#### Introduction to core convection

#### Thierry Alboussière

Laboratoire de Géologie de Lyon

#### juillet 2021 École d'été de Géophysique Interne, Les Houches









▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



## Overview

- 1. Evidence for convection in the core
- 2. Driving forces
- 3. Physical properties of the core
- 4. Governing equations for convection
- 5. So many waves... geostrophy and turbulence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

6. Convection in the inner core

## 1. Evidence for convection in the core



- 1906, Richard Oldham, existence of the core
- 1913, Beno Gutenberg, CMB within 1%
- 1919, Joseph Larmor, "dynamo effect" for the Sun (and Earth)
- 1926, Harold Jeffreys, liquid core
- 1946, Walter Elsasser, Earth's dynamo

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Geomagnetism

- Back in 1633, Henry Gellibrand discovers magnetic variation
- ▶ 1906, Bernard Brunhes discovers magnetic reversals
- 1949, Louis Néel discovers (anti)ferromagnetism
- 1600 present days, measurements of declination (naval traffic, magnetic observatories, satellite data)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Magnetic data



CHAOS-2s, Olsen et al., 179:3, JGI, 2009

## Velocity at the top of the core

$$\frac{\partial B_r}{\partial t} = -\nabla_s \cdot (B_r u_s) \qquad \sim 20 \text{ km/year}$$





a) 1840 b) 1890 c) 1940 d) 1990 Amit and Olson, PEPI, 155, 2006

▲口▶▲圖▶▲≣▶▲≣▶ = 差 - 釣A@

## (Tangential)-Geostrophic inversion

A. Pais and D. Jault, GJI 2008 N. Gillet, A. Pais and D. Jault, GJI 2009



Pais *et al.*, JGR, **109**, 2004 Epoch 1980



Asymmetric gyre

(日)

# Length Of Day

Average geostrophic (geomagnetic) velocity variations versus LOD



Gillet et al., JGR, 120:6, 2015

#### Seismic radial profiles



Figure 7.2. PREM model: Seismic velocities and density profile (after Dziewonski and Anderson 1981).

PREM radial model: isentropic outer core by construction

(日) (四) (日) (日) (日)

## Seismic radial profiles: bottom dense layer



Other models, not bounded by the isentropic hypothesis

Kennett *et al.*, *GJI*, **122**, 1995, ak135 Song and Helmberger, *JGR*, **100**, 1995, PREM2

## And at the top of the core?

No definite seismic observation, but a few reasons in favour of its existence

- light elements from the inner core crystallization might end up there
- light elements from exsolution might end up there
- diffusion of light elements from the mantle

and a few against its existence

- existence of 'fast' geomagnetic variations (jerks)
- upwellings/downwellings in core velocity models

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

# 2. Driving forces

- Thermal cooling from the top
- Composition buoyancy at the ICB
- Precessional forcing
- Compositional buoyancy from exsolution

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Radiogenic heating?

## Thermal convection





## Thermal convection





 of which 5 to 15 TW extracted from the core: start a debate here...

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

## Compressible convection

- Entropy mixing
- In a hydrostatic pressure gradient
- Produces an adiabatic (isentropic) temperature gradient

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Because iron is a good thermal conductor
- Generates a significant conduction flux

## Compressible convection

- Only a heat flux exceeding the flux conducted along the adiabat can generate convection (Schwarzschild 1906, Adams-Williamson 1923, Jeffreys 1930)
- A smaller flux is conducted along a stable temperature gradient: no motion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

That condition may depend on depth and epoch

#### Profil de température à l'intérieur du soleil



NASA/MSFC Hathaway

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Convection dans le soleil





▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

## Rotation différentielle du soleil



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

## Compositional convection

The density jump across the ICB (590 kg m<sup>-3</sup> in PREM, 850 kg m<sup>-3</sup> for normal modes and ICB reflexion) is due to

- ▶ phase change (latent heat) 200 to 240 kg m<sup>-3</sup>
- fractionation of light elements (H,Si,0,S,C,...)

Generally considered as the strongest source of convection...

liquid core: 6 to 10% less dense than liquid iron inner core: 2 to 3% less dense than solid

### Compositional convection in experiments

#### Crystallization of an ammonium chloride solution $NH_4CI$



Huguet et al., 204, GJI, 2016

## Compositional convection in experiments

And melting...



(日) (圖) (E) (E) (E)

Huguet et al., 204, GJI, 2016

## Phase diagram NH<sub>4</sub>Cl in water



・ロト・西・・田・・田・・日・

## Specificity of compositional convection

- Its strength is directly linked to that of thermal convection: because thermal cooling is directly responsible for inner core crystallization
- However, molecular diffusivity of species is much smaller than thermal diffusivity, by three to four orders of magnitude  $Le = \kappa/D \sim 10^4$

Origin of double-diffusive effects

## Double diffusion



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

#### Precession

Equatorial buldge leads to precession: 25772 years, 23.5  $^\circ$ 

Precession of Moon's orbit generates nutations: 18.6 years, 9.2 "



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Effect of precession



Noir *et al.*, **154**, GJI, 2003



▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

## Precession and mode interactions



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Goto et al., Phys. Fluids, 26, 2014

#### Precession

- Effect of (small) viscosity
- Many studies in the last 10-15 years
- Potential to dissipate energy
- Limited amount of rotational energy, 2 10<sup>29</sup> J, *i.e.* 7 TW for 1 Ga

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- most of it goes probably in ocean tidal dissipation
- but may be enough to power the geodynamo

## Exsolution



O'Rourke and Stevenson, Nature, **529**, 2016 Du *et al.*, GRL, **44**:22, 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

# 3. Physical properties of the liquid core

#### density

- heat capacity
- thermal expansion
- viscosity
- thermal conductivity
- electrical conductivity

and what is the temperature of the core?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Density



Figure 7.2. PREM model: Seismic velocities and density profile (after Dziewonski and Anderson 1981).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

#### Heat capacity

The law of Dulong and Petit is enough: "six calories per gram atom", *i.e.*  $C_p = 3R$  with R = 8.314 J K<sup>-1</sup>mol<sup>-1</sup> the ideal gas constant



Moreover,  $c_p$  and  $c_v$  are very similar in condensed matter.

## Coefficient of thermal expansion



 $) \land ( \land )$ 

## Viscosity

General agreement for small values  $\eta\simeq 10^{-3}~{\rm Pa}~{\rm s}$  Except Smylie in a few papers on Slichter modes...



Its value was considered to be around 30 W m<sup>-1</sup>K<sup>-1</sup> from the 70's (Matassov PhD thesis, shock experiments, 1977; Stacey and Davis, *Physics of the Earth*, CUP, 2008), but re-evaluated in the last 10 years.
## Thermal conductivity

A crucial, determining, parameter for convection, because thermal conduction along the adiabatic gradient is a significant part of the total radial heat flux.



(日) (四) (日) (日) (日)

## Electrical conductivity

- Important for dynamo action!
- Wiedemann–Franz law:  $\frac{k}{\sigma} = LT$ , where  $L = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 \simeq 2.44 \ 10^{-8} \ W \ \Omega \ K^{-2}$  is the Lorenz number

was hence also revised upward recently

### Electrical conductivity



Gomi et al., PEPI, 224, 2013

$$\sigma \simeq 10^6 \ \Omega^{-1} \mathrm{m}^{-1}$$

ヘロト 人間 ト 人 ヨト 人 ヨト

3

## 4. Governing equations for convection

### Convection

- Navier-Stokes with Coriolis and Lorentz forces
- Induction equation
- Adiabatic gradient and superadiabatic forcing

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

### Convection equations

Mass conservation

$$rac{\partial 
ho}{\partial t} + 
abla \cdot (
ho { extbf{v}}) = 0$$

Momentum conservation (Navier-Stokes)

$$\rho \frac{\mathrm{D} \mathbf{v}}{\mathrm{D} t} = -\nabla P + \rho \mathbf{g} + \nabla \cdot \tau \qquad \qquad \tau : \text{ deviatoric} \\ \text{stress tensor}$$

Energy conservation (or entropy equation)

$$\rho T \frac{\mathrm{D}s}{\mathrm{D}t} = \dot{\varepsilon} : \tau + \nabla \cdot (k \nabla T)$$

and an equation of state EoS:  $T = T(\rho, s)$ ,  $P = P(\rho, s)$ 

$$egin{split} \dot{arepsilon}_{ij} &= 1/2 \left( \partial_i \mathsf{v}_j + \partial_j \mathsf{v}_i 
ight) \ au_{ij} &= 2\eta \left( \dot{arepsilon}_{ij} - rac{1}{3} (
abla \cdot \mathsf{v}) \delta_{ij} 
ight) \end{split}$$

▲□▶ ▲冊▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

### The 'adiabatic' gradient

In a well-mixed fluid, entropy is uniform. In addition, the fluid is often close to hydrostatic equilibrium.

$$\begin{aligned} \mathbf{d}s &= \frac{\partial s}{\partial P} \Big|_{T} \mathbf{d}P + \frac{\partial s}{\partial T} \Big|_{P} \mathbf{d}T = \mathbf{0} \\ &\frac{\partial s}{\partial P} \Big|_{T} = -\frac{\alpha}{\rho} \qquad \mathbf{d}G = -s\mathbf{d}T + \frac{1}{\rho}\mathbf{d}P \\ &\frac{\partial s}{\partial T} \Big|_{P} = \frac{c_{P}}{T} \qquad \mathbf{d}H = T\mathbf{d}s + \frac{1}{\rho}\mathbf{d}P = c_{\rho}\mathbf{d}T + \frac{\partial H}{\partial P} \Big|_{T} \mathbf{d}P \\ &\text{Hence} \quad \frac{\partial T}{\partial P} \Big|_{s} = \frac{\alpha T}{\rho c_{\rho}} \longrightarrow \qquad \boxed{\frac{\mathbf{d}T}{\mathbf{d}z} = -\frac{\alpha gT}{c_{\rho}}} \end{aligned}$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

### Earth's convection



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

# Adiabatic (isentropic) temperature profile



 $T_a$  (dashed line) is the 'adiabatic' temperature profile. We also define  $\rho_a$ ,  $P_a$ ,  $c_{pa}$ ,  $\alpha_a$ ...

### Stable temperature profile



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

### Unstable temperature profile



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ のへで

Anelastic (liquid) approximation

continuity 
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$
  $\nabla \cdot (\rho_a \mathbf{v}) = \mathbf{0}$   
Navier-Stokes  $\rho \frac{\mathrm{D} \mathbf{v}}{\mathrm{D} t} = -\nabla P + \rho \mathbf{g} + \nabla \cdot \tau$   
 $\rho_a \frac{\mathrm{D} \mathbf{v}}{\mathrm{D} t} = -\rho_a \nabla \left(\frac{P}{\rho_a}\right) + \rho_a \alpha_a T' g \hat{\mathbf{e}}_z + \nabla \cdot \tau$ 

entropy  $\rho T \frac{\mathrm{D}s}{\mathrm{D}t} = \dot{\epsilon} : \tau - \nabla \cdot \phi$ 

$$\rho_{a} \frac{\mathrm{D}(c_{pa}T')}{\mathrm{D}t} = -\rho_{a}\alpha_{a}g T' v_{z} + \dot{\epsilon} \colon \tau + \nabla \cdot (k\nabla(T' + T_{a}))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

### Heat flux

The heat flux is the sum of the conduction flux along the adiabat and the extra flux driven by the superadiabatic temperature difference  $\Delta T_{sa}$ 

$$\Phi = k \frac{\Delta T_a}{H} + Nu \ k \frac{\Delta T_{sa}}{H}$$

where Nu is the resulting dimensionless heat flux, that must be a function of the dimensionless parameters defining the problem

$$Ra = \frac{\alpha g \Delta T_{sa} H^3}{\nu \kappa}$$
$$Pr = \frac{\nu}{\kappa}$$
$$\mathcal{D} = \frac{\alpha g H}{c_p}$$

Rayleigh, Prandtl and Dissipation number

### Heat flux



Niemela *et al.*, Nature, vol. 404, 2000

Lülff *et al.*, New J. of Phys., vol. 13, 2011

<ロ> (日) (日) (日) (日) (日)

## Heat flux

Assuming

- a heat flux conducted along the adiabat of 3 to 10 TW
- a superadiabatic flux of 1 to 10 TW
- $\blacktriangleright$  vertical velocities of  $10^{-4}$  m s<sup>-1</sup>

Hence the convective heat flux  $\rho c_p v \Delta T_{sa}$  can transfer easily 10 TW with

$$\Delta T_{sa} \sim 10^{-4}~{
m K}$$

# Superpowers of core convection!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Then the Rayleigh number is

$$Ra = rac{lpha \, \mathrm{g} \, \Delta T_{sa} H^3}{
u \kappa} \sim 10^{23}$$

Navier-Stokes has an extra force term in a rotating frame of reference

$$\rho_{a} \frac{\mathrm{D}\mathbf{v}}{\mathrm{D}t} = -2\,\rho_{a}\,\Omega \times \mathbf{v} - \rho_{a}\nabla\left(\frac{P}{\rho_{a}}\right) + \rho_{a}\alpha_{a}\,T'g\hat{\mathbf{e}}_{z} + \nabla\cdot\tau$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

### Electromagnetic coupling

$$\rho_{a}\frac{\mathrm{D}\mathbf{v}}{\mathrm{D}t} = -2\,\rho_{a}\,\Omega\times\mathbf{v} + \mathbf{j}\times\mathsf{B} - \rho_{a}\nabla\left(\frac{P}{\rho_{a}}\right) + \rho_{a}\alpha_{a}\,T'g\hat{\mathbf{e}}_{z} + \nabla\cdot\tau$$

where  $\mathbf{j} = \nabla \times \mathbf{B} / \mu_0$  and the magnetic field obeys the induction equation

$$rac{\partial \mathsf{B}}{\partial t} = 
abla imes (\mathsf{v} imes \mathsf{B}) + 
abla imes \left(rac{1}{\mu_0 \sigma} 
abla imes \mathsf{B}
ight)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and  $\nabla \cdot \mathsf{B} = \mathsf{0}$ 

## 5. So many waves...geostrophy and turbulence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- inertial waves
- geostrophy
- Alfvén waves
- torsional waves
- big gyre, LOD variations
- turbulence

## Inertial waves (general method)

Ignore viscosity, non-linear inertia, Lorentz forces, buoyancy, density variations...

$$\frac{\partial \mathbf{v}}{\partial t} = -2\,\mathbf{\Omega} \times \mathbf{v} - \nabla P$$

We can take the curl to remove pressure

$$\frac{\partial (\nabla \times \mathbf{v})}{\partial t} = -2 \, \nabla \times (\Omega \times \mathbf{v})$$

Expand the possible velocity fields as planar waves

$$\mathbf{v}(\mathbf{x},t) = \hat{\mathbf{v}}(\mathbf{k},t)e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Inertial waves (general method)

After substitution in Navier-Stokes

 $\omega \mathbf{k} \times \hat{\mathbf{v}} = 2 i (\mathbf{k} \cdot \Omega) \hat{\mathbf{v}}$ 

Taking another  $k \times$  product leads to

$$\omega \mathbf{k} \times \mathbf{k} \times \hat{\mathbf{v}} = -4(\mathbf{k} \cdot \Omega)^2 \hat{\mathbf{v}}$$

We do not forget the continuity equation,  $\nabla\cdot v=0$ 

$$\mathbf{k}\cdot\hat{\mathbf{v}}=\mathbf{0}$$

Then the wave equation becomes

$$-\omega^2 k^2 \hat{\mathbf{v}} = -4(\mathbf{k} \cdot \mathbf{\Omega})^2 \hat{\mathbf{v}}$$

Dispersion relation

$$\omega^2 k^2 = 4(\mathbf{k} \cdot \Omega)^2$$
 hence

$$\omega = \pm 2 \frac{\mathbf{k} \cdot \Omega}{\mathbf{k}}$$

### Phase and group velocities

Phase velocity 
$$\omega/k$$
, or in 3D  $\omega/k \hat{\mathbf{e}}_k$ 

$$\left(2\Omega\frac{k_xk_z}{k^3}, 2\Omega\frac{k_yk_z}{k^3}, 2\Omega\frac{k_z^2}{k^3}\right)$$

Group velocity  $\partial \omega / \partial k$ , or in 3D  $\partial \omega / \partial k_i$ 

$$\left(-2\Omega\frac{k_xk_z}{k^3},-2\Omega\frac{k_xk_z}{k^3},2\Omega\frac{k^2-k_z^2}{k^3}\right)$$

#### Properties

- phase and group velocities are orthogonal
- maximum phase velocity in the direction  $\Omega$
- minimum in perpendicular directions, but max group velocity along Ω

![](_page_56_Figure_0.jpeg)

## Geostrophy

When a flow is indepedent of z, it escapes inertial waves and there can be an equilibrium between Coriolis and pressure gradient. This is

## geostrophic balance

- atmosphere
- oceans
- Jupiter, Saturn ?
- Earth's core ?

![](_page_57_Picture_7.jpeg)

Vidal and Schaeffer, GJI, 202:3, 2015

・ロト・日本・日本・日本・日本・日本

### Alfvén waves

In a uniform magnetic field  $B_0$  along z, the linear coupled equations of Navier-Stokes and induction lead to

$$\frac{\partial^2 \mathbf{v}}{\partial t^2} = \frac{B_0^2}{\rho \mu_0} \frac{\partial^2 \mathbf{v}}{\partial z^2}$$

Alfvén waves propagate in the direction of  $B_0$  and opposite direction, with a (phase) velocity

$$V_A = \frac{B_0}{\rho\mu_0}$$

which also the group velocity (no dispersion) In the core, inertial and Alfvén waves are present!

### Experiments with gallium

![](_page_59_Figure_1.jpeg)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### Experiments with liquid sodium

![](_page_60_Figure_1.jpeg)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### Experiments with liquid sodium

![](_page_61_Figure_1.jpeg)

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへ()・

# Torsional waves, LOD

![](_page_62_Figure_1.jpeg)

**Figure 9.** Meridional cuts of axisymmetric azimuthal (or zonal) flow snapshots (left, blue is westwards) and zonal flow acceleration snapshots (right), in the start-of-path (a) and Midpath model (b). The vertical black lines mark the axial cylinder tangent to the inner core (the tangent cylinder).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Aubert, GJI, 214, 2018

### Turbulence

![](_page_63_Figure_1.jpeg)

 $k_1\eta$ 

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### Weak turbulence

![](_page_64_Picture_1.jpeg)

The complex interactions between shock waves and expansion waves in an "overexpanded" supersonic jet. The flow is visualized by a schlierenlike differential interferogram.

<ロト <回ト < 三ト < 三ト = 三

### 6. Convection in the inner core

evidence for inner core dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- convection model
- top/down mantle effect

### Another seismic observation

![](_page_66_Figure_1.jpeg)

Waszek *et al.*, Nature Geoscience **4**:4, 2011

There exists a sharp,

difference between eastern and western hemispheres

・ コ ト ・ 同 ト ・ ヨ ト ・

## Hemispheric asymmetry

Eastern and Western hemispheres have different surface properties S. Tanaka and H. Hamaguchi, JGR 1997

![](_page_67_Figure_2.jpeg)

## A slow layer above the ICB

- Adiabatic gradient throughout A.M. Dziewonski and D.L. Anderson, *PEPI*, 25, 1981 PREM
- First observation
   A. Souriau and G. Poupinet, GRL, 18, 1991
- Global P-velocity model B.L.N. Kennett, E.R.
   Engdahl and R. Buland, *GJI*, 122, 1995 ak135
- Earth's core P-velocity model X. Song and D.V.A. Helmberger, JGR, 100, 1995 PREM2

![](_page_68_Figure_5.jpeg)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

## Asymmetric forcing for the outer core

![](_page_69_Picture_1.jpeg)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Asymmetric gyre in the outer core

A. Pais and D. Jault, GJI 2008 N. Gillet, A. Pais and D. Jault, GJI 2009

![](_page_70_Picture_2.jpeg)

![](_page_70_Picture_3.jpeg)

Coriolis

Buoyancy

Lorentz

![](_page_70_Picture_6.jpeg)

Torsional oscillations Gillet et al., Nature, 465, 2010

### Heterogeneity of magnetic secular variations

![](_page_71_Figure_1.jpeg)

(日)

э

from Andy Jackson
## Alternative view: role of the mantle

Aubert *et al.*, Nature **454**, 2008 Control of the outer core dynamics by mantle heterogeneity



Gubbins *et al.*, Nature **473**, 2011 suggest convection can locally melt the ICB

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## A few thoughts

- we expect progress from computer power: large Ra, very different diffusivities
- we still need some experiments
- we need more thoughts on convection models: compressibility, (weak) turbulence models
- we need better knowledge of  $\alpha$ ,  $\sigma$ , k
- debate between internal or external origin of forces driving inner core convection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00