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CASE STUDY

Experimental Evidence for Anomalous Scale
Dependent Cascading Process in Turbulent
Velocity Statistics

A. Arneodo; S. Manneville! J. F. Muzy! and S. G. Rouk

Communicated by Charles K. Chui on March 10, 1998

We use a wavelet-based deconvolution method to extract some multiplicative
cascading process from experimental turbulent velocity signals. We show that at the
highest accessible Reynolds numbers, the experimental data do not allow us to
discriminate between various phenomenological cascade models recently proposed
to account for intermittency and their log-normal approximations. We further report
evidence that velocity fluctuations are not scale invariant but possess more complex
self-similarity properties that are likely to depend on the Reynolds number. We
comment on the possible asymptotic validity of the multifractal descriptien.oge
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One of the challenging questions in fully developed turbulence is the possible existe
of universal scaling behavior as a result of strong nonlinear interactions [1, 2]. In t
respect, a very important issue is the scaling properties of velocity structure functior

Si(1) = (8vP) ~ 147, )

wheredv|(x) = v(x + ) — v(x) is a longitudinal velocity increment over a distance
I. The Kolmogorov (K41) theory [3], based on the assumptions of statistical homogen
and isotropy and of constant ratef energy transfer from large to small scales, predict
the existence of an inertial range< | < L, whereS,(l) ~ €”3IP'3, However, there has
been increasing numerical and experimental evidence [1, 2, 4—8]/(mt deviates
nonlinearly from the K41 predictiodi(p) = p/3 at largep. This is generally interpreted
as a direct consequence of the intermittency phenomenon displayed by the rate of er
transfer [9, 10]. In the framework of the multifractal description pioneered by Frisch a
Parisi [11], the nonlinearity of(p) can be seen as the consequence of spatial fluctuatic
in the local regularity of the velocity field. Over the past 30 years, many theoretical ¢
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phenomenological models have been proposed to account for intermittency. Since
log-normal model early designed by Kolmogorov and Obukhov [12] (KO62), most of t
models proposed in the literature are of multiplicative hierarchical nature in order
mimic the energy cascading process (for a review, see Ref. [10]). Unfortunately,
existing models, including the recently proposed log-infinitely divisible cascades [13-1]
appeal to adjustable parameters that are difficult to determine by plausible phys
arguments and that generally provide enough freedom to account for the experime
data. Therefore, it is not such a surprise that the experimental determination &gfpthe
spectrum fails to provide a selective test to discriminate between various cascade mo

In order to go beyond this multifractal description, Casta@tcal. [9, 16, 17] have
proposed to model the evolution of the shape of the velocity increment pdf from Gaus:
at large scales to more intermittent profiles with stretched exponential-like tails at sme
scales [5, 9, 18], by a functional equation that relates two statesl using a kerneGG:

1 oV
P,(8v) = j Gy(Inr) 1z P|,<T>dr. (2)

Most of the well-known cascade models can be reformulated within this approach. Fi
Eqg. (2), for any decreasing sequence of scalgs.( ., |,)), one hasG,, = G, |
®---® Gy, , where® denotes the convolution product. The cascade is said to |
continuously self-similar [9, 16] if there exists a positive, monotonous funes(iion such
that G,;. depends orh andl’ only throughs(l, 1') = s(l) — s(I'): G;;.(X) = G(x, s(I,
[)). s(lI, I") actually accounts for the number of cascade steps from scadescalel.
According to Novikov's definition [13], the cascade is scale-simila(if |’) = In(l'/)
(s(1) = In(L/1)). In their original work, Castaingt al. [9] have developed a formalism
which is consistent with the KO62 [12] general ideas of log-normality and which predi
an anomalous power-law behavior of the depth of the cass@dle~ (I/L) #. From the
computation of the scaling behavior of the variance of the keByel they have checked
[9, 17] that the above-mentioned power law could provide a reasonable explanatiol
some deviation from scaling observed experimentally on the statistics of velocity fluc
ations [8, 19]. The aim of this letter is to process turbulent velocity data for various flc
configurations using a method recently proposed to study random cascade processes
wavelet analysis [20].

The wavelet transform (WT) has already proven to be a powerful tool for multifract
analysis of singular distributions including functions [21]. Let us recall that the WT of
function f is defined as

T = [ (Yo ®

wherex is the space positiorg(>0) the scale parameter, amdthe analyzing wavelet.
Note that forys(x) = P{gi(x) = 8(x — 1) — 8(x), T,[fI(x, a) is nothing but the
incrementsf,(X) over a distancea. The WTMM method consists in computing the
following partition functions restricted to the WT skeleton defined, at each acaélgthe
WT modulus maximag [21]:
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Z(q,a) =a > |T,f]l(x, a)|t~ a. @

Xi

Z(q, a) can be seen as a generalization of the structure functions defined in Eq. (1) in
sense that it allows an estimation&ff) for q < 0 (for details see Ref. [21]). Throughout
this study, we will use the set of compactly supported analyzing wavelets defined in F
[20] and more specificallyy{y) that are smooth versions gfg} = 8(x — 1) — 8(x)
obtained aftem successive convolutions with the box functipnWe have checked that
all the results reported below are consistent when changing both the regularity and
order of . The arborescent space-scale structure of the WT skeleton is likely to cont
all the information about some underlying multiplicative process [21]. Along the line
Castainget al. ansatz [9, 16], the pd?,(T) of the WTMM coefficients at scala can be
expressed as a weighted sum of dilated pdfs at a different atalea, very much like
Eq. (2) for the velocity increments. As demonstrated in Ref. [20], if one rd{gs a) =

f ePMITOp_(T)dT, the characteristic function associated to the logarithm of the WTMI
coefficients at scale, then the Fourier transfor@ of the kernelG can be computed as
Gaa,(p) = M(p, a)/M(p, a"), providedM(p, a’) do not vanish. Note that from the
convolution property o6 and the additivity of the functios, the cascade is continuously
self-similar if G,, can be expressed as

éaa’( p) = é( p)s(a,a’)_ (5)

Let us now proceed to the analysis of experimental turbulent velocity signals. The ¢
were recorded by Gagret al. [5, 9]. We use the Taylor hypothesis to identify tempora
and spatial variations of the longitudinal velocity component. We focus on two expe
ments corresponding to a wind tunné&,(= 3050) and daboratory jet R, = 835)
flows. Our samples represent a statistics of %.3.0° points (1000L) with resolution
Ax = 1.2y for the wind tunnel data and of about 2 10’ points (2500L) with
resolutionAx = 27 for the jet, wheren andL are the corresponding dissipative anc
integral scales. In Figs. 1a and 2a, we report the results of both WTMM [21] and struct
function analysis. From Fig. 1a, one may fairly say théd, a) follows a power law in
the inertial range. However, the scaling behavior is rather approximativi,fer 835
since a curvature is clearly visible on the log—log plots. Even weaker, such a curvatur
still there at higher Reynolds numbe; = 3050. InFig. 2a are reported the estimate of
the {(q) scaling exponents from linear regression fit of the data over the inertial range
scales indicated in Fig. 1a. Two main observations have to be stressed. For the wind tu
signal, the(q) spectrum computed Witb&%% lies significantly below the one computed
with :,l;%; for g = 3. This discrepancy strongly questions the possible existence of a sc
invariant self-similar cascade, since for these proceg®pss expected to be independent
of the shape of the analyzing wavelet [20, 21]. For the jet signal,{{la¢ spectrum
computed with the WTMM method strongly deviates from the one of the wind tunr
signal, as soon ag= 2. This difference questions the possible universality [8] of{ittd
exponents with respect to the Reynolds number. However, as suggested by the noti
extended self-similarity (ESS) [19], if one plots K{fq, a)/Z(0, a)] vs In[Z(3, a)/Z(0,
a)], one undoubtedly improves scaling. As shown in Fig. 2a, the so-obtgitgdpectra
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FIG. 1. WTMM computation ofZ(q, a) for g = 1 and 3;a is expressed im units. (a) InZ(q, a) vs In
a for the jet (0, m) and wind tunnel ©, @) velocity signals. (b) IriZ(q, a) vs —a~ /g for the jet signal with
B = 0.19. (c) Same as in (b) but for the wind tunnel signal wate= 0.08. The analyzing wavelet lﬁgg (m,
®). The symbols[(, O) correspond to classical structure function calculations.

no longer depend upon the analyzing wavelet and are almost undistinguishable for
experiments. Note that, over a range of valueg tifat extends from-3 to +6, for which
statistical convergence is achieved, the predictions of both the log-normal [12, 20]
log-Poisson [15, 20] models provide very good fits of the experimeiitgl spectrum.

In Fig. 3 are represented the modulus and the phase of the I@g@ﬁ{lp) that we
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FIG. 2. (a) WTMM vs structure function computation of tti¢q) spectrum (from Fig. 1a). Jet velocity
signal: @) WTMM with dzg;, (- - -) WTMM with ESS. Wind tunnel velocity signaltY) structure functions @)
WTMM with {3, (X) WTMM with ESS. (b)£(q) spectrum obtained when assuming the validity of Eq. (6)
(from Figs. 1b and 1c): Jem() and wind tunnel @) velocity signals. For comparison tl§éq) spectrum of the
wind tunnel signal obtained with the structure function method and ESS is sk@whle solid line corresponds
to a fit of the data with the log-normal model [12]q) = mq — ¢®g?/ 2 with m = 0.40 ands® = 0.038. The
dashed line corresponds to the She and Leveque log-Poisson modef(dék /9 + 2(1 — (g)q’3).
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FIG. 3. Numerical computation oéaa,(p) for the jet @) and wind tunnel ©) signals. The analyzing
wavelet isy(3). a = 2% anda’ = 2**. (a)|G,,| vsp; (b) b, = arctan(imG,,/ReG,,) vsp. The solid lines
represent fits of the data with a log-normal kerrél;,| = exp(—p?c(a, a')/2), .o = —M(a, a')p.

numerically estimate in the inertial range. As long a$)508 a < a’ = L, this kernel is
found to be very well fitted, for-6 = p = 6, by the Fourier transform of a log-normal
kernel:G,.(p) = exp(—ipm(a, a') — p2c3(a, a')/2). Actually we have checked that
the cumulants of5 of order higher than 2 are negligible for both flows. Thus, with the
available statistics, one cannot distinguish, for these Reynolds numbers, the var
log-infinitely divisible cascade models [13-16] including the log-Poisson model [14, 1
from their log-normal approximations. In order to test scale similarity or more genera
the pertinence of Eq. (5), we have plotted in Figs. 4a ande, a’) = 9 Im(G,,)/
aplp—o ando?(a, a’) = —a%(In|G,.|)/ap? .o, respectively, as functions sfa, a') =
In(a’/a) for different couples of scalesfa’) in the inertial range. It is striking for the
jet data, but also noticeable for the wind tunnel data, that the curves obtained when fi;
the largest scala’ and varying the smallest orzehave a clear bending and do not merge

— T S B e e LR B
i (a) ] (b} 1
L wind tunnel 7| [ wind tunnel 7]
—~ ] ]
<
g ol 1F
g
_1 = — =
} ——
i (e)
0.1 - -
[ wind tunnel
—~ L
<
©
& oF 1r
[
jet
-0.1 - 4 - _
I 1 - 1
-5 0 5 -2 0 2

In(a’/a) (a-a)/8
FIG. 4. m(a, a') andc?(a, a’) as computed for the jet and wind tunnel velocity signalsafor= 2° (@),
27 (O), 282 (m), 2° (O), and 2°(x). (@)m(a, a') vs In(@’/a); (b) m(a, a’) vs (@ ® — a’' ~#)/B; (c) o*(a, a’)
vs In@’/a); (d) o*(a, a’) vs @ # — a’~P)/B. In (b) and (d),8 = 0.19 (jet) ands = 0.08 (wind tunnel).
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on the same straight line as expected for scale-similar cascade processes. In Figs. 4
4d, the same data are plotted vers(s, a’) = (a ? — a’~#)/p with B = 0.08 for the
wind tunnel flow and3 = 0.19 for the jet flow. In these cases, the data for the nme@n
a’) and the variance(a, a’) fall, respectively, on one unique line. The velocity fields
we have analyzed therefore are not scale-similar but rather are characterized by
anomalous behavior of the number of cascade steps betweemSeale scala: s(a, a')

= (a P — a’'~P)/B. This behavior differs from the pure power law prompted by Castain
et al.[9, 17]. As far as the multifractal WTMM analysis is concerned, this behavior lea
to the following function form forz(q, a) [20],

Z(q, a) = Ce @O, (6)

instead of the classical power law (Eq. (4)). Let us emphasize that this form has b
predicted by Dubrulle [22] by simple symmetry considerations. If one plo(tp a)
versus—a P/ (instead of Ina), one can see in Figs. 1b and 1c that for both the jet ar
wind tunnel data, the systematic curvature observed in Fig. 1a disappears. The estime
the corresponding(q) exponents obtained from linear regression fits are reported in Fi
2b; the data remarkably fall on a quadratic curve as predicted for log-normal casc
processes. These exponents no longer depend on the specific shape of the ana
waveletys and are indistinguishable from those previously obtained in Fig. 2a when us
ESS. This is not surprising since Eq. (6) is compatible with ESS. Moreover, one does
see any significant difference between #i{g) exponents extracted from the jet and the
wind tunnel turbulent signals. This observation suggests the possible universality of
£(q) spectrum [8] for high Reynolds number isotropic turbulence. Let us point out tha
real test of log-normality would be to see the decreas# @f at largeq(>0). According

to the fit reported in Fig. 2b, th&q) spectrum should decrease fpe 11, in qualitative
agreement with previous discussions [9, 18]: reaching an acceptable statistical cor
gence forq = 12 would require velocity records one hundred times larger than tho
processed in this work.

The exponenf3 somehow quantifies the departure from scale similarity since in t
limit 8 — 0, s(a, a’) = (a® — a’ P)/B reduces to Ing’/a). In Fig. 5 are reported the
estimate ofg as a function of the Reynolds number (the three additional poirf at
2000, 600, and 286orrespond, respectively, to wind tunnel, jet, and grid turbulence).
Fig. 5a,8 is plotted versus 1/IiK,) in order to check experimentally the validity of some
theoretical arguments developed in Refs. [9, 22] which predict a logarithmic degay o
when increasing, . Indeed the data are very well fitted iy~ 1/In(R,) — 1/In(R%),
whereR? = 12000,which suggests that scale similarity is likely to be attained at finit
Reynolds numbers. However, as shown in Fig. 5b, the data are equally very well fittec
a power-law decayp = 1/R}->*®with an exponent which is found close3oThis second
possibility brings the clue that scale similarity might well be valid only in the limit o
infinite Reynolds number. Whatever the relevg@nibehavior, our findings for the kernel
G,o Strongly indicate that at very high Reynolds numbers, intermittency can be unc
stood in terms of a continuous self-similar multiplicative process that converges towal
scale-similar log-normal cascade, discarding the possible asymptotic validity of K
theory [3]. As emphasized by Frisch [2], such statistics for the velocity fluctuations im
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FIG. 5. B as a function of the Reynolds number. {ays 1/In[R,); the dotted line corresponds to a fit of
the data with3 = B(1/In(R,) — 1/In(R%)) andR% = 12000. (b)B vs 1/R°-°%¢ the dashed line corresponds
to a linear regression fit of the data. Error bars account for variatigaetording to the definition of the inertial
range.

that the Mach number of the flow increases indefinitely, which invalidates the assump
of incompressible flows. This observation does not, however, violate the basic law:
hydrodynamics since it is conceivable that, at extremely high Reynolds numbers, su
sonic velocities might appear.
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