
Introduction	to	geophysical	
inverse	theory
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• What	is	an	inverse	problem?

• Examples
• Linear	case

• Existence/uniqueness/stability	of	solution
• Overdetermined/underdetermined	systems
• Weighted,	damped	least	squares
• Trade-offs	;	L- curve
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• Model	error
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• Weakly	non-linear	optimization
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Gold	buried	in	beach	example

Gravity



Unreasonable
Model with good fitTrue model



Geophysical Inverse Problem

• Infer some properties of the Earth
• -> “MODEL” :			m

• From a set of observations
• -> “DATA” :				d

• Assuming a specific method which relates the model 
parameters to the data

• -> “THEORY” :			F



Forward Problem
• Given a model m
• Predict a set of observations d

• m            d

• F is a functional that may be:
• Explicit or implicit
• Linear or non-linear

• F may contain theoretical 
assumptions/approximations

F

F	contains	the	physics

Inverse problem

• Given a set of data d, estimate model 
parameters.

• Problem can be stated implicitely:
• F(d, m) = 0

• Or explicitely
• d = F(m)

d mF-1



If it is linear, this relationship can take several 
forms:

• Discrete: 

• Continuous:

• Integral equation:

• Can always be reduced to discrete problem.   

Forward/inverse problem

j

M

j
iji mGd ∑

=

=
1

dxxmxGd ii )()(∫=

∫= dxxmyxGyd )(),()(

G is called the “kernel” for the problem



Example : catscan
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Non-linear

linearized



Another way to linearize:

Assume net absorption of x rays is small –
Replace exp(-x) by 1-x

Then discretize into small square boxes with constant
absorption coefficient cj

The integral becomes
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Seismic travel time tomography



T = 1
v0 (s)γ∫ ds = u0 (s)γ∫ ds

1) In the background, “reference” model: Travel time T along  a ray γ:

v0(s) velocity at point s on
the ray
u= 1/v is the “slowness”

Principles of travel time tomography

The ray path γ is determined by the velocity structure using 
Snell’s law.  Ray theory.

2) Suppose the slowness u is perturbed by an amount δu small enough
that the ray path γ is not changed. 

The travel time is changed by:

δT = δuds = −
γ

∫ 1
v0
2

γ

∫ δvds = − 1
v0γ

∫ δv
v0
ds



δTi = −
1

v0 (s)γ

∫ δv
v0
(s)ds = Gij
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where:

Gij = −
lij
v j0

lij is the distance travelled by ray i in block j
v0j is the reference velocity (“starting model”) in block j

Solving the problem: “Given a set of travel time perturbations δTi on an 
ensemble of rays {i=1…N}, determine the perturbations (dv/v0)j in a 3D
model parametrized in blocks (j=1…M}” is solving an inverse problem of
the form:

δ

d =Gδ m
or

δdi = Gij
j=1

M

∑ δmj i =1,N

d= data vector= travel time pertubations δT
m= model vector = perturbations in velocity



δ

d =Gδ m
or

δdi = Gij
j=1

M

∑ δmj i =1,N

G has dimensions M x N

Usually N (number of rays) > M (number of blocks):
“over determined system”

We write: GTδ

d =GTGδ m

GTG is a square matrix of dimensions MxM
If it is invertible, we can write the solution as:

δm̂ = (GTG)−1GTδd
where (GTG)-1 is the inverse of GTG
In the sense that (GTG)-1(GTG) = I,     I= identity matrix 

“least squares solution” – equivalent to minimizing ||d-Gm||2



δm̂ = (GTG)−1GTδd

- G contains assumptions/choices:
- Theory of wave propagation (ray theory)
- Parametrization (i.e. blocks of some size)

In practice, things are more complicated because GTG, in general, 
is singular:

“least squares solution”
Minimizes the sum of squared residuals:

δdi = Gij
j=1

M

∑ δmj i =1,N

Some Gij are null ( lij=0)->  
infinite elements in the inverse matrix  

Φ = 	1 𝑑" −1𝐺"*
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Inverse problems
• Existence of solution?

• Uniqueness of solution?
• Null space

• Stability of the solution:
• Many inverse problems are “ill-posed” - extreme 

sensitivity to initial conditions:
• m1 and m2 may not be “close” but the corresponding data 

elements d1 and d2 can be very “close”



How to choose a solution?

• Special solution that maximizes or minimizes some 
desireable property through a norm

• For example:
• Model with the smallest size (norm): 

mTm=||m||2=(m1
2+m2

2+m3
2+…mM

2)1/2

• Closest possible solution to a preconceived model 
<m>: minimize ||m-<m>||2

è regularization



• Overdetermined system
• e.g. fitting a straight line through a set of points
• Typically more data than unknowns (N>M)

• Underdetermined system
• More unknowns than data (M>N), but equations are 

consistent (provide independent constraints)

• Mixed determined systems
• The case for most problems



Least squares solution for overdetermined system
(e.g. straight line fitting)

• The equation to solve is:

• Minimize the misfit at each point:

• 𝜖" = 𝑑"- 𝑚- + 𝑚6𝑥"

• That is, minimize:

• Φ = 𝜀<𝜖 = ∑ 𝑑" − 𝑚- − 𝑚6𝑥" 6
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• Set derivatives of E to zero:

• More generally:
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• Solution doesnʼt always exist:
• E.g straight line problem: If we 

have only one data point . In this 
case:

• We need to add other 
constraints
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à Nature paper!

Conditions	 (independent	 variable)



Purely underdetermined problems

• Fewer equations than unknowns (N<M)

• Assume equations independent

• More than one solution – how do we choose the 
“right one”?

• Add “a priori information”
• For example: “line passes through the origin”
• Parameters have given sign, or lie in given range (e.g. 

density inside the earth should be between 1 and 50 
g/cm3) or its profile close to Adams-Williamson.

• Often, we choose to minimize the norm of the 
solution (given an appropriate norm)



• Example: minimize the size of the solution as 
measured by its Euclidian norm:

• Solve the following problem:
• Find m which minimizes L=||m||2, subject to the 

constraint that d-Gm=0

• Use “Lagrange multipliers”, minimize:
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Substitute m in Gm=d:

This gives λ and then m
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If equations independent, GGT is non-singular



Mixed-determined problems

• 2 – Minimize some combination of the misfit 
and the solution size:

• Then the solution is the “damped least squares 
solution”:

mmeem TT 2)( ε+=Φ

[ ] dGIGGm TT 12ˆ −
+= ε

Tikhonov
regularization

e=d-Gm



Summary
Overdetermined:
Minimize error
“Least squares”

Underdetermined:
Minimize model size
“Minimum length”

Mixed-determined:
Minimize both
“Damped least squares” [ ] dGIGGm TT 12ˆ −

+= ε
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Concept of ʻGeneralized Inverseʼ
• Generalized inverse (G-g) is the matrix in the linear 

inverse problem that multiplies the data to provide 
an estimate of the model parameters;

• For Least Squares

• For Damped Least Squares

• Note : Generally G-g ≠G-1

dGm g−=ˆ

[ ] TTg GGGG 1−− =

[ ] TTg GIGGG 12 −− += ε



• Generalize to the case where we want to find the solution closest to some 
particular model <m>, called the “a priori model”:

• Replace m by m-<m>

• Generalize to other norms:
• Example: minimize roughness, i.e. difference between adjacent model 

parameters.
• Consider ||Dm|| instead of ||m|| and minimize:

• More generally, minimize:
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Li	and	Romanowicz,	 JGR,	1996	 – SAW12D

Example of model covariance definition



• We may also want to weigh the misfits in 
data space (some observations more 
accurate than others). Instead of εTε, 
minimize:

• Φ=εTWeε

• Completely overdetermined problem: 

• Minimize Φ, then solution is:
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Weighted damped least squares

• In general we will want to minimize:
• Φ+ε2L

• The solution then has the form:
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For more rigorous and complete treatment (incl. non-linear):
See Tarantola (1985) Inverse problem theory
Tarantola and Valette (1982) RevGeo



Weighted damped least squares

Misfit of reference model

Model conditioning

Data weighting

mest =<m > +[GTWeG + ε
2Wm ]

−1GTWe[d −G <m >]

Perturbation to reference model



Other types of a priori information

• Linear equality constraints:
• Fm=h
• Example: mean of the model must equal some value h1:

• Use Lagrange multipliers…minimize Φ=εTε subject to the 
constraint Fm-h=0
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matrix equation:



Constrained fitting of a straight line

• d =m1+m2x, where line must pass through the 
point (x0, d0)

• Constraint:

• The problem to solve is then:
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Ingredients of an inversion:

• Importance of sampling/coverage
• mixture of data types

• Parametrization
• Physical (Vs, Vp, ρ, anisotropy, attenuation)
• Geometry (local versus global functions, size of 

blocks)

• Theory of wave propagation
• e.g. for travel times: finite frequency kernels/ray 

theory

SS



Summary points..

• In order to get more reliable and robust answers, we need to 
weigh the data appropriately to make sure we focus on fitting 
the most reliable data

• We also need to specify a priori characteristics of the model 
through model weighting or regularization

• These are often not necessarily constrained well by the data, 
and so are “tuneable” parameters in our inversions



Once a solution is found…

• How certain are we in our results?

• How well is the dataset able to resolve the chosen model 
parameterization?

• Are there model parameters or combinations of model parameters 
that we can’t resolve?



• As you increase the damping 
parameter θ, more priority is given 
to model-norm part of functional.
– Increases Prediction Error
– Decreases model structure 
– Model will be biased toward 

smooth solution

• How to choose θ so that model is 
not overly biased?

• Leads to idea of trade-off 
analysis.

Trade offs: example of damped least squares
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data	misfit	(d-Gm)
λ1,λ2	(regularization)

“L-curve”



Implementation

• Run inversion for a 
number of different 
regularization values.

• Plot data residual versus 
model norm for 
different inversions.

• Choose inversion result 
at knee of ʻLʼ curve.



Model evaluation

• Model resolution:
• – Given the geometry of data collection and the choices of model 

parameterization and regularization, how well are we able to image 
target structures?

• Model error:
• – Given the errors in our measurements and the a priori model 

constraints (regularization), what is the uncertainty of the 
resolved model?



Model Resolution Matrix (linear case!)

• How accurately is the value of an inversion parameter 
recovered?

• How small of an object can be imaged ?

• Model resolution matrix R:

• R can be thought of as a spatial filter that is applied to 
the true model to produce the estimated values.

• Often just main diagonal analyzed to determine how spatial resolution 
changes with position in the image.

• Off-diagonal elements provide the ʻfilter functionsʼ for every 
parameter.

m̂ =G−gdobs =G−gGmtrue = Rmtrue



The resolution matrix

• Think of it as a 
filter that runs a 
target model 
through the data 
geometry and 
regularization to see 
how your inversion 
can see different 
kinds of structure

• Does not account 
for errors in theory 
or noise in data



Masters, CIDER 2010



80%

Checkerboard test

m̂ = Rmtrue

R =G−gG
R contains theoretical assumptions
on wave propagation, parametrization
And assumes the problem is linearAfter Masters, CIDER 2010



Beware the checkerboard!

• Checkerboard tests really only 
reveal how well the experiment can 
resolve checkerboards of various 
length scales

• For example, if the study is 
interpreting vertically or laterally 
continuous features, it might make 
more sense to use input models 
which test the ability of the 
inversion to resolve continuous or 
separated features

Davaille and	Romanowicz,	2020,	Tectonics



Model error
• Resolution matrix tests ignore effects of data error

• Very good apparent resolution can often be obtained by decreasing 
damping/regularization

• If we assume a linear problem with Gaussian errors, we can propagate the 
data errors directly to model error

• Simple covariance: assume data are uncorrelated with equal variance σd
2:

• For the least squares solution:

vMdm +=ˆ
TMdMm ][cov][cov =

12121 ][]][[]][[][cov −−− == GGGGGGGGm T
d

TTT
d

TT σσ



Linear approaches:
resolution/error tradeoff

Bootstrap error map (Panning 
and Romanowicz, 2006) Checkerboard resolution map



Takeaway	 :

• In	order	to	understand	a	model	produced	by	an	inversion,	we	need	to	
consider	resolution	and	error

• Both	of	these	are	affected	by	the	choices	of	regularization
• More	highly	constrained	models	will	have	lower	error,	but	also	poorer	
resolution,	 as	well	as	being	biased	 towards	the	reference	model

• Ideally,	one	should	explore	a	wide	range	of	possible	regularization	
parameters



Damped weighted least squares

Misfit of reference model

Model weighting

Data weighting

mest =<m > +[GTWeG + ε
2Wm ]

−1GTWe[d −G <m >]

Perturbation to reference model



Maximum likelihood estimation

• Assume that observations are independent.

• Given a model m, we have a probability function fi(di|m) 
for each observation I

• Likelihood function: joint probability density for a vector 
of independent observations d:

• Choose the model that MAXIMIZES L(m/d) 

)|()..|()|()|( 2211 mdfmdfmdfdmL nn=

I- Consider data space



Data with normally distributed errors

• If the linear inverse problem is discrete, the Max. 
Likelihood solution is then the least squares solution.

• To show this:
• Assume that data have independent random errors that are 

normally distributed

• Probability density for di, with standard deviation σi
and expected value zero:

• Likelihood function is :

22 2/))((
2/1)2(

1)|( iii Gmd

i
ii emdf σ

σπ
−−=

L(m | d) = 1
(2π)n/2Πi=1

n σ i

Πi=1
n e−(di−(Gm)i )

2 /2σi
2



L(m | d) = 1
(2π)n/2Πi=1

n σ i

Πi=1
n e−(di−(Gm )i )

2 /2σi
2

= Aexp(− (di − (Gm)i )
2 / 2σ i

2 )
i=1

n

∑

= Aexp(− 1
2
(d −Gm)tCD

−1(d −Gm) )

• L is a monotonically increasing function:
– Maximize L ß> maximize log L. The problem 

becomes a minimization problem:

– This amounts to scaling the system of equations 
by a diagonal weighting matrix:

min (di − (Gm)i )
2

σ i
2 =min (d −Gm)tCD

−1(d −Gm)#$ %&
i=1

n

∑
i.e. least squares

W =CD
−1 = diag(1 /σ1,1 /σ2..1 /σn )



II- Now consider Model space

• A priori information on the model m:

• Assume m is a sample of a known Gaussian distribution whose 
mean is <m> (the “prior” – what we previously called the 
“reference model”) and covariance matrix CM. The 
corresponding probability density function is, in model space:

• where A is a constant

• Assuming that data and model are 
independent, the joint likelihood function will 
have the form:

ρM (m) = Aexp(−
1
2
(m− <m >)tCM

−1(m− <m >)



L(m | d) = 1
(2π)n/2Πi=1

n σ i

Πi=1
n e−(di−(Gm )i )

2 /2σi
2

×ρM (m)

= Aexp − (di − (Gm)i )
2 / 2σ i

2

i=1

n

∑ −
1
2
(m− <m >)tCM

−1(m− <m >)
(

)
*

+

,
-

= Aexp − 1
2
(d −Gm)tCD

−1(d −Gm)− 1
2
(m− <m >)tCM

−1(m− <m >)
(

)*
+

,-

Maximizing L(m/d) is then equivalent to minimizing:

2S(m) = (d −Gm)tCD
−1(d −Gm)+ (m− <m >)tCM

−1(m− <m >)

Which results in the already established solution in the linear case:



Damped weighted least squares
(linear case) - > Maximum likelihood solution

Misfit of reference model

Model weighting

Data weighting

mest =<m > +[GTWeG + ε
2Wm ]

−1GTWe[d −G <m >]

Perturbation to reference model

We=	CD-1
Wm=CM-1

With	 <m>	=	“m	prior” A	posteriori	 covariance:	 !CM = (G
tCD

−1G +CM
−1)−1

mest =mprior + (G
tCD

−1G +C−1
M )

−1GtCD
−1(dobs −Gmprior )Or:



What about non-linear 
problems?

Tarantola A. and B. Valette (1982)  Rev. Geophys. 20, 
219-232.

General non-linear inverse problem:
Tarantola and Valette formalism



Non-linear case

• In this case, we have: d = g(m), where g is non-linear, and we 
cannot replace g by the matrix G. We have to write:

• And minimize:

L(m | d) =

= Aexp − 1
2
(d − g(m))tCD

−1(d − g(m))− 1
2
(m− <m >)tCM

−1(m− <m >)
"

#$
%

&'

2S(m) = (d − g(m))tCD
−1(d − g(m))+ 1

2
(m− <m >)tCM

−1(m− <m >)



• Case I: weak non-linearity

• g(m) can be linearized around mprior=<m>

• Then minimization problem leads to the solution:

• The a posteriori covariance is still:

g(m) ~ g(mprior )+G(m−mprior ) Gij =
∂gi

∂mj

(mprior )

mest =mprior + (G
tCD

−1G +C−1
M )

−1GtCD
−1(dobs − g(mprior ))

!CM = (G
tCD

−1G +CM
−1)−1



Linear/	Weakly	non-linear

Linear	– least	squares	
works	and	𝐶G4 is	
accurate

Linearizable	around	starting	
model
	𝐶G4 is	probably	OK

Tarantola,	2005

A	priori	
information

relationship
between	data	and	model



• In the case when non-linearity is too strong, but we 
can assume g(m) is linear in a neighborhood containing 
significant model probability, then we need to use an 
iterative method in order to approach the solution 
correctly.

• Starting if possible as close as possible to the 
global maximum.

• Often one chooses m0 = mprior

• Eg. Iterative quasi Newton method will write:

• With dn=g(mn) and Gn calculated at mn.

mn+1 =mn + (Gn
tCD

−1Gn +C
−1
M )

−1 Gn
tCD

−1(dobs − dn )+CM
−1(mprior −mn )"# $%



Importance of theory (i.e. “g”): forward versus inverse 
problem
• It is incorrect to replace g(m) by Gm in the term d-g(m) that appears at the n’th iteration of 

the inversion.
• This is only correct if the problem is linear

• Likewise, it is important to have as accurate a theoretical representation of g(m) in this 
residual term, as possible.

• d-g(m) defines the (non-flat) misfit surface and this allows us to determine the location 
of the true minimum

• On the other hand, one can be more tolerant of approximations in the computations of the 
matrix G at each step

• In the limit, all one needs to know is an approximate direction of the gradient. If it is 
approximately right, but not rigorously “true”, the next iteration will help correct it

• In the appendix of Lekic and Romanowicz (2011), we introduce errors in both g and G and 
show that the bias in G has a second order effect on the error in the solution**, whereas the 
bias in g has a first order effect.

=> choice of using SEM for forward modeling part of full waveform inversion



Lekic and	Romanowicz,	 2011	GJI	– after	Tarantola (2005)	 Fig	 3.2

Case	 1:
Error	on	 g	has	a	gaussian distribution
around	 the	true	relationship
Þ Model	 distribution	 is	wider	 but	still
Gaussian

Case	 2:
Non-Gaussian	 bias	 in	 the	theory	 “g”
-=>The	 resulting	 model	 is	biased

=>	choice	of	using	SEM	for	forward	modeling	part	of	full	waveform	inversion
and	less	heavy	computationally	NACT	(asymptotic	mode	coupling)	for	the	 inverse	part
This	also	allows	us	to	use	the	faster	converging	Gauss-Newton	 inversion	method	 (as	opposed	 to	
conjugate-gradients	as	in	inversions	based	on	“adjoints”



Model	 SEMUCB_WM1	
– French	 and	Romanowicz	 (2015)

Model	 evaluation	

Standard	 error		by
Jackknife	 approach

n	=	number	 of	datasets	 =12
d	=	number	 of	deletions	 per
Dataset	realization



PITCAIRN

Iteration	2

Iteration	1 C)

C)

Iteration	3

Inversion with different
starting model

Target	model:	 SEMUCB_WM1

Star
ting	

Starting	model:S362ANI

C)

Romanowicz	et	al.,	unpublished
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Data

Synthetics	 SEMum2

SEMum2 constructed with data at Δ>15o,T>60 s; 
Here: comparison is shown down to 40 s and regional distances

Event not used in the inversion

SEMum2 validation using RegSEM

French	 et	al.,	2013



Data

Synthetics	 SEMum2

SEMum2 validation using RegSEM



French	 and	Romanowicz	 (2014)

Linear	 resolution	 analysis



SEMum2:	
French,	 Lekic,	 Romanowicz,	 2013



Non-linear	à multi-modal	
posterior	on	m,	𝐶G4 is	
woefully	invalid!
Don’t	use	least-squares!	
rjMcMC J

Linearizable around	
most	likely	model
Must	iterate!
	𝐶G4 might	be	OK

Tarantola,	2005



Trumpian /	Brexistential
nothing	will	work!	𝐺𝑜𝑜𝑑	𝑙𝑢𝑐𝑘!
Give	up	and	get	a	drink
(quote	after	Ved Lekic,	2018)

Tarantola,	2005



Model space search approaches

• When the relationship between data and model – i.e. g(m) – is non-
linear, linear approaches can be inadequate, i.e. stuck in local 
minima and underestimating model error.

• Many current approaches focus on exploration of the model space 
Eliminate	need	for

• à less biased estimates of model parameters

• Some have flexible parameterization: “transdimensional”
• Some estimate data uncertainty: “hierarchical”
• Yield ensemble of models that can be analyzed to map uncertainty and non-

uniqueness



Exploit	vs.	explore?

Grid	search,	 Monte	
Carlo	 search

From	Sambridge,	
2002

Markov	Chain	
Monte	Carlo	 and	
various	 Bayesian	
approaches



Press,	1968	Monte	Carlo	inversion



sample inverse problem
di(xi)	=	sin(ω0m1xi)	+	m1m2

with ω0=20

true solution
m1= 1.21,	m2 =1.54

N=40 noisy data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

x

d



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

x
d

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m2

m
1

 

 

20

40

60

80

100

120

140

160

180

200

220

(A)

(B)

Grid	search

Example	 from	
Menke,	 2012



Markov	Chain	Monte	Carlo	(and	other	
Bayesian	approaches)
• Many	derived	from	Metropolis-Hastings	algorithm	which	uses	
randomly	sampled	models	that	are	accepted	or	rejected	based	on	the	
relative	change	in	misfit	from	previous	model

• End	result	is	many	(often	millions)	of	models	with	sample	density	
proportional	to	the	probability	of	the	various	models



Trans-dimensional	 inversion:

Number	 of	parameters	 (here	 layers)	 is	itself	 considered	 as	an	unknown

Bodin et	al.,	2014



Trans-dimensional	 inversion:

Bodin et	al.,	2014

Trade-off	 between	heterogeneity	 and	 radial	anisotropy
Residual	 Homogeneization



Bodin et	al.,	2016,	 GJI

Transdimensional inversion
for	Vs	 and	azimuthal	 anisotropy

Station	 FFC	 (Canada)

dispersion

APM

LAB

MLD



Evaluating	an	inverse	model	paper

• How	well	does	the	data	sample	the	region	being	modeled?		Is	the	
data	any	good	to	begin	with?

• Is	the	problem	linear	or	not?		Can	it	be	linearized?		Should	it?
• What	kind	of	theory	are	they	using	for	the	forward	problem?
• What	inverse	technique	are	they	using?		Does	it	make	sense	for	the	
problem?

• What’s	the	model	resolution	and	error?		Did	they	explain	what	
regularization	choices	they	made	and	what	effect	it	has	on	the	
model?



For	further	reference

• Textbooks
• Gubbins,	“Time	Series	Analysis	 and	Inverse	Theory	for	Geophysicists”,	 2004
• Menke,	“Geophysical	 Data	Analysis:	 Discrete	 Inverse	Theory”	3rd ed.,	2012
• Parker,	“Geophysical	 Inverse	Theory”,	1994
• Scales,	Smith,	and	Treitel,	 “Introductory	Geophysical	 Inverse	Theory”,	2001
• Tarantola,	“Inverse	Problem	Theory	and	Methods	 for	Model	Parameter	
Estimation”,	 2005


