LITHOSPHERE AND

MANTLE INTERACTIONS

MAËLIS ARNOULD

maelis.arnould@univ-lyon1.fr

École Doctorale des HOUCHES

12 JULY 2021

Draw / write whatever comes first to your mind when you think about :

« Plate tectonícs »

A SMALL SUMMARY OF THE LECTURE

- A bit of history...
- The theory of plate tectonics and its limitations
- What drives plate tectonics?
- How to create new plates and plate boundaries?
- Dynamic topography: what does that mean?

• Before 1930, geologists already had a good knowledge of:

- Geological mapping
- The geometry of geological units
- Paleontology
- **Geophysics** (gravimetry, seismology, fluid mechanics)

BUT no global model of how the internal Earth works!

• Theory of the thermal contraction of the Earth (<1930)

Éduard Suess (1831-1914), "les bassins océaniques sont des aires d'affaissement, [...] reproduisant les affaissements que nous avons reconnus dans l'intérieur des continents."

Cooling of the Earth's interior

Geology school book, 9th grade (4ème), V. BOULET, 1925

Some intriguing observations...

Correspondance of the shapes of Africa and South-America

1 SNIDER'S RECONSTRUCTION OF 1858 This was the first diagram of the fit made to explain the similarities of 300-million-year-old fossils in the coal deposits of Europe and North America.

Snider-Pellegrini, 1858

Nappes with different ages and nature dansin mountains explained by important lateral motions

Marcel Bertrand, 1884

From continental drift...

Alfred Wegener (1880-1930)

Alfred Wegener, 1915-1924

• From continental drift...

Oceanic rocks are different from continental rocks. Continents(sial) drift over the solid mantle (sima) ⇒ Isostasy

The **centrifugal force** (linked to Earth's rotation) would induce a **drift of continents towards the equator** and the combined action of **the Earth's rotation** and **the tidal force** would induce a **drift of continents toward the West**.

• ... to the theory of plate tectonics

Keith Runcorn (1922-1995)

Harold Jeffreys (1891-1989)

Arthur Holmes (1890-1965)

Marie Tharp (1920-2006)

Tuzo Wilson (1908-1993)

Frederick Vine and Drummond Matthews

... and many more ...

Harry Hess (1906-1969)

MANTLE

WATER

SEALEVEL

CONTINENT

MOHOL

• ... to the theory of plate tectonics

Xavier Le Pichon

Xavier Le Pichon, 1968

THE PLATE TECTONICS' THEORY TODAY

Bird, 2003

What are the manifestations of plate tectonics?

Bird, 2003

SOME EXAMPLES OF EVIDENCE OF PLATE TECTONICS

Surface topography

SOME EXAMPLES OF EVIDENCE OF PLATE TECTONICS

World seismicity

ONE EXAMPLE OF APPLICATION OF THE THEORY

WHERE ARE THE PLATE BOUNDARIES?

50° Diffuse boundaries on continents Eurasia 45° 40° 35° 1 30° acific Ocean 25° India 20 mm/a 20° 10 mm/a 80° 85° 90° 95° 100° 105° 110° 115° 120° 125° Mw 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 20 50 100 200 400 700 0 Earthquake depth (km)

WHERE ARE THE PLATE BOUNDARIES?

WHERE ARE THE PLATE BOUNDARIES?

RECONSTRUCTING PAST PLATE TECTONIC MOTIONS

RECONSTRUCTING PAST PLATE TECTONIC MOTIONS

Comparison of 3 models of tectonic recontructions of the position of continents 780 Ma ago

MOVING PLATES RELATIVE TO ... WHAT? Spin axis Matthews et al., 2016 Indian/Atlantic moving hotspot absolute reference frame Africa East Antarctica North America Australia Northern Iberia European Craton

410 Ma

• Use of lower-mantle slab remnants?

410 Ma

Matthews et al., 2016

20

• Use of lower-mantle slab remnants?

410 Ma

• Fixed mantle plumes?

Matthews et al., 2016

SC

410 Ma

• Is everything moving?

Tarduno et al., 2003

Moving plumes?

• Is everything moving?

Tarduno et al., 2003

Moving plumes?

410 Ma

Matthews et al., 2016

S

• Is everything moving?

True Polar Wander?

S

Moving plumes?

410 Ma

"Geodynamic" optimization of plate tectonic reconstructions?

e.g. Tetley et al., 2019

Müller et al. 2019

WHAT ABOUT THE DRIVERS OF PLATE TECTONIC MOTIONS?

WHAT ABOUT THE DRIVERS OF PLATE TECTONIC MOTIONS?

Fig. 1. Block diagram illustrating schematically the configurations and roles of the lithosphere, asthenosphere, and mesosphere in a version of the new global tectonics in which the lithosphere, a layer of strength, plays a key role. Arrows on lithosphere indicate relative movements of adjoining blocks. Arrows in asthenosphere represent possible compensating flow in response to downward movement of segments of lithosphere. One arc-to-arc transform fault appears at left between oppositely facing zones of convergence (island arcs), two ridge-toridge transform faults along ocean ridge at center, simple arc structure at right.

Isacks et al., 1968

WHAT ABOUT THE DRIVERS OF PLATE TECTONIC MOTIONS?

Davaille et al., 2017

What dríves plate tectonícs?

WHAT DRIVES MANTLE CONVECTION?

Forces implied in mantle convection:

Viscous dissipation

Buoyancy forces

$$Ra = \frac{\alpha \rho g \Delta T D^3}{\kappa \eta}$$

Thermal dissipation

THE ROLE(S) OF SUBDUCTION?

• Slab pull

Davies and Richards, 1992

THE ROLE(S) OF SUBDUCTION?

Slab pull

Davies and Richards, 1992
Slab pull

Forsyth and Uyeda, 1975

THE INDIAN OCEAN BASIN

Arnould, Seton and Tsekhmistrenko, 2020

THE INDIAN OCEAN BASIN 200 -В Convergence rate (mm/year) 50 -(1)150 Ma (5) 00 0 Ind-Ant 6 50· Ind-Afr 0 80 60 40 20 0 Age (Ma) Pusok and Stegman, 2020 Réunion Neotethys ocean closure

Seton et al., 2012

Indian plate relative acceleration (> 15 cm/yr)

THE INDIAN OCEAN BASIN

From Forsyth and Uyed<u>a, 1975</u>

Slab pull and double-subduction

Late Cretaceous

Dilek and Furnes, 2019

Neotethys ocean closure

150 Ma

Seton et al., 2012

Réunion

• Slab pull and double-subduction

Van der Voo et al., 1999

Jagoutz et al., 2015

• Problem: evidence of slab breakoff?

THE ROLE(S) OF SUBDUCTION? The Indian Plate: an anomaly? • Continental area 50 Area (10⁶ km²)

ARAB

5

Velocity (cm yr⁻¹)

UN N

0

0

EUR SA ANT AF CAR

10

COC

NAZ PAC

Conrad and Lithgow-Bertelloni, 2002

GRAVITATIONAL POTENTIAL ENERGY

The effect of mountains

Typical reblochon from les Houches

GRAVITATIONAL POTENTIAL ENERGY

The effect of ridge push

40°

Eurasian Plate

Sandiford et al., 1995

A ROLE FOR MANTLE PLUMES?

Arnould, Seton and Tsekhmistrenko, 2020

A ROLE FOR MANTLE PLUMES?

• Plume push?

Pusok and Stegman, 2020

BACK TO PALEOMAG

"We propose that this circuit-wide spike in divergence rates is best explained as the artifact of a magnetic reversal time-scale error around the much studied Cretaceous- Tertiary boundary, and that the period spanning chrons C29–C28 lasted 70% longer than currently assumed. "

GOING GLOBAL...

• A conveyor belt?

GOING GLOBAL...

• Surface plate velocities as an expression of degree 2 convection?

Conrad et al., 2013

SLAB PULL VS MANTLE DRAG

Surface

Interior Coltice et al., 2020

SLAB PULL VS MANTLE DRAG

1 : collision zone

2: back-arc bassin

3: newly-formed subduction zone

SLAB PULL VS MANTLE DRAG

* D = drag coefficient D<0 => mantle drag dominates D>0 => slab pull dominates

710 Ma

Collision

Break-up

Coltice et al., 2020

WHAT CONTROLS THE LITHOSPHERE-MANTLE COUPLING?

• Rheology, the clue? But also our big problem... (as often...)

WHAT CONTROLS THE LITHOSPHERE-MANTLE COUPLING?

• Pressure gradients and shear stresses:

Barruol et al., 2019

How to initiate new splate boundaries?

A MULTI-SCALE PROBLEM

How to initiate new subductions?

SPONTANEOUS OR FORCED INITIATION?

Plate

fx_{pla}

Van Hinsbergen et al., 2021

 $t_0 + 35$

t₀ + 73

 $t_0 + 100$

•

Plumes as the driver of Global • Plate Reorganization events?

• On other planets? Example of Venus

Mantle convection and surface topography

WHAT IS DYNAMIC TOPOGRAPHY?

Rising light material Sinking dense material

IMPORTANCE OF DYNAMIC TOPOGRAPHY

Paleogeographic/paleotopographic reconstructions

Present-day

Spasojevic et al., 2009

95 Ma ago

IMPORTANCE OF DYNAMIC TOPOGRAPHY

Paleogeographic/paleotopographic reconstructions

IMPORTANCE OF DYNAMIC TOPOGRAPHY

(a)

MODELS OF DYNAMIC TOPOGRAPHY

OBERVATION-BASED DYNAMIC TOPOGRAPHY

POWER SPECTRUM OF DYNAMIC TOPOGRAPHY

POWER SPECTRUM OF DYNAMIC TOPOGRAPHY

Time: 600.00 My

POWER SPECTRUM OF DYNAMIC TOPOGRAPHY

To be continued...

CONCLUSIONS

- Plat tectonics convecting mantle interactions are extremely diverse...
- This is notably because plate tectonics is part of mantle convection.
- The forces driving plate tectonics are clearly identified, but their relative role in still a hot topic
- Processes leading to the formation of new plate tectonic boundaries are still debated
- There is still some room for improvement to fully-understand dynamic topography arising from mantle convection
- Need to account for more observations and for the complexity of rheological processes

CONCLUSIONS

- Plat tectonics convecting mantle interactions are extremely diverse...
- This is notably because plate tectonics is part of mantle convection.
- The forces driving plate tectonics are clearly identified, but their relative role in still a hot topic
- Processes leading to the formation of new plate tectonic boundaries are still debated
- There is still some room for improvement to fully-understand dynamic topography arising from mantle convection
- Need to account for more observations and for the complexity of rheological processes

> "Scientific debate" is a driver of new knowledge!

> The key(s) probably reside(s) in multi-disciplinary synergy

BONUS SLIDE:

DID THIS REALLY HAPPEN ?!

HOME ABOUT US NEWS DID THIS REALLY HAPPEN TO YOU?

