Introduction to geophysical
inverse theory




Outline

* What s an inverse problem?
e Examples

* Linear case

* Existence/uniqueness/stability of solution
Overdetermined/underdetermined systems
Weighted, damped least squares
Trade-offs ; L- curve
Model evaluation

e Model error
e Resolution matrix

* Maximum likelihood approach (if time permits)

* Non-linear case

* Weakly non-linear optimization
* Model evaluation

* Parameter search methods
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Geophysical Inverse Problem

 Infer some properties of the Earth
« ->“MODEL” : m

 From a set of observations
e >“DATA” : d

« Assuming a specific method which relates the model
parameters fo the data
« > “THEORY" : F



Forward Problem Inverse problem

e Given a set of data d, estimate model

* Predict a set of observations d
parameters.

F
. m—— d F-1
d —— m

* F is a functional that may be:

- Explicit or implicit * Problem can be stated implicitely:

 Linear or non-linear *F(d,m)=0
* F may contain theoretical o
assumptions/approximations * Or explicitely
« d=F(m)

F contains the physics




Forward/inverse problem

If it is linear, this relationship can take several
forms:

* Discrete:

M
d, = ZGl.jmj
=

e Continuous:

d = f G.(x)m(x)dx

G is called the “kernel” for the problem

* Integral equation:

d(y) = [G(x, y)m(x)dx

* Can always be reduced to discrete problem.




Example : catscan

<§.> . dl /ds = -c(x,y)l

s~ body

I,= I, exp (... f c(x,y) ds) Non-linear
beam i

lnIo-—lnI,=f

c(x,y) ds linearized
beami



Another way to linearize:

I;=1I, exp (" f c(x,y) ds)
Assume net absorption of x rays is small - beam i
Replace exp(-x) by 1-x

Then discretize into small square boxes with constant
absorption coefficient c;

The integral becomes

=1 (1- X2 ¢iAsyy) i=1N

g

data
]0 model

- matrix equation d=Gm
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Seismic travel time tomography

tudied using travel time tomography.
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Principles of travel time tomography

1) In the background, “reference” model: Travel time T along a ray y:

1 vo(s) velocity at point s on
I = ds = f U, (s)ds the ray
"V (S) ’ u= 1/v is the "slowness”

The ray path vy is determined by the velocity structure using
Snell's law. Ray theory.

2) Suppose the slowness u is perturbed by an amount du small enough
that the ray path y is not changed.

The travel time is changed by:

5T=f5uds=—fi26vds=—fi@ds
Y Yo

y yvO vO

Figure 7.3-1: Geometry of a region being studied using travel time tomography.
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oT, = —f ! ﬂ(S)als
g Vo (8) v,
where
..
Gl.j =——L
v,

lij is the distance travelled by ray iin block j
Vol is the reference velocity (“starting model”) in block j

Solving the problem: "Given a set of travel time perturbations 6T; on an
ensemble of rays {i=1..N}, determine the perturbations (dv/vp)j ina 3D
model parametrized in blocks (j=1..M}" is solving an inverse problem of

the form:
5d = Gom
or
M
od, =Y G,om,

j=1

d= data vector= travel time pertubations 8T
m= model vector = perturbations in velocity

i=1,N

Figure 7.3-1: Geometry of a region being studied using travel time tomography.
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65? = Gom G has dimensions M x N

or Usually N (number of rays) > M (number of blocks):
“over determined system”

M
d, =Y Gom, i=1,N

Jj=1

Wewrite:  G'8d = G' G

G'G is a square matrix of dimensions MxM
If it is invertible, we can write the solution as:

o = (G'G)'God

where (6TG)1is the inverse of G7G
In the sense that (676)1(67G)=I, I= identity matrix

“least squares solution” - equivalent to minimizing ||d-Gml|,




“least squares solution”

51/;\1 = (GTG)_IGT(Sd Minimizes the sum of squared residuals:

i=N M 2
i=1 j=1

Figure 7.3-1: Geometry of a region being studied using travel time tomography.

- G contains assumptions/choices:

- Theory of wave propagation (ray theory) | |
- Parametrization (i.e. blocks of some size) = d= -
In practice, things are more complicated because 676G, in general, Block ]
is singular: \\ /
IS
M G,
d, =Y Gom, i=1,N

j=1

Some Gjj are null ( 1;;=0)->
infinite elements in the inverse matrix



Inverse problems

« Existence of solution?

* Uniqueness of solution?
* Null space

« Stability of the solution:

 Many inverse problems are “ill-posed” - extreme
sensitivity to initial conditions:
« ml and m2 may not be “close” but the corresponding data
elements dl and d2 can be very “close”



How to choose a solution?

« Special solution that maximizes or minimizes some
desireable property through a norm

 For example:
« Model with the smallest size (horm):
mTm=|[m]|2=(m2+mz>+ms?+. .my2)1/2
* Closest possible solution to a preconceived model
<m>: minimize ||m-<m>||,

= regularization



* Overdetermined system
* e.g. fitting a straight line through a set of points
* Typically more data than unknowns (N>M)

« Underdetermined system

* More unknowns than data (M>N), but equations are
consistent (provide independent constraints)

* Mixed determined systems
 The case for most problems




Least squares solution for overdetermined system
(e.g. straight line fitting)

The equation to solve is:

d =m+myx, i=1LN
N>2

Minimize the misfit at each point:
e; = d;-(m{ + myx;)
That is, minimize:

®=¢c"e=3,(d —my —myx;)?




« Set derivatives of E to zero:

ok _ 2Nm, +2m22xi —22611- =0

om,

E — mlme

om, . 2m12xi +2mzzxi2 —ZEdixl. =0

* More generally:

E=ée"e=(d-Gm) (d - Gm)

RIEMLE

=1

N Least squares solution:
_O 22mk lq zk qui
dm,

G'Gm-G'd=0

-lc’c|'c"d



* Solution doesn’t always exist:

* E.g straight line problem: If we
have only one data point . In this

case.
N .
[GTG]= ;)Cl _ 1 X
ix ﬁxz X x12
| = i i=1 i ]

* We need to add other
constraints




Purely underdetermined problems

« Fewer equations than unknowns (N<M)
« Assume equations independent

* More than one solution - how do we choose the
“right one”?
« Add “a priori information”
« For example: “line passes through the origin”
 Parameters have given sign, or lie in given r'cmged(e5.8.

density inside the earth should be between 1 an
g/cm3¥ or its profile close fo Adams-Williamson.

* Often, we choose to minimize the norm of the
solution (given an appropriate norm)




« Example: minimize the size of the solution as
measured by its Euclidian norm:

[m= (S m?)

« Solve the following problem:

» Find m which minimizes L=||m||2 subject to the
constraint that d-Gm=0

 Use "Lagrange multipliers”, minimize:

M N M
O(m) = Y m; + >4 [a’i - EGl.jmj]
j=1 i=1 Ji

=1



Substitute m in Gm=d:
d =G|G"A/2]
This gives A and then m

i=G"\6G"|'d

If equations independent, GG is non-singular



Mixed-determined problems

« 2 - Minimize some combination of the misfit
and the solution size:

Dd(m)=e'e+e’m'm e=d-6m

* Then the solution is the "damped least squares
solution™

Tikhonov

=|GTG + e[ GTd regularization
| ]




Summary

Overdetermined:

Minimize error 1 = [GTG}IGTCZ

“Least squares”

Underdetermined:

\I\V\ir.\ir.nize model s”ize 5 = GT[GGT}ld
Minimum length

Mixed-determined:

Minimize both . [GTG . 82]}1GTd

"Damped least squares”



Concept of ‘Generalized Inverse

« Generalized inverse (679) is the matrix in the linear
inverse problem that multiplies the data to provide
an estimate of the model parameters;

m=G4d
* For Least Squares

6« =lc"G|'G"

* For Damped Least Squares T R
G =|6G"G+e|'G

* Note : Generally 69 267!



e Generalize to the case where we want to find the solution closest to some
particular model <m>, called the “a priori model”:

* Replace m by m-<m>

e Generalize to other norms:

« Example: minimize roughness, i.e. difference between adjacent model
parameters.

 Consider ||Dm|| instead of ||m|| and minimize:

[Dm]r[Dm]= m' D' Dm=m'W m 1 1l m, -
e Dm = -1 1 m,
* More generally, minimize: 1 1
-1 1
L= (m=—<m>)'W (m-<m>) T

m® =<m>+W G'[GW G''[d -G <m >]




Example of model covariance definition

xTCo1x

om\?® [8*m\?
- // [mmz'l'ﬂz (B—T:) 4"'73(51,1‘:) +14|Vym|?

2 am om
|15l Vi G b )

8?m 3?*m
+77( 12 |7'=7'+ B2 lr=r_ )2] df?

+/ [18(87mon)? + 19| V187 mon|?] 92, (11)

drdf)

Li and Romanowicz, JGR, 1996 — SAW12D



« We may also want to weigh the misfits in
data space (some observations more
accurate than others). Instead of ¢,
minimize:

o P=g™W,e

CI)(m) — ZNd (dj_gj(m))z

= )
Jj=1 of

« Completely overdetermined problem:
* Minimize ®, then solution is:

mest — [GTVI/eG]_l GTVV;d




Weighted damped least squares

* In general we will want tfo minimize:
o O+e2l

* The solution then has the form:
m® =<m>+GWG+eW |'"G'W][d-G<m>]

or, equivalently :
est -1 ~T -1, ~T 2117 -11-1
m> =<m>+W G [GW G +e W |[d-G<m>]
For more rigorous and complete treatment (incl. non-linear):

See Tarantola (1985) Inverse problem theory
Tarantola and Valette (1982) RevGeo



Weighted damped least squares

Data weighting

\ Misfit of reference model
Model cpnditio}i&g
! N

m =<m>+{G'W.G+eW T'G'W.[d-G <m>]

Perturbation 3[o reference model




Other types of a priori information

* Linear equality constraints:
* Fm=h
« Example: mean of the model must equal some value h;:

[ m, | We obtain the augmented
matrix equation:
m,
1
Fm=—(1L.1] |=h G'G F'l[m] [G'd
F 0 (|4 h
My,

* Use Lagrange multipliers..minimize ®=¢'e subject to the
constraint Fm-h=0



Constrained fitting of a straight line

« d =m;+myx, where line must pass through the
point (Xo, do)

e Constraint:

Fm = [1 xo]

m,
} _1d,]

m,
* The problem to solve is then:

- Y, 1l w PDEN I
Edix = Exl. Extz X,
d, 1

x, 0

0




Whole Earth tomography

Ingredients of an inversion:

« Importance of sampling/coverage
* mixture of data types

* Parametrization
* Physical (Vs, Vp, p, anisotropy, attenuation)

« Geometry (local versus global functions, size of
blocks)

* Theory of wave propagation

* e.g. for travel times: finite frequency kernels/ray
theory




Summary points..

* In order to get more reliable and robust answers, we need to

weigh the data appropriately to make sure we focus on fitting
the’most reliable data

« We also need to specify a priori characteristics of the model
through model weighting or regularization

* These are often not necessarily constrained well by the data,
and so are "tuneable” parameters in our inversions



Once a solution is found...

« How certain are we in our results?

« How well is the dataset able to resolve the chosen model
parameterization?

 Are there model parameters or combinations of model parameters
that we can't resolve?



Trade offs: example of damped least squares

As you increase the damping
parameter 0, more priority is given
to model-norm part of functional.

- Increases Prediction Error
- Decreases model structure

- Model will be biased toward
smooth solution

“L-curve”

How to choose 6 so that model is
not overly biased?

model size or roughness

Leads to idea of trade-off

analysis.
data misfit (d-Gm)

A\, (regularization)



Implementation

* Run inversion for a
number of different
regularization values.

e Plot data residual versus
model norm for
different inversions.

« Choose inversion result
at knee of ‘L’ curve.

solution seminorm [ILmll,

107 7
104 \
1 - k
e
10_:0—4 0 5 102

residual norm [IGm —dll,

101



Model evaluation

 Model resolution:

- - Given the geometry of data collection and the choices of model
parameterization and reqularization, how well are we able to image
target structures?

 Model error:

- - Given the errors in our measurements and the a priori model
constraints (reqularization), what is the uncertainty of the
resolved model?



Model Resolution Matrix (linear casel)

« How accurately is the value of an inversion parameter
recovered?

* How small of an object can be imaged ?

* Model resolution matrix R:

m=G*d"” =G*Gm, =Rm

true true

* R can be thought of as a spatial filter that is applied to
the true model to produce the estimated values.

« Often just main diagonal analyzed to determine how spatial resolution
changes with position in the image.

« Off-diagonal elements provide the ‘filter functions’ for every
parameter.



The resolution matrix

 Think of itas a
filter that runs a
target model
through the data
geometry and
regularization to see
how your inversion
can see different
kinds of structure

* Does not account
for errors in theory
or noise in data



All Data

r 40 km

Plate 2. Cross-sections of the Earth at various depths showing perturbations of shear velocity (in percent). This

high-resolution model was d using surf: ave and f illation data as well as body wave data.
Mas fer’ 5 , C I DE R 2 01 0 Compare with plate 1. Note that the upper mantle is completely diffesent but the anomalies in the lower




Checkerboard test

true R contains theoretical assumptions
G*G on wave propagation, parametrization

After Masters, CIDER 2010 And assumes the problem is linear

=
I



Beware the checkerboard!

* Checkerboard tests really only
reveal how well the experiment can
resolve checkerboards of various
length scales

« For example, if the study is
inferpreting vertically or laterally
continuous features, it might make
more sense to use input models
which test the ability of the
inversion to resolve continuous or
separated features

Davaille and Romanowicz, 2020, Tectonics



Model error

* Resolution matrix tests ignore effects of data error

* Very good apparent resolution can often be obtained by decreasing
damping/regularization

« If we assume a linear problem with Gaussian errors, we can propagate the
data errors directly to model error

* Simple covariance: assume data are uncorrelated with equal variance og4?:
m=Md +v
[covm]=M[covd]M"

* For the least squares solution:
[covm]=[[G'G]'G"1o;[[G'G]'G"] = o7 [G'G]"



A B
100 km { 5.17% 100 km ( 3.12%

Linear approaches: .
resolution/error tradeoff

) ki ° kel B
y
, 400
) L 800
| 1200 E
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: 2000 e
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. -2400
1 K 2800
01 2 3 2770 km { 5.28% 2770 km ( 3.07% )
RMS of error j 3,
»
00 05 1.0
-_—)

error in 8In(Vg or £)(%)

Bootstrap error map (Panning

and Romanowicz, 2006) Checkerboard resolution map



Takeaway :

* In order to understand a model produced by an inversion, we need to
consider resolution and error

* Both of these are affected by the choices of regularization

* More highly constrained models will have lower error, but also poorer
resolution, as well as being biased towards the reference model

* |deally, one should explore a wide range of possible regularization
parameters



Damped weighted least squares

Data weighting

Misfit of reference model

Model weightind\]
i AN

m® =<m>+HG'WG+e’W, 1"'G'W[d-G<m>]

Perturbation 3[o reference model




Maximum likelihood estimation

I- Consider data space

« Assume that observations are independent.

* Given a model m, we have a probability function f(d;|m)
for each observationI

» Likelihood function: joint probability density for a vector
of independent observations d:

Lim|d) = f,(d,|m)f,(d,|m)..f,(d, |m)

» Choose the model that MAXIMIZES L(m/d)




Data with normally distributed errors

* If the linear inverse problem is discrete, the Max.
Likelihood solution is then the least squares solution.

 To show this:

« Assume that data have independent random errors that are
normally distributed

* Probability density for d;, with standard deviation o;
and expected value zero:

1 —~(d,-(Gm))? 1207
fi(d; [m) = me

l

* Likelihood function is :

L(m | d) _ /21 H::l=le_(di_(Gm)i)2/20i2
Q2" "o,




1 2.2 L
L(m|d) = 1" e o2 = Aexp(=S (d. - (Gm),)* /202)
( ) (27;)"/2H?=10i i=1 p g( i ( )z i

= Aexp(—%(d -Gm)'C; (d-Gm) )

* L is a monotonically increasing function:

— Maximize L <> maximize log L. The problem
becomes a minimization problem:

min E (d; - gm),-)2 _ min[(d -Gm)'C;' (d - Gm)]

1

l.e. least squares
— This amounts to scaling the system of equations
by a diagonal weighting matrix:
W =C; =diag(l/c,,1/0,.1/G))



IT- Now consider Model space

* A priori information on the model m:

« Assume m is a sample of a known Gaussian distribution whose
mean is <m> (the "prior” - what we previously called the
"reference model”) and covariance matrix Cy. The
corresponding probability density function is, in model space:

P, (m)= Aexp(—%(m— <m >)tC;j(m— <m>)

 where A is a constant

« Assuming that data and model are
independent, the joint likelihood function will
have the form:



1 2 2
Limld)= IT e~ @il e iy (m)
Qm)"* Mo, P

= Aexp _E(di —-(Gm),)’ /207 - %(m— <m>)'C, (m-<m>)
i=1

= Aexp[—%(d -Gm)'C;;'(d —Gm)—%(m— <m>)'Cy (m-<m>)
Maximizing L(m/d) is then equivalent to minimizing:

285(m)=(d - Gm)tC,;I(d -Gm)+(m-<m >)tC;41 (m-<m>)

Which results in the already established solution in the linear case:



Damped weighted least squares
(linear case) - > Maximum likelihood solution

Data weighting

Misfit of reference model

. N
Model weighting A
| N

m® =<m>+{G'WG+eW 1"G'W[d-G <m>]

est 1
Or: m Prlor +w C ) G C (d‘)bs P”OV)
W= Cp? |
— -1 .
Wm_CIVI Perturbation to reference model

~ t -1 -1\-1
With <m> = “m prior” A posteriori covariance: CM = (G CD G+ CM )



What about non-linear
problems?

General non-linear inverse problem:
Tarantola and Valette formalism

Tarantola A. and B. Valette (1982) Rev. Geophys. 20,
219-232.



Non-linear case

* In this case, we have: d = g(m), where g is non-linear, and we
cannot replace g by the matrix G. We have to write:

L(mld)=
- Aexp|=—-(d - gm) C;)(d = g(m)) == (m= < m>) C =< m >
* And minimize:

28(m) =(d - g(m))' C,'(d - g(m))+ %(m— <m>)C; (m-<m>)



* Case I: weak non-linearity

+ g(m) can be linearized around m,.=<m>

agi
prior) Gij = 9
m;

gm)~gim,..)+G(m-m (,10,)

« Then minimization problem leads to the solution:

mest = mprior + (GtcglG + C;; )_1 Gtcgl (dobs - g(mprior ))

« The a posteriori covariance is still:

C, =(G'C,'G+C;))"



Linear/ Weakly non-linear

Linear — least squares Linearizable around starting
works and €, is model
accurate Cy is probably OK
A priori :
information
oy
g
S
&
relationship
between data and m




* In the case when non-linearity is too strong, but we
can assume g(m) is linear in a neighborhood containing
significant model probability, then we need to use an
iterative method in order to approach the solution
correctly.

« Starting if possible as close as possible to the
global maximum.

« Often one chooses Mo = mpr'ior'

 Eg. Iterative quasi Newton method will write:

m,, =m, +(G,C,'G,+C,))"'[G.C;\(d

obs

- dn) + C;/; (mprior - mn )]

« With d,=g(m,) and G, calculated at m,.



Importance of theory (i.e. "g"): forward versus inverse
problem

« It is incorrect to replace g(m) by Gm in the term d-g(m) that appears at the n'th iteration of
the inversion.

* This is only correct if the problem is linear

* Likewise, it is important to have as accurate a theoretical representation of g(m) in this
residual term, as possible.

« d-g(m) defines the (non-flat) misfit surface and this allows us to determine the location
of the true minimum

* On the other hand, one can be more tolerant of approximations in the computations of the
matrix G at each step

 In the limit, all one needs to know is an approximate direction of the gradient. If it is
approximately right, but not rigorously "true”, the next iteration will help correct it

* In the appendix of Lekic and Romanowicz (2011), we introduce errors in both g and G and
show that the bias in G has a second order effect on the error in the solution™, whereas the
bias in g has a first order effect.



Case 1:

Error on g has a gaussian distribution Case 2:

around the true relationship Non-Gaussian bias in the theory “g”
7+ Model distribution is wider but still -=>The resulting model is biased
Gaussian

m

Lekic and Romanowicz, 2011 GJI —after Tarantola (2005) Fig 3.2

=> choice of using SEM for forward modeling part of full waveform inversion

and less heavy computationally NACT (asymptotic mode coupling) for the inverse part

This also allows us to use the faster converging Gauss-Newton inversion method (as opposed to
conjugate-gradients as in inversions based on “adjoints”



Standard error by
Jackknife approach

c
R n—d -2
Gjackknife =\I TC [9(0 —9] ,

=1

C

~ 1 n!
where 6 = ol ;9(,, and C = an

n—d)’

n = number of datasets =12
d = number of deletions per
Dataset realization

Model SEMUCB_WM1
— French and Romanowicz (2015)
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Inversion with different PITCAIRN Iteration 1
starting model

Starting model:S362ANI

pitcalrn

kol e mom
(9°ZT+ / £°27) SAUIP

ok e mow
(6°L+ ] §°S") SAUIP

Rk e mom
(€°6+ / £°8") SAUIP

BB e e om
(Z'8+ / T°6°) SAUIP

Romanowiczet al., unpublished



SEMum?2 validation using RegSEM
C201108231751A: zZ

12° K38A

16° J32A

RSSD

Q LKWY
30° r‘ & BMO

34° COR

S Data v\,\,‘,\,\l\/\/\/\/\,V
200s

- Synthetics SEMum?2

-

25°

08/23/2011 Virginia eq.Mw 57

SEMum2 constructed with data at A>15°,T560 s;
Here: comparison is shown down to 40 s and regional distances

Event not used in the inversion French et al., 2013
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42°

Data

Synthetics SEMum?2

SEMum2 validation using RegSEM
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Linear resolution analysis

Input models (Max: -2.0%) 600 km width synthetic plumes dinVs -2.0 % B W +2.0 %

Whole-mantle 2000 km depth

Output: Hawaii-centered

Max: -1.5% Max: -1.1% Max: -1.0% Max: -1.0%

Output: Iceland-centered

Max: -1.2% Max: -0.8% Max: -0.8% Max: -0.8%

French and Romanowicz (2014)
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fraction of (A) input
model amplitude (%)

(7] -50% 0% +50%
-
=
% (B) V, vertical smearing
o=
g - 120km 270km 470km
R
5 » 200 Y
i ’
o
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o2 200 -
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(C) LVF-normal periodicity: APM-Normal bands at 250km depth
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Linearizable around
most likely model
Must iterate!

C,; might be OK

d=g(m

Non-linear = multi-modal
posterior on m, C,, is
woefully invalid!

Don’t use least-squares!
riMcMC ©
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Trumpian / Brexistential
nothing will work! Good luck!
Give up and get a drink
(quote after Ved Lekic, 2018)
m
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Model space search approaches

« When the relationship between data and model - i.e. g(m) - is non-
linear, linear approaches can be inadequate, i.e. stuck in local
minima and underestimating model error.

« Many current approaches focus on exploration of the model space

* > less biased estimates of model parameters

n

Some have flexible parameterization: *
Some estimate data uncertainty: “hierarchical”

Yield of models that can be analyzed to map uncertainty and non-
uniqueness



Exploit vs. explore?

Markov Chain
Monte Carlo and

/ various Bayesian

approaches

Evolutionary
programming

Grid search, Monte
Carlo search

Importance
sampling

Exploitation —»

Exploration e

Figure 6. A schematic representation of various search/opti-

mization algorithms in terms of the degrees to which they .
explore the parameter space and exploit information. Shaded From Sambridge,
borders indicate a deterministic (non-Monte Carlo) method. 2002

Uniform search includes the deterministic grid search.



Press, 1968 Monte Carlo inversion
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Figure 3. The six seismic and density Earth models that passed all tests shown in Figure 2 from the 5 million
generated (from Press [1968]).



sample inverse problem
di(x;) = sin(wymx;) + m;m,

true solution
mq,;= 121, m, :154‘

N=40 noisy data
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% @Grid search
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Example from
Menke, 2012



Markov Chain Monte Carlo (and other
Bayesian approaches)

* Many derived from Metropolis-Hastings algorithm which uses
randomly sampled models that are accepted or rejected based on the
relative change in misfit from previous model

* End result is many (often millions) of models with sample density
proportional to the probability of the various models



Trans-dimensional inversion:

Number of parameters (here layers) is itself considered as an unknown
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Bodin et al., 2014



Trans-dimensional inversion:

Depth (km)
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Bodin et al., 2014



Transdimensional inversion
for Vs and azimuthal anisotropy

Station FFC (Canada)

Surface waves dispe rsion
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Evaluating an inverse model paper

 How well does the data sample the region being modeled? Is the
data any good to begin with?

* |Is the problem linear or not? Can it be linearized? Should it?

* What kind of theory are they using for the forward problem?
 What inverse technique are they using? Does it make sense for the
problem?

 What’s the model resolution and error? Did they explain what
regularization choices they made and what effect it has on the

model?



For further reference

* Textbooks

* Gubbins, “Time Series Analysis and Inverse Theory for Geophysicists”, 2004
Menke, “Geophysical Data Analysis: Discrete Inverse Theory” 3" ed., 2012
Parker, “Geophysical Inverse Theory”, 1994
Scales, Smith, and Treitel, “Introductory Geophysical Inverse Theory”, 2001

Tarantola, “Inverse Problem Theory and Methods for Model Parameter
Estimation”, 2005



