The chemical composition of the Earth: Enstatite chondrite models

ABSTRACT

We propose a new model of Earth’s bulk composition based on enstatite chondrites (E-chondrites), the only chondrite group isotopically identical to the Earth. This model allows a quantitative study of accretion and differentiation processes in the early Earth. Conditions for core formation are evaluated using data on silica–iron equilibrium at high pressure and temperature and the exchange budget equation SiO2 + 2Fe = Si + 2FeO, which is the result of IW and Si–SiO2 oxygen buffers’ interaction and controls the evolution of mantle fO2. Based on that equation, ranges for the compositions of the Bulk Silicate Earth, the lower mantle and the core are deduced from the compositions of E-chondrites and their constituents. For these ranges of compositions, we show that during core differentiation, the mantle fO2 evolves naturally from ≈ IW-3.2 to IW-1.4±0.1. The model compositions are tightened using geophysical constraints on (1) the amount of light elements in the core, (2) the petrology of the upper and lower mantle and (3) the thermal and convective structure of the lower mantle. Our results indicate that the lower mantle is enriched in Si and Fe, which is consistent with recent geophysical studies, and depleted in highly refractory elements, notably in Uranium and Thorium.

1. Introduction

The Bulk Earth composition must be specified for models of accretion and differentiation, as well as for mantle convection calculations. This composition is rarely derived from an estimate of the starting material. Instead, it is often obtained from a Primitive Upper Mantle (PUM) composition deduced from terrestrial data and chondritic constraints (e.g. Hart and Zindler, 1986; McDonough and Sun, 1995; Lyubetskaya and Korenaga, 2007). With the hypothesis that the Earth’s mantle is homogeneous, the PUM composition is extended to the whole silicate Earth. Other determinations of the Bulk Earth composition (e.g. Ringwood, 1979; Allègre et al., 1995) also rely on the hypothesis of a homogeneous mantle. One difficulty with these models is that they cannot be assessed against independent data on the mantle and core of Earth, so that they can be considered as “open-ended”.

The model of a homogeneous mantle (at least for major elements) has been challenged by recent geophysical studies that advocate a chemically distinct lower mantle (e.g. Stixrude et al., 1992; Anderson, 2002; Cammarano and Romanowicz, 2007). Different interpretations of the geophysical data stem from various trade-offs between the thermal structure, the iron concentration and the silicate perovskite content of the lower mantle (Deschamps and Trampert, 2004). For example, Verhoeven et al. (2009), using electromagnetic and seismic data, suggest that the lower mantle is characterized by a progressive decrease of its perovskite content and a constant iron content, whereas Khan et al. (2008), using geodetic and seismic data, propose a lower mantle that is enriched in iron and depleted in silicium. Thus, current geophysical data cannot provide a precise estimate of lower mantle composition without additional constraints. An alternative strategy is to start from an estimate of the Bulk Earth composition and to evaluate the conditions of core–mantle differentiation. One may then compare the bulk mantle composition that is predicted with that of the upper mantle and hence assess the existence or absence of compositional differences between the lower and upper mantle.

Here, we argue in favour of a specific starting material, enstatite chondrites (referred to as E-chondrites in the following), which have the same isotopic composition as Earth. Relying on a pyrolitic composition for the Primitive Upper Mantle (PUM) and on a mechanism for core–mantle differentiation, we obtain a range of compositions for the Bulk Silicate Earth (BSE) and for the Primitive Lower Mantle (PLoM). The
model accounts for the presence of light elements in the core as well as of oxidized iron (FeII) in the mantle. Estimates of core and mantle compositions are evaluated using geophysical data, resulting in well-defined compositions of the Bulk Earth and its major envelopes.

2. Enstatite chondrites

2.1. The isotopic parenthood of Earth and E-chondrites

All chondrite classes display significant multi-elemental isotopic differences with the Earth’s mantle, with the sole exception of E-chondrites (Javoy, 1995, 2005). All elements investigated so far in E-chondrites have the same isotopic composition as terrestrial samples. This is true for oxygen (50% of the Earth’s atoms) (Clayton, 1984), nitrogen (Javoy and Pineau, 1983; Javoy et al., 1984, 1986; Javoy and Pineau, 1991; Cartigny et al., 1997), molybdenum and ruthenium (Dauphas et al., 2004), osmium (Meisel et al., 1996), radiogenic 53Cr and non-radiogenic 54Cr (Birck et al., 1999; Trinquier et al., 2007). Titanium is the latest addition to the list: huge 50Ti and 46Ti anomalies relative to the Earth’s mantle are found in all meteorites save for E-chondrites (Trinquier et al., 2009). Exceptions to this rule are found for silicon and tungsten, but can be attributed to internal processes, such as core formation (e.g. Trinquier et al., 2007).

Rare gases’ isotopes, commonly used as tracers of mantle dynamics, also link the Earth’s mantle to E-chondrites. Mantle-derived rocks have high ^{3}He/4He (7 to more than 50 times the atmospheric ratio) and 20Ne/22Ne ratios (higher than 12 instead of 9.8 for the atmospheric ratio)—the solar wind value being 13.8). The close-to-solar neon signature suggests that parent materials of the Earth had a solar-like signature, either a pure solar composition, or that of a solar component (Neon B) fractionated during solar wind implantation (Moreira and Allègre, 1998). The “solar” character of rare gases in E-chondrites was recognized long ago (e.g. Crabb and Anders, 1981), and appears best in their achondritic counterparts, the aubrites, such as Pesyanoe and Khortemiki (Patzer and Schultz, 2002). This solar character, found in “trapped” rare gases, is frequently “diluted” by cosmogenic noble gases, making the comparison of mantle solar and meteoritic trapped end members less accurate. The recent discovery of an enstatite chondrite particularly rich in implanted solar noble gases, SAU290, has however made this comparison very precise: its 20Ne/22Ne (12.96 ± 0.23), and 38Ar/40Ar (0.18847 ± 0.00044) ratios (Park et al., 2005) are identical to those of the Earth’s Lower Mantle end member (Trieblhoff et al., 2000; Raquin and Moreira, 2009).

2.2. The space of E-chondrite compositions

In his model of Earth composition, Javoy (1995) considered only the average EH composition, a plausible but unique composition. There is no reason, however, to suppose that the currently available E-chondrite population is truly representative of the whole range of compositions. A straight average may therefore be affected by a sampling bias. The isotopic argument applies to all E-chondrites, hence it provides no criterion for discounting any specific sample. For this reason, we attempt to generate the full compositional space of E-chondrites that will, furthermore, allow tests against petrological and geophysical criteria. E-chondrites have been separated into iron-rich EH (29 to 35% Fe) and iron-poor EL (20 to 29% Fe) (e.g. Mason, 1966; Keil, 1968; Wasson and Kallemeyn, 1988). These two meteorite families can be further subdivided according to petrological and textural characteristics, with an evolution index ranging from 3 for the most primitive objects to 6 for the most evolved (e.g. Kallemeyn and Wasson, 1986). EH are, on average, more “primitive” than EL. Finally, brecciated (“clasts”) textures, like in the largest E-chondrite, Abbe (Rubin, 1983) complete the description of the rich and complex history of E-chondrites (e.g. Rubin and Keil, 1983).

To reconstruct the full compositional space of E-chondrites, we take advantage of the fact that, irrespective of any classification or genetic hypothesis, all such chondrites can be described as assemblages of three groups of phases with variable chemical compositions and in variable amounts: metal, sulfide and silicate. Table 1 presents a compilation of the available mineralogical and chemical data (e.g. Keil, 1968; Rubin, 1983; Rubin and Keil, 1983; Easton, 1985; Lin and Kimura, 1998). The physical processes that have led to various proportions of the three groups in these objects are mostly the evolution from EH to EL and impact/breciation during the accretion of planetesimals or planetary bodies, and finally differentiation leading to aubrites by differentiation (e.g. Rubin, 1983; Kong et al., 1997).

We randomly mix the three groups of phases in the variable proportions and compositions displayed in Table 1. For each element, concentration is scaled to that of the dominant element of each phase, i.e. Fe for metal, S for sulfides and Si for silicates. We use a bootstrapping technique to randomly generate these ratios using log-normal distributions with the parameters given in Table 2. The concentration of the reference element in the denominator (Fe, S or Si) is then obtained by setting the sum of elements to 100%. We consider at this stage only those elements which control the geophysically testable properties of Earth’s envelopes:

- The major elements O, Si, Mg, Al, Ca, Fe, and Ni (99% of the Earth’s mass) and
- The minor elements Ti, Cr, Co, Mn, and Na (most of the remaining 1%).

We have paid attention to the volatile characteristics of some of these elements. In the above list, Ca, Al and Ti are considered as refractory and totally conserved during accretion. They belong to the refractory lithophile group (thereafter RLE), whose paired ratios are considered to be constant among chondrites (e.g. Hart and Zindler, 1986). Thus, on this point we agree with classical models, and set the two ratios Ca/Al and Ca/Ti, to values in the 0.90–1.20 and 16–22 ranges, respectively (McDonough and Sun, 1995).

Some elements in the list, Mg, Si, Fe, Ni, and Cr, are considered to be transitional because of their lower condensation temperature (e.g. Wasson, 1985; Lodders, 2003) hence may be partially lost during accretion. We do not think so and we shall consider them as refractory for now, and we will justifly this in the discussion of our results (Section 5.3).

Other elements in the list are volatile, namely S, Na and Mn. A large proportion of Na (and K) has clearly been lost during accretion. Their case has to be treated by correlating their terrestrial concentration to the retention of Mn, with a 50% condensation temperature of 1150±50 K that of a RLE element (e.g. constancy of K/U and Na/Ti ratios.) The proportion of Na (and K) has clearly been lost during accretion. Their proportion of Na (and K) has clearly been lost during accretion. Their

<table>
<thead>
<tr>
<th>Element</th>
<th>Silicates</th>
<th>Sulfides</th>
<th>Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>48.0 ± 0.47</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Si</td>
<td>29.7 ± 1.91</td>
<td>–</td>
<td>2.05 ± 0.92</td>
</tr>
<tr>
<td>Mg</td>
<td>19.5 ± 2.50</td>
<td>2.41 ± 2.11</td>
<td>–</td>
</tr>
<tr>
<td>Al</td>
<td>1.36 ± 0.33</td>
<td>0.24 ± 0.79</td>
<td>–</td>
</tr>
<tr>
<td>Ca</td>
<td>0.17 ± 0.08</td>
<td>4.43 ± 2.62</td>
<td>–</td>
</tr>
<tr>
<td>Fe</td>
<td>0.33 ± 0.57</td>
<td>52.1 ± 5.30</td>
<td>90.5 ± 1.36</td>
</tr>
<tr>
<td>Ni</td>
<td>–</td>
<td>0.02 ± 0.04</td>
<td>7.09 ± 0.90</td>
</tr>
<tr>
<td>S</td>
<td>37.8 ± 1.39</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
<td>0.70</td>
<td>–</td>
</tr>
<tr>
<td>Mn</td>
<td>0.03</td>
<td>2.11</td>
<td>–</td>
</tr>
<tr>
<td>Cr</td>
<td>0.13</td>
<td>1.56</td>
<td>–</td>
</tr>
<tr>
<td>Co</td>
<td>1.94</td>
<td>0.22</td>
<td>–</td>
</tr>
<tr>
<td>Na</td>
<td>0.09</td>
<td>0.17</td>
<td>–</td>
</tr>
<tr>
<td>K</td>
<td>68.3 ± 8.50</td>
<td>11.6 ± 4.09</td>
<td>20.1 ± 9.36</td>
</tr>
</tbody>
</table>

Table 1: Phase composition (in wt.%) and proportion (in wt.%) in natural EH and EL chondrites.
model, and the results clearly showed that Mn has been lost to a sizeable extent.

The case of sulfur is different, since it is not only volatile, but also competes with oxygen in establishing bonds with the other elements. However, sulfur is only a trace element in our planet, as shown on terrestrial grounds by Dreibus and Palme (1996), Sanloup et al. (2004), and Badro et al. (2007). As detailed further in the next section, we thus consider that S has been lost in the parent material of the Earth. To account for that loss in the generated sulfide compositions, we replaced S linked to Ca, Mg, and Al by O and we removed S linked to Fe (see Reactions (2) and (3) in the next section.)

We generate 1 million sets of mixtures of phases, and give the resulting compositions in Table 3, where they are compared with the average composition of EH and EL chondrites from Wasson and Kallemeyn (1988) after desulfurization (see next section). Our average synthetic model composition of E-chondrites corresponds to a weighted average of \(\approx 40\% \) EH and \(\approx 60\% \) EL. The range of synthetic compositions is illustrated graphically in Fig. 1, where we also show natural E-chondrites compositions as well as those ofaubrites and clasts. It can be seen that our composition space is also consistent with all the available data. With this composition space, we can account for that loss in the generated sulphide compositions, we replaced S linked to Ca, Mg, and Al by O and we removed S linked to Fe (see Reactions (2) and (3) in the next section.)

\[
\begin{align*}
\text{2SiO}_2 &= (\text{dissolved in metal}) + \text{SiO}_2(\text{crystalline: tridymite, quartz, glass}) - \text{silicifying}.
\end{align*}
\]

This reduction process is strongly “silicifying” (i.e., yields high Si/Mg), a feature which classical Earth models missed completely.

The composition of E-chondrites (free silica, 2 to 4% Si in Fe) allows the calculation of [SiO + SiS] fugacities in the range of \(10^{-6} \) to \(10^{-3} \) atm. These values may correspond to nebular pressures increased to 1–10 atm while keeping normal solar Si/H ratios. On the contrary, the sulfur pressure cannot be reconciled with a normal solar abundance at any reasonable pressure and may be the result of the volatile concentration peak flushed by the T-Tauri wind.

The high concentration of volatile elements due to the T-Tauri wind flash, and particularly the high proportion of sulfides, is likely to vanish under an increase of temperature. Such an evolution is already recorded in the EH (1000 K) to EL (1200 K) suite, where the S/Ca ratio drops from 6.8 to 3.3 and to 0.6, and the Na/Ca ratio from 0.8 to 0.55 and to 0.2 (Easton, 1985; Wasson and Kallemeyn, 1988). This decrease should be even more pronounced in the hotter Earth’s formation zone and during Earth accretion.

Petyaev and Khodakovskiy (1986; Fogel et al., 1989) imply a global Si enrichment of E-chondrites through the disproportionation reaction of silicon monoxide.

\[
\begin{align*}
\text{MgCaSi}_5\text{O}_{16} + 0.5\text{S}_2 &= \text{SiO}_2 + \text{MgSiO}_3 + \text{CaS} + 0.5\text{O}_2, \\
\text{Fe} + 0.5\text{S}_2 &= \text{FeS}.
\end{align*}
\]

The sulfurization reaction (to the right) proceeds under \(f_{\text{S}} \) to 10 orders of magnitude greater than the coexisting \(f_{\text{O}} \). This is necessary to stabilize sulfides against the intrinsically much more stable oxides.
and silicates. Such a f_{o_2} also points out to the abnormal and transitory character of the high f_{o_2} pulse. Desulfurization (to the left) will proceed because of the f_{o_2} decrease at the end of this pulse and/or of the increase in temperature, both likely evolutions during the course of the Earth’s accretion and the waning stages of the T-Tauri phase.

A related question concerns the location of these reactions. Enstatite chondrites are generally supposed to be located in the inner part of the asteroid belt, grossly between 2 and 3 UA. They represent the outer edge of the reaction zone whereas the material of the terrestrial planets was “synthesized” closer to the Sun, in hotter regions. Since at least Wetherill and Stewart (1989), although conventional wisdom frequently states otherwise, numerical models of terrestrial planet formation have shown that only a small fraction of the Earth forming material originated from regions beyond 2.5 UA (15% in average, and down to 1.6% according to O’Brien et al. (2006)), fully in line with our postulate.

3. Composition of the Bulk Silicate Earth and of the core

All the compositions of Table 3 are not appropriate to Earth and additional constraints must be considered. The most stringent constraints are provided by the size of the core (32.4% of the total mass) and its light elements’ concentration. A third constraint in our model comes from the chemical mechanism of core formation based on the reaction proposed by Javoy (1995),

$$2\text{Fe}_{\text{metal}} + \text{SiO}_2 = 2\text{FeO} + \text{Si}_{\text{metal}}$$

which is now accepted as an important mechanism for core differentiation (e.g. Malavergne et al., 2004; Frost et al., 2008), and couples the FeO concentration in the mantle to the Si content of the core. A key feature of this exchange mechanism is to augment the mantle FeO and f_{o_2} without requiring the accretion of increasingly oxidized material.

With regards to this mechanism, one should note the specific character of E-chondrites: they contain pure silica, which insures maximum silica activity, and $\approx 50\%$ enstatite, which also enforces higher SiO$_2$ activity than classical Earth’s compositions. E-chondrites also contain $2 \pm 1\%$ initial Si$_{\text{metal}}$ which contributes a significant fraction of the final equilibrium concentration. According to Malavergne et al. (2004) such an initial concentration is required to obtain $\approx 7\%$ Si in the core. The increase of Simetal from 2 to 5–8% is accounted for by the reduction of 3–5% pure silica from the bulk initial material, which is available in most of our model compositions.

3.1. Internal Redox evolution

The f_{o_2} conditions for the exchange of oxygen between SiO$_2$ and FeO during Reaction (4) can be specified by splitting it into two “half reactions”,

$$2\text{FeO} = 2\text{Fe} + \text{O}_2$$

$$\text{SiO}_2 = \text{Si} + \text{O}_2$$

with respective equilibrium constants K_{IW} and $K_{\text{Si-SiO}_2}$. Each one of these could act as an oxygen buffer fixing the f_{o_2}, if it were alone. Reaction (5) corresponds to IW buffer, for which

$$\log(f_{o_2}) = \log(K_{\text{IW}}(T,P)) + 2 \log(a_{\text{FeO}} / a_{\text{Fe}}).$$
Reaction (6) corresponds to another potential buffer for which
\[
\log \left(f_{\text{O}_2} \right) = \log \left(K_{\text{SiO}_2-\text{Si}}(T, P) \right) + \log \left(a_{\text{SiO}_2} / a_{\text{Si}} \right).
\] (8)

Javoy (1995) has shown that, in a closed system, SiO2 can oxidize Fe if temperatures are high enough, making \(f_{\text{O}_2} \) (i.e. \(a_{\text{FeO}_2}/a_{\text{Fe}_2\text{O}_3} \)) increase until Reaction (4) reaches equilibrium, such that the \(f_{\text{O}_2} \)'s corresponding to Reactions (6) and (5) become equal. The equilibrium constant of Reaction (4) is
\[
K_r(T, P) = \frac{K_{\text{w}}}{K_{\text{SiO}_2-\text{Si}}} = \frac{a_{\text{Fe}}^2 a_{\text{O}}}{a_{\text{FeO}}^2 a_{\text{Si}}} = \frac{x_{\text{Fe}}^2 x_{\text{Si}}}{x_{\text{FeO}} x_{\text{SiO}_2}} [K_0(T, P)]^2 \frac{y_{\text{Fe}}}{y_{\text{FeO}} y_{\text{SiO}_2}} ,
\] (9)

where \(a_x, x_y \) and \(\gamma_x \) are the activity, concentration, and activity coefficient of \(X \), respectively, and where \(K_0 \) is the "molar exchange coefficient" used in Frost et al. (2008).

\(K_r(T, P) \) can be calculated from the values of Gibbs free energy and volume changes from the literature (e.g. Robie and Hemingway, 1995), that predict an increase of \(K_r \) (hence of \(f_{\text{O}_2} \)) with both temperature and pressure. Experimental reactions between solid silicates and liquid metal confirm such an increase of \(K_r \) up to 25 GPa (e.g. Gessmann et al., 2001; Malavergne et al., 2004). This allows a sizeable Si uptake at relatively low \(P, T \) conditions (2–10 GPa, 1800–2200 K). In contrast, reactions between liquid silicate and liquid metal require higher \(P, T \) conditions to obtain a similar uptake, and seem to show rather a continuous decrease of \(K_r \) with pressure (Frost et al., 2008). That variety of situations makes the direct application of \(K_r \) calculation to temperatures larger than 3000 K and pressures larger than 25 GPa, rather difficult and inconclusive, as stated in Frost et al. (2008).

Because of these uncertainties, we used Reaction (4) solely as an exchange budget equation, and we checked the consistency of the results against experimental determinations.

3.2. Calculation of the core and mantle compositions

The stoichiometry of Reaction (4) is used to express the partition budget of Fe, O, and Si between the core and the mantle: each mole of Si transferred from silicate to metal corresponds to \(2(1-\alpha) \) moles Fe transferred to the mantle and \(\alpha \) moles of atomic oxygen transferred to the core through the dissolution reaction FeO → Fe_{metal} + O_{metal} (Asahara et al., 2007).

Thus:
\[
\text{SiO}_2_{\text{silicate}} + 2\text{Fe}_{\text{metal}} = \text{Si}_{\text{core}} + (2-\alpha)\text{FeO}_{\text{mantle}} + \alpha\text{Fe}_{\text{core}} + \alpha\text{O}_{\text{core}}.
\] (10)

For a given total amount of iron in the parent chondrite, the chosen amount of light elements sets the iron content of the core, and hence the amount of oxidized Fe in the mantle. The Fe content of the mantle sets the amount of Si in the core and thus the amount of O in the core by difference with the total light element concentration.

In order to compare our results with other core and mantle compositions from the literature, we considered that between 6 and 14% of light elements can be present in the core (Poirier, 1994), and that the iron content in the mantle may vary between 4 and 14%. The concentrations of the other elements entering the core (Ni, Co and Cr) are calculated using the range of partition coefficients found in the literature (e.g. Allègre et al., 1995; Corgne et al., 2008).

3.3. Average core and mantle compositions

The final compositions are shown in Fig. 2 as a function of the mantle Fe content, and in Table 4. Results are close to the composition of Abee (EH4), the largest enstatite chondrite (107 kg) fallen on Earth. Compared to the pyrolitic compositions given in Table 5, the E-Earth bulk mantle (BSE) compositions are very enriched in Si and Fe relative to Mg, and depleted in Al and Ca relative to Mg: the ratios Si/Mg (≈1.2), Fe/Mg (≈0.4) and Mg/(Al + Ca) (≈7.0) are significantly larger than typical pyrolitic values (Si/Mg ≈1.0, Fe/Mg ≈0.3, and Mg/(Al + Ca) ≈6.0). The oxygen fugacity corresponding to the model compositions have been raised from IW–3.4 (Fe_{silicate} = 0.833%) to IW–2.4 (Fe_{silicate} = 8.633%) for \(\gamma_{\text{FeO}} = \gamma_{\text{Fe}} = 1 \). The corresponding ΔIW would be –3.2 and –1.3 if we had taken \(\gamma_{\text{FeO}} = 3 \) and \(\gamma_{\text{Fe}} = 0.8 \) as proposed by Corgne et al. (2008).

3.4. Average P–T conditions of core formation

Average P–T conditions of core formation can be obtained from our Si_{core} and Fe_{mantle} model concentrations by using the exchange molar exchange coefficient \(K_0 \) of Reaction (9). Coefficient \(K_0 \) has been experimentally determined as a function of \(P \) and \(T \) by Frost et al. (2008). One way to decouple \(P \) and \(T \) is to use the distribution constant for the oxygen dissolution equation \(K_r(T, P) = x_{\text{Fe}} x_{\text{O}} / x_{\text{FeO}} x_{\text{SiO}_2} \) which is not much sensitive to pressure. To date this constant has only been measured between liquid metal and ferropericlase. The results of Asahara et al. (2007) and Ozawa et al. (2008) allow us to infer a temperature of 3300 ± 300 K, hence from Frost et al. (2008) \(K_0 \) a pressure range of 10 to 40 GPa. This takes us back to the debate of shallow versus deep magma ocean, as reviewed for example by Righter (2003).

Additional minor elements, Ni, Co and Cr, are used to further constrain the \(P, T \) conditions, based on the recent parameterization of partition coefficients of Corgne et al. (2009), and the oxygen fugacity determined in our model. We obtain a similar temperature range of ≈3300 ± 300 K, and we restrict the average equilibration pressure to ≈36 ± 4 GPa, for \(D_{\text{Ni}} = 27–28, D_{\text{Co}} = 22–25 \) and \(D_{\text{Cr}} = 2–4 \). That determination relies heavily on the strong pressure dependence of these partition coefficients. However, the parameterizations \(D = f(P, T) \) rely on the assumption that the activity coefficients in the liquid metal phase do not depend strongly on pressure (Corgne et al., 2008, 2009), which at present appears as a wishful thinking at best.

3.5. Lower mantle composition

If one accepts a pyrolitic composition for the Primitive Upper Mantle (PUM), down to a depth yet to be determined, one has to consider that the Primitive Lower Mantle (PLoM) was very different from pyrolite (except for RLE ratios): it was richer in Si, poorer in Ca and Mg, and all the more so that the pyrolitic PUM fraction is large. We define a "perovskite index" to quantify the difference between PUM and PLoM, \(P_v = (\text{Si} + 0.5\text{Al}) / (0.5\text{Al} + \text{sum of all other cations}) \). \(P_v \) is ≈0.67 for the pyrolite and ≈0.86 for the average E-Earth (\(P_v = 1 \) for pure perovskite.) The \(P_v \) value for PLoM will be even larger and imply a different phase assemblage than in a pyroclitic lower mantle: a smaller amount of Ca–perovskite, a smaller amount of ferropericlase and a silicate perovskite richer in iron. The extent of the PUM may vary between 25% (the present mass fraction of the upper mantle) and 50% (based for example on the Argon budget). If the PUM represents more than 36% of the mantle (i.e. depths ≈1000 km), the PLoM's perovskite index would be larger than 1, and stishovite would be present in the lower mantle.

At this stage, the E-Earth modeling stricto sensu is completed: we have established a continuum of compositions for E-objects from which we have extracted a tighter range of compositions compatible with the size of the core and its possible range of light elements' content linked to the mantle Fe content by the exchange Reaction (4). That range can be refined further with geophysical constraints.

4. Geophysical constraints

4.1. Light elements in the core: experimental results and ab initio calculations

Ab initio calculations of Alèft et al. (2002) lead to the conclusion that the core contains 2.5 ± 1.0% of O and 5.6 ± 1.6% of (Si + S) by weight.
However, the Fe–FeS phase diagram at high pressure shows that S is not likely to account for the density jump at the Inner Core Boundary (Morard et al., 2008). Furthermore, the presence of S can explain neither the density and velocity profile of the Earth’s inner core (Badro et al., 2007), nor that of the outer core (Sanloup et al., 2004). Based on these results, we thus consider that the core contains no S, and hence 5.6 ± 1.6 wt.% of Si, a result in line with the recent independent experimental geochemical study of Shahar et al. (2009).

4.2. Bulk mantle composition: seismological and geodynamical constraints

Because of the large uncertainties that remain on lower mantle shear moduli, mantle compositions derived from PREM inversion remain controversial. Matas et al. (2007) have proposed a range of molar compositions for the lower mantle that is compatible with most of the other inversion studies: FeO = 0.055–0.070, MgO = 0.426–0.480, and SiO₂ = 0.399–0.461. We use these results to constrain further our model composition. We first infer the composition of a Primitive Lower Mantle (PLoM) by subtracting from our BSE compositions a random proportion between 25 and 50% of a pyrolitic PUM as given in Lyubetskaya and Korenaga (2007). Among the PLoM compositions compatible with Matas et al. (2007), we then select those that yield a PLoM denser than PUM. This is necessary for the following reason: the average lower mantle temperature gradient inferred from PREM is super-isentropic (e.g. Shankland and Brown, 1985; Matas et al., 2007). In a homogeneous convective system with internal heating, viscous dissipation and secular cooling, however, the average temperature profile is sub-isentropic (e.g. Parmentier and Sotin, 2000; Jaupart et al., 2007). On the other hand the PREM super-isentropic temperature profile is consistent with thermo-chemical convection, i.e. a chemically denser lower mantle (e.g. Davaille, 1999).

The compositions resulting from the geophysical filters are shown in Fig. 3. In order to obtain a more precise composition, we further reduce this range of compositions using the present knowledge of the chemical composition of natural enstatite chondrites (Weeks and Sears, 1985; Kallemeyn and Wasson, 1986; Patzer et al., 2001): we have mixed in random proportions the natural chondrites and retained only the mixtures that fall within the range of the previous geophysical filter. The intersection between the natural compositions and the model composition provides a most probable composition with an associated standard deviation given in Table 6. We now discuss the implications of this final result.

Table 4

<table>
<thead>
<tr>
<th>Element</th>
<th>Bulk Silicate Earth</th>
<th>Core</th>
<th>Bulk Earth</th>
<th>Abee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>19.1 ± 2.61</td>
<td>13.0</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>1.28 ± 0.39</td>
<td>0.86</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>24.1 ± 2.25</td>
<td>18.9</td>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>1.28 ± 0.41</td>
<td>0.86</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>8.63 ± 2.70</td>
<td>32.8</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>0.19 ± 0.05</td>
<td>1.86</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>44.6 ± 1.12</td>
<td>31.0</td>
<td>31.3</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.07 ± 0.02</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.27 ± 0.14</td>
<td>0.36</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>0.011 ± 0.005</td>
<td>0.25</td>
<td>0.09</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Fig. 2. Range of compositions for the Bulk Silicate Earth from E-chondrites (small dots) as a function of Fe content in the mantle. The plain circle corresponds to the estimate of Javoy (1999) from an average EH composition, the big box shows the range of compositions found in the literature for the pyrolitic upper mantle, and the black square is the average composition for the present model.
5. Discussion and perspectives: composition and dynamics of the Earth

5.1. The heterogeneous mantle

Matas et al. (2007) have shown that a homogeneous pyrolitic composition is too rich in MgO and too poor in SiO$_2$ to fit the PREM data, a result confirmed experimentally by Ricolleau et al. (2009). However, various compositions can fit the PREM equally well, especially if one takes into account anelastic contributions (Matas and Bukowinski, 2007). The additional constraints brought by the E-chondrite model can be used to choose between these different solutions. For example, Khan et al. (2008) and Verhoeven et al. (2009) propose a lower mantle depleted in SiO$_2$, which is not consistent with the E-Earth model. In the same way, from the two sets of compositions proposed by Matas et al. (2007), only that with a Mg/Si ratio decreasing in the lower mantle is compatible with our results.

Another way to further our knowledge of the chemical and thermal structure of the mantle is to compare the predictions of mantle flow models with the characteristics of 3D tomographic images. Up to now, models of purely thermal convection (Schuberth et al., 2009) and models of thermo-chemical convection with a denser lower mantle (Deschamps et al., 2007; Steinberger and Holme, 2008) are able to account for seismic anomalies equally well. Many pitfalls and uncertainties involved in flow models and tomographic inversions prevent a definitive answer (Simmons et al., 2009), but it seems that a chemically heterogeneous lower mantle is more consistent with tomographic models (Hernlund and Houser, 2007).

5.2. RLE enrichment factor and volatility of elements during Earth formation

The enrichment of Bulk Silicate Earth in RLE elements (Ca, Al, Ti, Rare Earth Elements (REE), U, Th, etc.) relative to CI chondrites is classically quantified using the enrichment factor defined as $E.F. = \frac{(C_{\text{RLE}})_{\text{mantle}}}{(C_{\text{RLE}})_{\text{CI}}}$ (e.g. Hart and Zindler, 1986; McDonough and Sun, 1995; Lyubetskaya and Korenaga, 2007). Its value for different models varies from 2.1 to 2.8 (see Lyubetskaya and Korenaga (2007) for a comparison of BSE compositions between different models.

<table>
<thead>
<tr>
<th>Mg</th>
<th>Si</th>
<th>Al</th>
<th>Ca</th>
<th>Fe</th>
<th>Ni</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8</td>
<td>21.5</td>
<td>2.16</td>
<td>2.31</td>
<td>5.82</td>
<td>0.20</td>
<td>Allègre et al. (1995)</td>
</tr>
<tr>
<td>23.4±0.93</td>
<td>21.1±0.58</td>
<td>1.87±0.32</td>
<td>2±0.34</td>
<td>6.22±0.42</td>
<td>0.20±0.02</td>
<td>Lyubetskaya and Korenaga (2007)</td>
</tr>
<tr>
<td>22.8±0.6</td>
<td>21.5±0.6</td>
<td>2.15±0.02</td>
<td>2.29±0.02</td>
<td>5.86</td>
<td>0.22</td>
<td>Hart and Zindler (1986)</td>
</tr>
<tr>
<td>23.1</td>
<td>21.1</td>
<td>2.1</td>
<td>2.5</td>
<td>6.08</td>
<td>0.21</td>
<td>Jagoutz et al. (1979)</td>
</tr>
<tr>
<td>22.8±2.23</td>
<td>21±2.10</td>
<td>2.35±0.24</td>
<td>2.53±0.25</td>
<td>6.26±0.63</td>
<td>0.20±0.02</td>
<td>McDonough and Sun (1995)</td>
</tr>
<tr>
<td>21.2</td>
<td>23.3</td>
<td>1.93</td>
<td>2.07</td>
<td>6.23</td>
<td>0.20</td>
<td>Taylor and McLennan (1985)</td>
</tr>
<tr>
<td>22.2±0.27</td>
<td>21.2±0.14</td>
<td>2.38±0.20</td>
<td>2.61±0.22</td>
<td>6.30±0.04</td>
<td>0.19±0.01</td>
<td>Palme and O’Neill (2003)</td>
</tr>
<tr>
<td>23.0</td>
<td>21.1</td>
<td>1.75</td>
<td>2.21</td>
<td>6.22</td>
<td>–</td>
<td>Ringwood (1975)</td>
</tr>
<tr>
<td>22.2</td>
<td>21.3</td>
<td>2.17</td>
<td>2.50</td>
<td>5.83</td>
<td>0.27</td>
<td>–</td>
</tr>
<tr>
<td>17.9</td>
<td>23.6</td>
<td>1.36</td>
<td>1.48</td>
<td>10.9</td>
<td>0.27</td>
<td>Javoy (1999)</td>
</tr>
</tbody>
</table>

Table 5
Comparison of BSE compositions between different models.

Fig. 3. Distribution of compositions (Si, Mg, and Fe) for a pyrolitic uppermantle (PUM, back red histogram) according to Lyubetskaya and Korenaga (2007), and for an EH lowermantle (PLoM, front green histogram). The RLE enrichment factor is calculated for the whole mantle.
Part of that “enrichment” is due to the concentration of RLE in the silicate part by core formation, i.e., as the core represents 67.6% of the mass of the Earth, a factor of 100/67.6 = 1.479 (e.g., McDonough and Sun, 1995). In order to explain the extra enrichment Hart and Zindler (1986), like Ringwood (1979), propose that the Earth is “equivalent to devolatilized CI chondrite material” either by volatilization or non condensation. This amounts to 41.8% volatiles removed and yields a total enrichment factor of 100/67.6 × 100/(100 − 41.8) = 2.55. The conditions are different for our Earth material as it is virtually volatile-free. As average EH chondrites have RLE concentrations essentially equal to those in CI (Wasson and Kallemeyn, 1988), our enrichment factor relative to CI is the same as relative to EH and reduces essentially to that due to core formation, i.e., ≈ 1.5.

The RLE enrichment factor can be used to infer the behavior of supposedly less refractory elements, such as Si, Mg, Fe and Mn. For example, combining the mantle composition of Lyubetskaya and Korenaga (2007) with a reasonable Si content in the core (say 7%), we find that Mg/Al and Si/Al ratios are larger in the Bulk Earth than in the CI chondrites, which would imply that—if CI were indeed the Earth building material—Mg would be more enriched than RLE (2.4 instead of 2.1). In our opinion this is a good indication that (1) EH material is more consistent with the PUM composition of Lyubetskaya and Korenaga (2007) than CI material, and (2) that Mg and Si elements were not labile during accretion. Things are different for Mn as the E-Earth model predicts a large enrichment in Mn in the lower mantle, which seems difficult to justify. As Mn is the less refractory of the four elements considered above, we conclude that the temperature and rate of accretion were such that Mn was partially lost. Such a result can later be used as a constraint for the modeling of planetary accretion.

5.3. Heat production in the lower mantle

The low RLE enrichment factor predicted by E-Earth model has two important consequences: (1) depletion in Ca and Al in the lower mantle, which implies a low concentration of Al in Mg-silicate perovskite and depletion of Ca-silicate perovskite (if not absent), and (2) strong depletion in radioactive elements U and Th (and K for a given K/U ratio) with respect to conventional primitive mantle models. An E-Earth lower mantle is thus characterized by less internal heating, which may affect its secular cooling as well as the cooling of the core. Labrosse and Jaupart (2007) showed that the current imbalance of the surface heat flow and radiogenic heating can be explained by a maximum age of subduction independent of thermal buoyancy. Within this framework, E-Earth models can easily fit the thermal constraints. The partitioning of cooling between core and mantle remains an open question. All else being equal, low internal heat generation in the lower mantle implies a large heat flow from the core. This is in line with the observation of double seismic discontinuities in D′, explained by a double crossing of the perovskite–postperovskite phase transition provided that the temperature at the CMB is larger than the Clapeyron slope (Hernlund et al., 2005). This argument predicts large values of the heat flow at the CMB, in agreement with the most recent (and largest) estimates in the 7–15 TW range (Lay et al., 2008).

5.4. Origin of mantle chemical heterogeneity

Many processes have been advocated for the generation of a heterogeneous early mantle (e.g., Javoy, 1995; Anderson, 2002). A complete discussion of this issue is out of the scope of this paper, and we only discuss here the possibility of heterogeneous accretion, as it is easily feasible in the chemically diverse world of E-chondrites.

Our final E-Earth composition corresponds roughly to a mixture of ≈ 2/3 of EH chondrites and ≈ 1/3 of EL chondrites. As EH chondrites are richer in iron, hence denser than EL chondrites, a mixture of EH and EL will tend to gravitationally segregate during the first stage of the planetary differentiation, yielding a chemically stratified proto-Earth with a lower mantle enriched in (denser) EH-type material and an upper mantle enriched in EL-type material. EL chondrites are more in line with a pyrolite mantle through their larger Mg, Ca and Al content, but they are somewhat too rich in Si. However, the dissolution of Si in metal through Reaction (4) is enhanced at intermediate pressure, with a peak at 25 GPa (Javoy, 1995), and this may provide the required reduction of Si content in the upper mantle. The resulting primordial heterogeneities between the upper and the lower mantle have been affected by partial convective mixing, which resulted in the thermochromatic domes present today in the lower mantle as the remnants of the Primitive Lower Mantle (PLOM) (e.g., Davaille, 1999; Samuel et al., 2005; Deschamps et al., 2007).

Within the framework of “gravitational” differentiation of the mantle, the material keeps its chondritic characteristics at all depths, and especially its RLE ratios (Ca/Al and Al/Ti). This particular feature is in line with the hypotheses used to infer the PUM composition in classical models (e.g., Lyubetskaya and Korenaga, 2007). Thus, all the consequences linked to their use of chondritic elemental ratios are preserved.

5.5. The way to future experimental tests of E-Earth model

Most experimental results on the problem of core formation have been obtained with compositions which do not correspond to the Earth’s oxygen content, and existing Si solubility experiments generally ignore the role of the initial balance of oxidation of the Si–Fe system. It is also in that sense that the E-chondrites are, Redoxwise, identical to Earth. This is why it is essential to use their composition to experimentally study the formation of the core.

More generally the “extent of oxidation” of the bulk experimental starting material should be equivalent to that displayed by existing Bulk Earth models to properly test the possibility induced by Reaction (4), that purely internal processes can lead to an increase of the oxidation state of the mantle without any need for the external input of more oxidized material. To Bulk Earth scale, oxygen exchange is limited to that linked to Si and Fe, i.e., about 2/3 of the Earth’s total oxygen. A practical way to express the extent of oxidation of the terrestrial Si–Fe system is the atomic ratio of that exchangeable oxygen to that of total Fe + Si, defined as

\[
\text{EXOR} = \frac{2n_{\text{SiO}_2} + n_{\text{FeO}}}{n_{\text{Si}} + n_{\text{Fe}}},
\]

where \(n_{\text{SiO}_2}\), \(n_{\text{FeO}}\), \(n_{\text{Si}}\), and \(n_{\text{Fe}}\) are the mole fractions of \(\text{SiO}_2\), \(\text{FeO}\), total Si and total Fe respectively. For all Bulk Earth models otherwise different but with sizeable amounts of Si in the core (Ringwood, 1975; Allègre et al., 1995; Javoy, 1995) EXOR variations are restricted to 1.03 ± 0.03. Among chondrites only enstatite chondrites can display a similar EXOR. However, most experimental starting materials are unifit and present
either too low or too large EXOR. For example, the recent study of Corgne et al. (2008) used two starting materials: SM1, supposedly similar to a CI type material reduced to an “Earthly” level, and SM2 figuring an E-chondrite type. The EXOR of SM1 is 1.17, much too high for Earth to allow Si dissolution in Fe metal without undue levels of FeM. Whereas the EXOR of SM2 is 0.89 and corresponds to a too reduced material with a much too large initial Smmetal.

6. Conclusion

Isotopes identify E-chondrites and Earth as members of the same group of Solar System material: they impose that Bulk Earth composition be taken in the compositional range of E-chondrites. Isotopes emphasize a crucial chemical feature of the Earth, its extent of oxidation: no chondritic contamination of isotopic coincidence will ever possess the Earth’s EXOR ratio. Even in the E-chondrite space, only objects belonging to the Fe-rich end of the family have this property. This property is a pre-requisite for the core differentiation mechanism, accounts for the core–mantle relationship and finally explains why fiO increases during core formation, which is being advocated more and more often but never explained.

The resulting Bulk Earth and ESE compositions can be narrowed down according to terrestrial constraints, and thus depend on the accuracy of these constraints. The simplest and best established constraints are that the core represents exactly 32.4% of the total mass and bears 10±4% light elements, according to terrestrial constraints, and thus depend on the accuracy of the Earth’s core. Geochim. Cosmochim. Acta 60 (7), 1125–1130.

