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We use a wavelet-based deconvolution method to extract some multiplicative
cascading process from experimental turbulent velocity signals. We show that at the
highest accessible Reynolds numbers, the experimental data do not allow us to
discriminate between various phenomenological cascade models recently proposed
to account for intermittency and their log-normal approximations. We further report
evidence that velocity fluctuations are not scale invariant but possess more complex
self-similarity properties that are likely to depend on the Reynolds number. We
comment on the possible asymptotic validity of the multifractal description.© 1999

Academic Press

One of the challenging questions in fully developed turbulence is the possible existence
of universal scaling behavior as a result of strong nonlinear interactions [1, 2]. In this
respect, a very important issue is the scaling properties of velocity structure functions,

Sp~l ! 5 ^dv l
p& , l z~ p!, (1)

wheredv l( x) 5 v( x 1 l ) 2 v( x) is a longitudinal velocity increment over a distance
l . The Kolmogorov (K41) theory [3], based on the assumptions of statistical homogeneity
and isotropy and of constant ratee of energy transfer from large to small scales, predicts
the existence of an inertial rangeh ! l ! L, whereSp(l ) ; ep/3l p/3. However, there has
been increasing numerical and experimental evidence [1, 2, 4–8] thatz( p) deviates
nonlinearly from the K41 predictionz( p) 5 p/3 at largep. This is generally interpreted
as a direct consequence of the intermittency phenomenon displayed by the rate of energy
transfer [9, 10]. In the framework of the multifractal description pioneered by Frisch and
Parisi [11], the nonlinearity ofz( p) can be seen as the consequence of spatial fluctuations
in the local regularity of the velocity field. Over the past 30 years, many theoretical and
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phenomenological models have been proposed to account for intermittency. Since the
log-normal model early designed by Kolmogorov and Obukhov [12] (KO62), most of the
models proposed in the literature are of multiplicative hierarchical nature in order to
mimic the energy cascading process (for a review, see Ref. [10]). Unfortunately, all
existing models, including the recently proposed log-infinitely divisible cascades [13–16],
appeal to adjustable parameters that are difficult to determine by plausible physical
arguments and that generally provide enough freedom to account for the experimental
data. Therefore, it is not such a surprise that the experimental determination of thez( p)
spectrum fails to provide a selective test to discriminate between various cascade models.

In order to go beyond this multifractal description, Castainget al. [9, 16, 17] have
proposed to model the evolution of the shape of the velocity increment pdf from Gaussian
at large scales to more intermittent profiles with stretched exponential-like tails at smaller
scales [5, 9, 18], by a functional equation that relates two scalesl 9 . l using a kernelG:

Pl~dv! 5 E Gll 9~ln r !
1

r 2 Pl9Sdv
r Ddr. (2)

Most of the well-known cascade models can be reformulated within this approach. From
Eq. (2), for any decreasing sequence of scales (l1, . . . , l n), one hasGlnl1

5 Glnln21

V . . . V Gl2l1
, whereV denotes the convolution product. The cascade is said to be

continuously self-similar [9, 16] if there exists a positive, monotonous functions(l ), such
that Gll 9 depends onl and l 9 only throughs(l , l 9) 5 s(l ) 2 s(l 9): Gll 9( x) 5 G( x, s(l ,
l 9)). s(l , l 9) actually accounts for the number of cascade steps from scalel 9 to scalel .
According to Novikov’s definition [13], the cascade is scale-similar ifs(l , l 9) 5 ln(l 9/l )
(s(l ) 5 ln(L/l )). In their original work, Castainget al. [9] have developed a formalism
which is consistent with the KO62 [12] general ideas of log-normality and which predicts
an anomalous power-law behavior of the depth of the cascades(l ) ; (l /L)2b. From the
computation of the scaling behavior of the variance of the kernelGll 9, they have checked
[9, 17] that the above-mentioned power law could provide a reasonable explanation of
some deviation from scaling observed experimentally on the statistics of velocity fluctu-
ations [8, 19]. The aim of this letter is to process turbulent velocity data for various flow
configurations using a method recently proposed to study random cascade processes from
wavelet analysis [20].

The wavelet transform (WT) has already proven to be a powerful tool for multifractal
analysis of singular distributions including functions [21]. Let us recall that the WT of a
function f is defined as

Tc@ f #~ x, a! 5
1

a E
2`

1`

f~ y!cSy 2 x

a Dd y, (3)

wherex is the space position,a(.0) the scale parameter, andc the analyzing wavelet.
Note that forc( x) 5 c(0)

(1)( x) 5 d( x 2 1) 2 d( x), Tc[ f ]( x, a) is nothing but the
incrementdfa( x) over a distancea. The WTMM method consists in computing the
following partition functions restricted to the WT skeleton defined, at each scalea, by the
WT modulus maximaxi [21]:
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Z~q, a! 5 a O
xi

uTc@ f #~ xi, a!uq , az~q!. (4)

Z(q, a) can be seen as a generalization of the structure functions defined in Eq. (1) in the
sense that it allows an estimation ofz(q) for q , 0 (for details see Ref. [21]). Throughout
this study, we will use the set of compactly supported analyzing wavelets defined in Ref.
[20] and more specificallyc(m)

(1) that are smooth versions ofc(0)
(1) 5 d( x 2 1) 2 d( x)

obtained afterm successive convolutions with the box functionx. We have checked that
all the results reported below are consistent when changing both the regularity and the
order ofc. The arborescent space-scale structure of the WT skeleton is likely to contain
all the information about some underlying multiplicative process [21]. Along the line of
Castainget al. ansatz [9, 16], the pdfPa(T) of the WTMM coefficients at scalea can be
expressed as a weighted sum of dilated pdfs at a different scalea9 . a, very much like
Eq. (2) for the velocity increments. As demonstrated in Ref. [20], if one notesM( p, a) 5
* eip ln(uTu)Pa(T)dT, the characteristic function associated to the logarithm of the WTMM
coefficients at scalea, then the Fourier transformĜ of the kernelG can be computed as
Ĝaa9( p) 5 M( p, a)/M( p, a9), providedM( p, a9) do not vanish. Note that from the
convolution property ofG and the additivity of the functions, the cascade is continuously
self-similar if Ĝaa9 can be expressed as

Ĝaa9~ p! 5 Ĝ~ p!s~a,a9!. (5)

Let us now proceed to the analysis of experimental turbulent velocity signals. The data
were recorded by Gagneet al. [5, 9]. We use the Taylor hypothesis to identify temporal
and spatial variations of the longitudinal velocity component. We focus on two experi-
ments corresponding to a wind tunnel (Rl 5 3050) and alaboratory jet (Rl 5 835)
flows. Our samples represent a statistics of 1.53 107 points (1000L) with resolution
Dx . 1.2h for the wind tunnel data and of about 2.13 107 points (2500L) with
resolutionDx . 2h for the jet, whereh and L are the corresponding dissipative and
integral scales. In Figs. 1a and 2a, we report the results of both WTMM [21] and structure
function analysis. From Fig. 1a, one may fairly say thatZ(q, a) follows a power law in
the inertial range. However, the scaling behavior is rather approximative forRl 5 835
since a curvature is clearly visible on the log–log plots. Even weaker, such a curvature is
still there at higher Reynolds numberRl 5 3050. InFig. 2a are reported the estimate of
thez(q) scaling exponents from linear regression fit of the data over the inertial range of
scales indicated in Fig. 1a. Two main observations have to be stressed. For the wind tunnel
signal, thez(q) spectrum computed withc(3)

(1) lies significantly below the one computed
with c(0)

(1) for q $ 3. This discrepancy strongly questions the possible existence of a scale
invariant self-similar cascade, since for these processesz(q) is expected to be independent
of the shape of the analyzing wavelet [20, 21]. For the jet signal, thez(q) spectrum
computed with the WTMM method strongly deviates from the one of the wind tunnel
signal, as soon asq * 2. This difference questions the possible universality [8] of thez(q)
exponents with respect to the Reynolds number. However, as suggested by the notion of
extended self-similarity (ESS) [19], if one plots ln[Z(q, a)/Z(0, a)] vs ln[Z(3, a)/Z(0,
a)], one undoubtedly improves scaling. As shown in Fig. 2a, the so-obtainedz(q) spectra
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no longer depend upon the analyzing wavelet and are almost undistinguishable for both
experiments. Note that, over a range of values ofq that extends from23 to16, for which
statistical convergence is achieved, the predictions of both the log-normal [12, 20] and
log-Poisson [15, 20] models provide very good fits of the experimentalz(q) spectrum.

In Fig. 3 are represented the modulus and the phase of the kernelĜaa9( p) that we

FIG. 1. WTMM computation ofZ(q, a) for q 5 1 and 3;a is expressed inh units. (a) lnZ(q, a) vs ln
a for the jet (h, ■) and wind tunnel (E, F) velocity signals. (b) lnZ(q, a) vs 2a2b/b for the jet signal with
b 5 0.19. (c) Same as in (b) but for the wind tunnel signal withb 5 0.08. The analyzing wavelet isc(3)

(1) (■,
F). The symbols (h, E) correspond to classical structure function calculations.

FIG. 2. (a) WTMM vs structure function computation of thez(q) spectrum (from Fig. 1a). Jet velocity
signal: (■) WTMM with c(3)

(1), (- - -) WTMM with ESS. Wind tunnel velocity signal: (E) structure functions, (F)
WTMM with c(3)

(1), (3) WTMM with ESS. (b)z(q) spectrum obtained when assuming the validity of Eq. (6)
(from Figs. 1b and 1c): Jet (■) and wind tunnel (F) velocity signals. For comparison thez(q) spectrum of the
wind tunnel signal obtained with the structure function method and ESS is shown (E). The solid line corresponds
to a fit of the data with the log-normal model [12]:z(q) 5 mq 2 s2q2/ 2 with m 5 0.40 ands2 5 0.038. The
dashed line corresponds to the She and Leveque log-Poisson model [14]:z(q) 5 q/9 1 2(1 2 (2

3
)q/3).
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numerically estimate in the inertial range. As long as 50h & a , a9 # L, this kernel is
found to be very well fitted, for26 # p # 6, by the Fourier transform of a log-normal
kernel:Ĝaa9( p) 5 exp(2ipm(a, a9) 2 p2s2(a, a9)/ 2). Actually we have checked that
the cumulants ofG of order higher than 2 are negligible for both flows. Thus, with the
available statistics, one cannot distinguish, for these Reynolds numbers, the various
log-infinitely divisible cascade models [13–16] including the log-Poisson model [14, 15]
from their log-normal approximations. In order to test scale similarity or more generally
the pertinence of Eq. (5), we have plotted in Figs. 4a and 4c,m(a, a9) 5 ­ Im(Ĝaa9)/
­pup50 ands2(a, a9) 5 2­2(lnuĜaa9u)/­p2up50, respectively, as functions ofs(a, a9) 5
ln(a9/a) for different couples of scales (a, a9) in the inertial range. It is striking for the
jet data, but also noticeable for the wind tunnel data, that the curves obtained when fixing
the largest scalea9 and varying the smallest onea have a clear bending and do not merge

FIG. 3. Numerical computation ofĜaa9( p) for the jet (■) and wind tunnel (E) signals. The analyzing
wavelet isc(3)

(1). a 5 25 anda9 5 211. (a) uĜaa9u vs p; (b) faa9 5 arctan(ImĜaa9/ReĜaa9) vs p. The solid lines
represent fits of the data with a log-normal kernel:uĜaa9u 5 exp(2p2s2(a, a9)/ 2), faa9 5 2m(a, a9) p.

FIG. 4. m(a, a9) ands2(a, a9) as computed for the jet and wind tunnel velocity signals fora9 5 26 (F),
27 (E), 28 (■), 29 (h), and 210 (3). (a) m(a, a9) vs ln(a9/a); (b) m(a, a9) vs (a2b 2 a92b)/b; (c) s2(a, a9)
vs ln(a9/a); (d) s2(a, a9) vs (a2b 2 a92b)/b. In (b) and (d),b 5 0.19 (jet) andb 5 0.08 (wind tunnel).
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on the same straight line as expected for scale-similar cascade processes. In Figs. 4b and
4d, the same data are plotted versuss(a, a9) 5 (a2b 2 a92b)/b with b 5 0.08 for the
wind tunnel flow andb 5 0.19 for the jet flow. In these cases, the data for the meanm(a,
a9) and the variances2(a, a9) fall, respectively, on one unique line. The velocity fields
we have analyzed therefore are not scale-similar but rather are characterized by some
anomalous behavior of the number of cascade steps between scalea9 and scalea: s(a, a9)
5 (a2b 2 a92b)/b. This behavior differs from the pure power law prompted by Castaing
et al. [9, 17]. As far as the multifractal WTMM analysis is concerned, this behavior leads
to the following function form forZ(q, a) [20],

Z~q, a! 5 C1e
2C2 a2bz~q!, (6)

instead of the classical power law (Eq. (4)). Let us emphasize that this form has been
predicted by Dubrulle [22] by simple symmetry considerations. If one plots lnZ(q, a)
versus2a2b/b (instead of lna), one can see in Figs. 1b and 1c that for both the jet and
wind tunnel data, the systematic curvature observed in Fig. 1a disappears. The estimate of
the correspondingz(q) exponents obtained from linear regression fits are reported in Fig.
2b; the data remarkably fall on a quadratic curve as predicted for log-normal cascade
processes. These exponents no longer depend on the specific shape of the analyzing
waveletc and are indistinguishable from those previously obtained in Fig. 2a when using
ESS. This is not surprising since Eq. (6) is compatible with ESS. Moreover, one does not
see any significant difference between thez(q) exponents extracted from the jet and the
wind tunnel turbulent signals. This observation suggests the possible universality of the
z(q) spectrum [8] for high Reynolds number isotropic turbulence. Let us point out that a
real test of log-normality would be to see the decrease ofz(q) at largeq(.0). According
to the fit reported in Fig. 2b, thez(q) spectrum should decrease forq $ 11, in qualitative
agreement with previous discussions [9, 18]: reaching an acceptable statistical conver-
gence forq . 12 would require velocity records one hundred times larger than those
processed in this work.

The exponentb somehow quantifies the departure from scale similarity since in the
limit b 3 0, s(a, a9) 5 (a2b 2 a92b)/b reduces to ln(a9/a). In Fig. 5 are reported the
estimate ofb as a function of the Reynolds number (the three additional points atRl 5
2000, 600, and 280correspond, respectively, to wind tunnel, jet, and grid turbulence). In
Fig. 5a,b is plotted versus 1/ln(Rl) in order to check experimentally the validity of some
theoretical arguments developed in Refs. [9, 22] which predict a logarithmic decay ofb

when increasingRl. Indeed the data are very well fitted byb ; 1/ln(Rl) 2 1/ln(R*l),
whereR*l . 12000,which suggests that scale similarity is likely to be attained at finite
Reynolds numbers. However, as shown in Fig. 5b, the data are equally very well fitted by
a power-law decayb . 1/Rl

0.556with an exponent which is found close to1
2
. This second

possibility brings the clue that scale similarity might well be valid only in the limit of
infinite Reynolds number. Whatever the relevantb behavior, our findings for the kernel
Gaa9 strongly indicate that at very high Reynolds numbers, intermittency can be under-
stood in terms of a continuous self-similar multiplicative process that converges toward a
scale-similar log-normal cascade, discarding the possible asymptotic validity of K41
theory [3]. As emphasized by Frisch [2], such statistics for the velocity fluctuations imply
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that the Mach number of the flow increases indefinitely, which invalidates the assumption
of incompressible flows. This observation does not, however, violate the basic laws of
hydrodynamics since it is conceivable that, at extremely high Reynolds numbers, super-
sonic velocities might appear.
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