
Earth’s model

1D Earth: consider splitting due to rotation and ellipticity

3D Earth: includes in addition the self-coupling due to lateral heterogeneity
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Effect of lateral heterogeneities

Estimation of the second-order axisymmetric structure
coefficient czo for ¢S2 multiplet

0.25 t  Majstorovic et al. (2019) (weighted)
0.00 f  Majstorovic et al. (2019) (non-weighted)
t  Ritzwoller et al. (1986)
N —0.25 {  Deuss et al. (2011)
3‘_0 50 t  Hafner & Widmer-Schnidrig (2013) (weighted)
’ t  Héfner & Widmer-Schnidrig (2013) (non-weighted)
514 t
—0.75 * t
—1.00

Majstorovic et al. (2019) used long-period seismometer and Superconducting Gravime-
ter records
Hifner & Widmer-Schnidrig (2013) used Superconducting Gravimeter records
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Splitting and coupling of modes

Multiplet coupling

In a rotating, elliptical, anelastic and heterogeneous Earth’s model, coupling
exists between multiplets.

The splitting matrix H is extended to dimension >, (2l +1) x >, (2 + 1)
where [, denotes the degree of the multiplet k.

Synthetic seismogram computation:
» self-coupling: one multiplet considered isolated

» group coupling: chains of multiplets (e.g. 052 — 0 T2 — 251 — 053,
0T5 — 252 — 153 —351)

» full coupling (e.g. all 140 spheroidal and toroidal modes up to 3 mHz)
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Splitting and coupling of modes

Effect of lateral heterogeneities

Selection rules for a non-rotating, spherical but laterally heterogeneous Earth:

» A multiplet ,S; or ,T; is coupled to a multiplet ,,»S; or /Ty by a lateral
variation of degree s only if [l —I'| < s <1+

» Two spheroidal multiplets , S; and ,,»S; are coupled by a lateral variation
of degree s only if I + 1’ + s is even

» Two toroidal multiplets ,,T; and ,/T) are coupled by a lateral variation
of degree s only if | +1' + s is even

» A spheroidal multiplet ,S; is coupled to a toroidal multiplet ,/Ty by a
lateral variation of degree s only if [ + ' + s is odd
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|—Splitt;ing and coupling of modes

Effect of lateral heterogeneities

Mode: ,S/™ Structure: ¢,

m+t-m'=0

Selection rules
I' +s+1 even
r=l<s<l+/

Self-coupling S-S, T-T cross-coupling
. (r=lp=0) p=0
=2 i 1=3
2101 2, -3 -2-1 0 1 2 3. m
° 2 e © a ® o o o
N
-1 o o @ o o o
N t=-3 4 i \.\
s=4 I'=2 0 © o ®© © a o o
ie, ¢ ® N S
1 © © » © © @ o
N
2 ® @ @ \-\ e o e
t=m'—m—- 1=é i
$=0,2,4 sodd . s=3.5 s=1,3,5
Axisymmetric 1<s<5 ’
structure
t=+2 =

-2
i =2.4: 2 o2
=2,4;ie.c,%, c,2 S=2, 41, e ¢y

Figure 15 Elements in the splitting matrix that are affected by coupling. Left panel: Anisolated ¢ =2 mode experiences self-
coupling through Earth’s rotation and ellipticity. Together with axisymmetric structure this manifests itself in the diagonal.
Other even-degree structure (s even) affects off-diagonal elements. When two modes couple, the splitting matrix has four
blocks: two self-coupling blocks (one for each mode) and two cross-coupling blocks. The right panel shows how elements in
a cross-coupling block with an ¢’ =3 mode are affected for same-type coupling (o = 0). Some of the elements are now
affected by odd-degree structure (s odd).

[Widmer-Schnidrig & Laske (2007).

Normal Modes and Surface Wave Measurements, in: Treatise on Geophysics]
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Splitting and coupling of modes

Example of multiplet coupling: .5y

L\ The circumference of the Earth gets bigger and the
f \ crust must get thinner. Amplitude variations of ¢So
" ¥ (@ = 5000) could be due to lateral variations of the
/ Poisson ratio.

I N
050 (20.5 min) v = thinning
« breathing mode » " elongation
Esashi, SG T007 TT70
042+ 281 (164 h)
o 3ed X o v
ol ¢ 5 8 E g2 &g

0,08 -

0,06 \

0,04 -

0,02 P ‘
M il [ {\‘ M A |

0,00 ]»«‘uh' A LA el

02 03 04 05 06 07 038 09

mHz

Normalized amplitude (nm/s?)

After 2004 M 9.3 Sumatra-Andaman earthquake



Splitting and coupling of modes

Example of multiplet coupling: .5y

Ellipticity and rotation — 1% higher at the pole than at the equator (latitude
dependency)

» Two spheroidal multiplets ,, S; and ,,».S; are coupled by a lateral variation
of degree s only if [ + 1’ + s is even

Predicted ¢Sp amplitude after
2004 M,9.3 Sumatra-Andaman
event showing latitude and longi-
tude dependency

[Rosat et al. (2007)]

— Coupling between ¢Sp and 0S5 through degree-5 structure coefficients
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Multiplet coupling: synthetic seismogram computation

—data

[\ -=-full-coupling /\

f{‘\\;\ 4 I‘. -+ self-coupling 1

_§ [',‘ i“ I|d.
g A A
g L i 3
= \t b

| RN /L
/-. 4 4 ] {
¥ | \ . L
ok, Nl | NN f N
232 234 2.36 238 24 242 244 246
frequency (mHz)

[Al-Attar et al. (2012)]
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Splitting functions

Splitting function coefficients were introduced by Woodhouse et al. (1986)
as a convenient way to describe the splitting of normal modes in a complete
way.

These cs: are linearly dependent to the perturbations of the reference Earth
model

Cst :/ 5mst(7‘)Ks(r)dr + ZahgtHSd’
0 d

where dms; angular order s and azimuthal order ¢ perturbations in S-wave
velocity, P-wave velocity, density and anisotropy. 6h< represent topography
on discontinuities d. K(r) and H¢ are associated sensitivity kernels (Wood-
house 1980).
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|—Splitt;ing and coupling of modes

Kernels Observed splitting function S40RTS + CRUSTS.1
(8) 1Sra 1814, Misfit=0.31, Ny=2872 1514, Misfit=0.42
£
~ Observed splitting function
maps and predictions for
mantle model S20RT'S.

° % These maps show the local
variation in splitting due to
the underlying heterogeneity.
Ns: total number of spectra

g used for the splitting function

= measurement.
Left panels: sensitive kernels
(red is wvp, solid black is wvs,
dashed is density).

:

[Deuss et al. (2013)]
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Conclusion

e Spheroidal modes ,S;: volume change (alter shape and density distribution)

e Toroidal modes , T;: purely tangential displacements and divergent-free
(do not alter shape and density)

e Rotation, ellipticity, lateral heterogeneities — remove the 2141 degeneracy
— splitting and coupling of modes

e Below 1 mHz, Coriolis coupling dominates and modes have strong sensitiv-
ity to density

e Coupling: toroidal modes can be observed on vertical instruments

e Irequency analysis of modes to retrieve even degree structure coeflicients
— Coupling between multiplets must be considered to retrieve odd degree
structure coefficients — tomography models

e Seismic modes provide information about density but trade-off with P-wave
velocity structure not solved yet (debate going on)

e Normal modes form a complete basis to compute Earth’s deformation from
various excitation sources
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Orthonormality

V' denotes the unit sphere. Real surface spherical harmonics are orthonormal.

/ylm)il/m/dV:/ Py - Py dV = (14)
\4 v

/Blm-Bl/m/dV=/ Cim - Cprppr AV = 6,16,,0

\4 v

The displacement eigenfunctions of a SNREI Earth model must satisfy the general or-
thonormality relation

/ P Sk 'sk’dv=6kk’7
14

where k is used to identify a quadripartite {n, [, m; S or T'}. The spheroidal and toroidal
eigenfunctions of different degree or order as well as spheroidal-toroidal pairs of eigen-
functions are orthogonal. The spheroidal and toroidal radial eigenfunctions of the same
degree | must be orthonormal.

/O P (nUl:zUl + nVl;Vl) '7'2 dr = 6nn/,/(J P (nWl;Wl) 7‘2 dr = 5nn/ (15)
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Splitting and coupling of modes below 1 mHz

> high sensitivity to density heterogeneities (destabilizing effect of
self-gravitation)

» frequency closer to the frequency of Earth’s rotation leading to a
pronounced Zeeman splitting

» Zeeman splitting depends on spherically averaged density structure:
wip' =wi (1+bm) for —1<m<1

From measured wy', we can estimate b for a given multiplet k.

%bk = k—2/ p(V2 +2kUV + W2)rdr.
0

— linear constraints on the 1D density profile without any trade-off with
elastic parameters [zirn ot al. 2000, Widmer-Schnidrig 2003]
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full coupling 060994A full coupling 060994A
data PAB self-coupling PAB

amplitude
>
»

amplitude
»

0 . <o . o oy -
1.65 1.60 165 1.70 1.55 1.60 1.65 1.70
frequency (mHz) frequency (mHz)

[Deuss & Woodhouse (2001)]

Normal mode spectrum at station PAB for the large M,,8.3 and deep Bolivia
event of 9 June 1994.

The differences between full- and self-coupling synthetics (right) are of the same
order as the differences between the observed data and full-coupling synthetics (left).
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