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I. INTRODUCTION

Ever since the explosive propagation of fractal ideas [1,2] throughout the
scientific community in the late 1970s and early 1980s, there have been
numerous applications to surface science [3-13]. Both real space imaging
techniques (including scanning tunneling microscopy, atomic force
microscopy, transmission electron microscopy, secondary electron micro-
scopy, and optical imaging techniques) and diffraction techniques
(including electron, atom, light, and X-ray scattering) have been extensively
used to study rough surfaces [12]. The characterization of surface
roughness is an important problem from a fundamental point of view as
well as for the wealth of potential applications in applied sciences. Indeed,
a wide variety of natural and technological processes lead to the formation
of complex interfaces [1-18]. Assigning a fractal dimension to those
irregular surfaces has now become routine in various fields including
topography, defect and fracture studies, growth phenomena, erosion and
corrosion processes, catalysis, and many other areas in physics, chemistry,
biology, geology, meteorology, and material sciences [1-18]. For isotropic
and self-simifar interfaces when magnified equally in all directions,
algorithms (e.g., box-counting algorithms, fixed-size and fixed-mass

correlation algorithms) were designed and shown to provide a good
estimate of the fractal dimension Dy [19-27]. For rough surfaces that are
well described by self-affine fractals displaying anisotropic scale invariance
[1,2,4,5,7,28-31], various methods (e.g., divider, box, triangle, slit-island,
power spectral, variogram, and distribution methods) of computing Dg
were shown to give different results [32-36)]. Limited resolution as well as
finite-size effects are well known for introducing biases in the estimate of
Dr, which are indeed method dependent [32,36,37]. For a documented
discussion of the possible reasons for these differences in fractal dimension
measurements, we refer the reader to the review article of Lea-Cox and
Wang [38]. An alternative strategy consists in c¢omputing the so-called
roughness exponent H [1,2,4,7] that describes the scaling of the width (or
thickness) of the rough interface with respect to measurement scale.
Different methods (e.g., height-height correlation function, variance and
power spectral methods, detrented fluctuation analysis, first return and
multireturn  probability distributions) [33-36,39-42] are available to
estimate this exponent that is supposed to be related to the fractal
dimension Dy = d — H of self-affine surfaces embedded in a d~dimensional
space. Again a number of artifacts may pollute the estimate of the
roughness exponent [36]. Since sensitivity and accuracy are method
dependent, the usually recommendation is to simultaneously use different
tools in order to appreciate, in a quantitative way, the level of confidence
in the measured exponent.

But beyond some practical algorithmic limitations, there exists a more
fundamental intrinsic insufficiency of fractal dimension measurement in the
sense that the fractal dimension Dr as well as the roughness exponent H are
global quantities that do not account for possible fluctuations (from point
to point} of the local regularity properties of a fractal surface. Box-counting
and correlation algorithms were successfully adapted to resolve multifractal
scaling for isotropic self-similar fractals by computation of the generalized
Sractal dimensions D, [20-26]. As to self-affine fractals, Parisi and Frisch [43]
proposéd, in the context of the analysis of fully developed turbulence
data, an alternative multifractal description based on the investigation of
the scaling behavior of the so-called, structure functions [18,44): Sp{7) =
< (8 > ~ I¥ (pinteger > 0), where &fi{x) = f{x + ) — f(x} is an incre-
ment of the recorded signal over a distance I Then, after reinterpreting the
roughness exponent as a local quantity [43,45-49]: &f;(x) ~ "), the D(h)
singularity spectrum is defined as the Hausdorff dimension of the set of
points x where the local roughness {or Hélder) exponent A(x) of fis A.
In principle, D(#) can be attained by Legendre transforming the structure
function scaling exponents (, [43,48,49]. Unfortunately, as noticed by
Muzy et al. [50], there are some fundamental drawbacks to the structure




function method. Indeed, it generally fails to fully characterize the D(/)
singularity spectrum since only the strongest singularities of the function f
itself (and not the singularities present in the derivatives of f) are a priori
amenable to this analysis. Even though one can extend this study from
integer to real positive p values by considering the increment absolute value,
the structure functions generally do not exist for p < 0. Moreover,
singularities corresponding to £ > 1, as well as regular behavior, bias the
estimate of ¢, [48-50]. :

In previous work [47-50], one of the authors (A.A)), in collaboration
with Bacry and Muzy, has shown that there exists a natural way of
performing a multifractal analysis of self (multi)affine functions, which
consists in using the continuous wavelet transform [51--66]. By using wavelets
instead of boxes, as in classic multifractal formalism [24,67-71], one can
take advantage of freedom in the choice of these “Generalized oscillating
boxes” to get rid of possible smooth behavior that might either mask
singularities or perturb the estimation of their strength / [47-50]. The other
fundamental advantage of using wavelets is that the skeleton defined by the
wavelet transform modulus maxima (WTMM) [72,73] provides an adaptative
space-scale partitioning from which one can extract the D(k) singularity
spectrum via the scaling exponents 7(g} of some partition functions defined
on the skeleton. The so-called WTMM method [47-50] therefore provides
access to the entire D(%) spectrum via the usual Legendre transform
D(h) = min,|gh — 7{g)]. We refer the reader to Refs. [74,75] for rigorous
mathematical results. Since the WIMM method is mainly devoted to
practical applications to stochastic systems, let us point out that the
theoretical ‘treatment of random multifractal functions requires special
attention. A priori, there is no reason that all the realizations of the same
stochastic multifractal process correspond to a unique D(h) curve. Each
realization has its own unique distribution of singularities and one crucial
issue is to relate these distributions to some averaged versions computed
experimentally. As emphasized by Hentschel [76], one can take advantage
of the analogy that links the multifractal description to statistical
thermodynamics [24,49,67,68,77], by using methods created specifically to
study disorder in spin-glass theory [78]. When carrying out replica averages
of the random partition function associated with a stochastic function, one
gets multifractal spectra 7(g,#) that generally depend on the number of
members # in the replica average (let us note that =0 and n=1,
respectively, correspond to commonly used quenched and annealed
averaging [76]). Then, by Legendre transforming 7{g,n), some type of
average D(h) spectra is found [76). Some care is thus required when
interpreting these average spectra in order to avoid some misunderstanding
of the underlying physics.

Applications of the WITMM method to one-dimensional (ID) signals have
already provided ingight into a wide variety of outstanding problems [62],
e.g., the validation of the cascade phenomenology of fully developed
turbulence [47-49,79-87), the discovery of a Fibonacdl structural ordering in
1D cuts of diffusion-limited aggregates (DLA) [83-92], the characterization
and the understanding of long-range correlations in DNA sequences [93-
98], and the demonstration of the existence of a causal cascade of
information from large to small scales in financial time series [99,100]. Let
us also note that from a fundamental point of view, the WTMM
multifractal formalism [47-50,74] has been recently revisited [101-104]
In order to incorporate in this statistical “canonical” description (which
applies for cusp-like singularities only), the possible existence of oscillating
singularities [73,101,105]. This new “grand canonical” description [102-104]
allows us to compute the singularity spectrum D(k, ), which accounts for
the statistical contribution of singularities of Holder exponent % and
oscillation exponent F (where 5 characterizes the local power-law divergence
of the instantaneous frequency).

In a recent work [106-110], we have generalized the canonical WTMM
method from 1D to two-dimensional (2D), with the specific goal of
achieving multifractal analysis of rough surfaces with fractal dimension Dr
anywhere between 2 and 3. During the past few years, increasing interest has
been paid to the application of the wavelet transform (WT) to image
processing [26,61,62,65,111-113]. In this context, Mallat and collaborators
[72,73] have extended the WIMM representation in 2D in a manner
mspired from Canny’s multiscale edge detectors commonly used in
computer vision [114]. Our strategy [107,108] consists of using this
representation to define a three-dimensional (3D) WT skeleton from which
one can compute partition functions and ultimately extract multifractal
spectra. This article is mainly devoted to a detailed description of the 2D
WTMM methodology with some test applications to random monofractal
and multifractal self-affine surfaces displaying isotropic as well as aniso-
tropic (with respect to space variables) scale similarity properties. As an
illustration of the efficiency and reliability of this method, we will report the
main results of its application to experimental 21D data in various domains,
namely geophysics, hydrodynamics, and medecine.

The article is organized as follows. In Section II, we describe the 2D
WTMM representation introduced by Mallat et al. [72,73] as the equivalent
of multiscale Canny edge detection. We present the continuous WT as a
mathematical microscope that is well suited for characterizing the local
regularity of rough surfaces. For practical purposes, the WTMM
representation is emphasized as a very efficient and accurate numerical
tool for scanning the singularities of fractal landscapes. We then describe the




2D WTMM method as a natural generalization of box-counting algorithms
and structure function techniques previously used for multifractal analysis

of isotropic self-similar interfaces and multiaffine surfaces [107,108]. Section

IIT is devoted to the application of the 2D WTMM method to fractional
Brownian surfaces [1,2,4,28] that display isotropic (with respect to space
variables) scaling properties. For this class of isotropic homogeneous
random rough surfaces, we address the issues of statistical convergence and
finite-size effects [108]. We illustrate the ability of the 2D WTMM method
to reveal and to master anisotropic scale invariance hidden in the roughness
fluctuations of a random surface. We also report the results of test
applications to synthetic random multifractal rough surfaces generated with
a random W-cascade process on a separable wavelet orthogonal basis [109].
On a more general ground, we show that the 2D WTMM method can be
used for many purposes in image processing including edge detection,
pattern recognition, and image denoising. The next sections are devoted to
the description of the most significant results obtained when applying the
2D WTMM method to three different experimental situations. In Section
IV, we review the outcomes of the statistical analysis of high-resolution
LANDSAT satellite images of cloudy scenes. This study brings into light the
underlying multiplicative structure of marine stratocumulus clouds
[107,110]. The multifractal properties of the stratocumulus radiance fields
are further compared to previous experimental estimates performed on
velocity and temperature fluctuations in high Reynolds number turbulence.
In Section V, we report the preliminary results of the application of the 2D
WTMM method to 2D cuts of the dissipation and enstrophy fields
computed from direct high-resolution numerical simulations of statistically
stationary 3D homogeneous and isotropic fully developed turbulent flows at
a Reynolds number around 1000 (R, ~ 1150). This study reveals that both
fields display log-normal multifractal properties but that the enstrophy field
turns out to be much more intermittent than the dissipation field. From a
comparison with previous experimental investigations of 1D data, we
comment about the reliability of the results obtained when using 1D
swrrogate dissipation data. In Section VI, we apply the 2D WTMM method
to perform a multifractal analysis of digitized mammograms [115]. We show
that this method can be used to classify fatty and dense areas of breast
tissue. We further demonstrate that this method provides a very efficient
way to detect tumors as well as microcalcifications, which correspond to
much stronger singularities than those involved in the background tissue
roughness fluctuations. These preliminary results indicate that the texture
discriminatory power of the 2D WTMM method may lead to significant
improvement in computer-assisted diagnosis in digitized mammograms. We
conclude in Section VII.

II. ImAGE PrROCESSING WITH THE 2D CONTINUOUS WAVELET TRANSFORM
A. Analyzing Wavelets for Multiscale Edge Detection

The edges of the different structures that appear in an image are often the
most important features for pattern recognition. Hence, in computer vision
[116,117], a large class of edge detectors looks for points where the gradient
of the image intensity has a modulus that is locally maximum in its
direction. As originally noticed by Mallat and collaborators [72,73], with an
appropriate choice of the analyzing wavelet, one can reformalize the
Canny’s multiscale edge detector [114] in terms of a 2D wavelet transform.
The general idea is to start by smoothing the discrete image data by
convolving it with a fitter and then to compute the gradient on the smoothed
signal.

Let us consider two wavelets that are, respectively, the partial derivative
with respect to x and y of a 2D -smoothing function ¢(x, y):

R N e
We will assume that ¢ is a well-localized (around x =y =0) isotropic
function that depends on |x| oaly. In this work, we will mainly use the
Gaussian function: ‘

9x,y) = e a2 @
as well as the isotropic Mexican hat:
L
$(x) = (2 —x)e M7 (3)

The corresponding analyzing wavelets 1 and 1 are illustrated in Figure 1.
They have one and three vanishing moments when using, respectively, the
Gaussian function [Eq. (2)] and the Mexican hat [Eq. (3)] as smoothing
function. .

For any function f{x,y) € LZ(R), the wavelet transform with respect to
1 and ¢ has two components and therefore can be expressed in a vectorial
form: ‘

I@U}xdafdﬁﬁmhqk—bﬂf@)

T,[)(b,a) = A
’ Tolfl = [ &x gola” (x=b) £1x)




FiGure 1. The analyzing wavelets o and ¢ defined in Eq. (1). First-order analyzing
wavelets obtained from a Gaussian smoothing function ¢ [Eq. (2)}: (a) v1; (b} 4%5. Third-order
analyzing wavelets obtained from the isotropic Mexican hat smoothing function ¢ {Eq. (3)):
(©) t1; (d) g

Then, after a straightforward integration by parts, one gets:

Ty f1(b,) a-ZV{ [ #x gt w)] f(x)}

V(T 1(b, 2)} )
= v{¢h,a *f}

If ¢(x) is simply a smoothing filter like the Gaussian function [Eq. (2)], then
Eq. (3) amounts to define the 2D wavelet transform as the gradient vector of
f{x) smoothed by dilated versions ¢(a~'x) of this filter. If ¢(x) has some
vanishing moments, then Ty f](b, ) in Eq. (5) is nothing but the continuous
2D wavelet transform of f(x) as originally defined by Murenzi [118,119],
provided ¢(x) be an isotropic analyzing wavelet so that the integration over
the angle 6 becomes trivial.

As far as notations are concerned, we will mainly use the representation
mvolving the modulus and the argument of the wavelet transform:

Ty[fi(b, a) = [My[f1(b, a), Ay f](b,a)] (6)

with

Mylf106,0) = { [T 1100, ]+ [T A0, ]} )

and

'A“fim (bz a) = Arg [Twl [f] (b? a) + ‘T:T'%bz {f] (b! a)] (8)

B. Characterizing the Local Regularity Properties of Rough Surfaces with the
Wavelet Transform Modulus Maxima

In the present work, we will use the term rough surface for an irregular
surface on which there are no overhanging regions. This means that the
surface can be correctly described by a single-valued self-affine function
satisfying Vxo = (x0,0) € R:,Vx = (x,) € R* in the neighborhood of
X0, 2H € R such that, for any A > 0, one has [1,2.4,5,7,28-30]:

F(x0 + Xx, yo + X¥p) — f(x0,0) = A [f(x0 + x, 70 + ¥) — f (30, 30)] (9

If /is a stochastic process, this identity holds in law for fixed A and xo.
According to the value of the exponent o, this self-affine functionm will
display either isotropic scale invariance with respect to the space variables
(v = 1) or anisotropic scale invariance (@ # 1) [36,120-123]. The Hurst
exponent H characterizes the global regularity of the function f. Let us note
that if H < 1, then f is nowhere differentiable and that the smaller the
exponent H, the more singular f. For H =1 and « = 1, the rough surface
defined by fin R?, is a self-similar fractal in the sense that it is invariant
under some isotropic dilations [1,2,36,121-123].

In various contexts [1--18], several methods have been used to estimate the
Hurst exponent of self-affine functions. In most studies, isotropic scale
invariance was used as a prerequisite for the application of commonly used
methods to the analysis of 1D fractal landscapes, e.g., the height-height
correlation function, the variance and power spectral methods, the detrented
fluctuation analysis, and the first return and multireturn probability
distributions [33-36,39-42]. The strategy followed in these studies reduces
the analysis of rough surfaces to the investigation of self-affine (1D) profiles
obtained through 2D cuts in a three-dimensional representation. As long as
the estimate of the Hurst exponent A is independent of the intersection
plane, there is no inconsistency in the methodology. When I is found to be
sensitive to the orientation of the intersecting plane, this means that the
isotropic scale invariance hypothesis does not apply and that one needs to
have recourse to methods fully adapted to the characterization of rough
surfaces. Unfortunately, to our knowledge, most of the methods listed
above have been extended to self-affine functions from R* to R under the
implicit assumption of isotropic scaling.




But fractal functions generally display multiaffine properties in the sense
that their roughness (or regularity) fluctuates from point to point [43,45-49].
To describe these multifractal functions, one thus needs to change slightly the
definition of the Hurst regularity of fso that it becomes a local quantity A(x;).
A rigorous definition of the Hélder exponent (as the strength of a singularity
of a function f at the point xp) is given by the largest exponent A(xp) such that
there exists a polynomial of degree # < A(Xg) and a constant C > 0, so that
for any point x in the neighborhood of xp one has [72,73,106-108]

£ (%) ~ Pa(x — Xo)| < C|x — xo/"™ (10)

If /is n times continnously differentiable at the point x4, then one can use for
the polynomial P,{x — xq) the order-n Taylor series of / at xp and thus prove
that 4(xg) > 7. Thus 2(xp) measures how irregular the function £ is at the
point xo. The higher the exponent 4(xp), the more regular the function f. In
this work, we will mainly consider fractal functions of two variables that
possess only cusp-like singularities. (We refer the reader to Ref. [124], for
rigorous mathematical results concerning 2D oscillating singularities or
chirps.) But the situation is a little more tricky than in 1D. Indeed one has to
distinguish two main cases depending on whether scale invariance is under
1sotropic or anisotropic dilations [1,2,36,108,121-123,125].

1. Isotropic Dilations

Local scale invariance under isotropic dilations means that locally, around
the point x,, the function f behaves as

F{xo+ ) — f(x0) = IN™[f(xq +u) — £ (x0)] (11)

where A > 0 and u is a unit vector. If the scaling exponent A(xy) does not
depend upon the direction of u, then f displays isotropic local scale
invariance around x; and the corresponding singularity is of Holder
exponent #(xq). If, on the contrary, the scaling exponent depends upon the
direction of u, then the Hélder exponent is the minimum value of /4 over all
the possible orientations of w. Thus f displays anisotropic scale invariance
around xy with one, several, or a continuum of privileged directions along
which the variation of f defines the Hdlder exponent of the singularity
located at xq.

2. Anmisotropic Dilations

Local scale invariance under anisotropic dilations means that locally around
the point xg, the function f behaves as [120-123,125]

J1x0 + Aa(X)rgu] ~ () 2 INMFf (%9 + ) - £ (%o)] (12)

where A > 0 and u is a unit vector. rp is a rotation matrix and A.(A) is a
positive diagonal 2 x 2 matrix that accounts for anisotropic self-affine scale
transformation in the f-rotated referential with origin xo:

= (5 %) (13)

The function f thus displays anisotropic scale invariance around xo and the
Halder exponent is given by the behavior of fin the direction f(a < 1) or
0+ =/2(a > 1).

Very much like the wavelet transform analysis of cusp singularities in 1D
[47—49,74], in order to recover the Holder exponent A(xg) of a function f
from [ to R, one needs to study the behavior of the wavelet transform
modulus inside a come |x—%o| < Ca in the (space-scale) half space
[106,108,126). As originally proposed by Mallat and collaborators [72,73].,
a very efficient way to perform point-wise regularity analysis is to use the
wavelet transform modulus maxima. In the spirit of Canny edge detection
[114], at a given scale @, the WTMM are defined as the points b where the
wavelet transform modulus My[7](b, ) [Eq. (7)] is locally maximum along
the gradient direction given by the wavelet transform argument Ay[f1(b, )
[Eq. (8)]. These modulus maxima are inflection points of f * du(x). As
illustrated in the examples just below, these WIMM lie on connected chains
hereafter called maxima chains [106-108]. In theory, one only needs to
record the position of the local maxima of A, along the maxima chains
together with the value of M,[f] and Ay[f] at the corresponding locations.
At each scale g, our wavelet analysis thus reduces to store those WIMM
maxima (WTMMM) only. They indicate locally the direction where the
signal has the sharpest variation. This orientation component is the main
difference between 1D and 2D wavelet transform analysis. These WTMMM
are disposed along connected curves across scales called maxima lines
[107,108]. We will define the WT skeleton as the set of maxima lines that
converges to the (x, y)-plane in the limit  — 0%. This WT skeleton is likely
to contain all the information concerning the local Holder regularity
properties of the function f under consideration [108].

Example 1. Isotropic singuolarity interacting with a localized smooth
structure. Let us first illustrate the above definitions on the function f;
shown in Figure 2:

ﬁ (X) = Aef(x"xl)z/‘z”z ,+. B|X — X()ID'S (14)

This function is C* everywhere except at x = xo where f; is isotropically
singular with a Holder exponent A(xo} = 0.3. Its 2D wavelet transform
[Eq. (4)] with a first-order analyzing wavelet [the smoothing function () is




Figure 2. Three-dimensional representation of the function fj(x) = de~®—x1)2/272
+B\x—xo\°'3. The isotropic singularity S is located at xo = (—256,~256). The Gaussian
localized siructure G of width & = 128 is located at x; = {256,256). The parameter values are
A=1and B=—1.

CY

Fraure 3. Wavelet transform [Eq. (4)] of the function f; shown in Figure 2, with a first-order
analyzing wavelet (s theisotropic Gaussian function). () Ty, [/i]; (b) Ty, [f1] coded using 32 gray
levels from white {min. 73) to black {max Ty). (c) My[f1] coded from white (M, = 0) to black
(max My). (d) |Ay[fi]] coded from white (|4, = 0) to black {|.4,] = ). The considered scale is
a = 2oy where o = 13 (pixels) is the characteristic size of ¢ at the smallest resolved scals.

the isotropic Gaussian function] is shown in Figure 3 for a given scale
a = 2g,, where o, = 13 is the width (in pixel units) of the analyzing wavelet
at the smallest scale where it is still well enough resolved. Indeed o, is the
smallest scale (or the highest resolution) accessible to our wavelet transform
microscope. Ty1if;] and Ty,ifi] [Eq. (4)] are shown in Figure 3a and b,

respectively. The corresponding modulus M, [fi] and argument Ay[fi] are
represented in Figure 3¢ and d. From a simple visual inspection of Figure 3c,
one can convince oneself that the modulus is radially symmetric around xg
where is located the singularity S. This is confirmed in Figure 3d where
Ay[f1] rotates uniformly from 0 to 27 around xg. The WTMM as well as the
WTMMM are shown in Figure 4 for various values of the scale parameter a
ranging from a = 233 oy (Fig. 4a) to 27 (Fig. 4f). At small scale, there exist
mainly two maxima chains. One is a closed curve around x, at which the

(a_) ! ! ! 1 T (b)
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Ficurs 4. Maxima chains (soiid line} defined by the WTMM of the function f; (Fig. 3).
The local maxima (respectively minima) along these chains are indicated by (®) [respectively (o))
from which originates an arrow whose length is proportional to My[fi] and its direction (with
respect to the x-axis) is given by the WTMM argument Ay[f]. The scale parameter is g = 2>
(@), 2%7 (b), 253 (¢), 257 (d), 2%2 (e), and 277 (£} in o, units. Same first-order analyzing wavelet
as in Figure 3.




Ficure 5. Three-dimensional representation of the topological evolution of the WTMM
chains of fi in the space-scale half-hyperplane. The WTMMM (#) are disposed on ¢onnected
curves called maxima lines. These maxima lines are obtained by linking each WIMMM
computed at a given scale to the nearest WITMMM computed at the scale just above. There
exist two maxima lines, £, (@) and Ly, (4}, pointing, respectively,to the singularity S and to the
smooth localized structure G in the limit @ — 0F.

singularity S is located. The other one is an open curve that partially
surrounds G. On each of these maxima chains, one finds only one
WIMMM (®) whose corresponding arguments are such that the gradient
vector points to S and G, respectively. As far as the singularity S is
concerned, this means that the direction of largest varation of f; around S
is given by 6, = Ay[fi] + 7 where A,[fi] is the argument of the
corresponding WIMMM. When increasing the scale parameter, the
maxima chains evolve; in particular the closed maxima chain around S
swells (its characteristic size behaves like ) until it connects with the
maxima chain associated with G (Fig. 4d} to form a single closed curve
surrounding both S and G (Fig. 4f). The topological evolution of the
maxima chains in the space-scale half-hyperplane is illustrated in Figure 5.
This three-dimensional representation enlightens the existence of two
maxima lines obtained by linking the WTMMM step by step (ie., as
continuously as possible} from small to large scales. One of these maxima

{a) or 1r i ' ST —_(b)
2L JL ]
2 [ i ]
= L 11 i
2 4] s W

.l S e | 1]
© FrTTTTTTTTTIIGe 1T @)
[ 10
mnuuob.-.—..-;eg%me 4L
< 0F o 1k i
I o, ]
L .- 1L (WO
L & | | eeassesussssesssassesco00
N N PR | } A I~
0 4 8 0 4 8
iogy(a) logy(a)

Figure 6. Bvolution of My(f1] and Ay[fi] when following, from large scale to small scale,
the maxima lines Ly, (o} and Ly (a) pointing, respectively, to the singularity S [(a) and (c),
respectively] and to the localized smooth structure G [(b) and (d), respectively]. The symbols (*)
and (¢) have the same meaning as in Figure 4. Same first-order analyzing wavelet as-in Figure 3,

lines points to the singularity S in the limit ¢ — 0*. As shown in Figure 6a,
along this maxima line [Ly,(a)], the wavelet transform modulus behaves as
[72,73]

Ml (@) ~ ), a—0* (15)

where A({xy) = 0.3 is the Holder exponent of S. Moreover, along this maxima
line, the wavelet transform argument evolves toward the value (Fig. 6¢):

Ayl fi](Lxy (@) = 7+ Ox, (16)

inthelimita — 07, where 8y, isnothing but the direction of thelargest variation
of f; around xq, i.e., the direction to follow from x¢ to cross the maxima line ata
given (small) scale. From the maxima line £y, (@), one thus gets the required
amplitude as well as directional informations to characterize the local Hélder
regularity off] atxo. Note thatalong the othermaximaline £y, (@) that pointsto
x; where the smooth localized siructure G is located, the wavelet transform
modulus behaves as (Fig. 6b)

Myl Allx (@) ~d™,  a— 0" 17

where ny, = 113 the order of the analyzing wavelet.
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] Frours 7. WTMM analysis of the function f>(x) defined in Eq. (8). (a) Sa(x) as coded
using 32 gray levels from white (min /5} to black (max /). The maxima chains (solid line) and
the WTMMM (#) are shown for the following values of the scale parameter a = 2 {b), 2% (c)
and 2" (d) in o, units. Same first-order analyzing wavelet as in Figure 3. ’ ,

Example 2. Anisotropic singularity. Let us illustrate with a specific
examp_ie, tl‘}e possibility for a function f£3(x) to display anisotropic local
scale invariance with respect to isotropic dilations. In Figure 7a the
following function is represented:

Fo(x) = falp,0) = —p"® (18}
with
h(8) = 0.3 sin (6 —27/3) +0.5 (19)

The exponent A(f) is nothing but the Holder exponent at p = 0 of the 1D
profile obtained when intersecting the image in Figure 7a along the direction
9_. As far as the whole 2D problem is concerned, the Hlder exponent of the
singularity S is 2(xp) = mingh(¢) = 0.2. It quantifies the sharpest variation
of f2{x), which occurs in the direction 6y, = 7/6. As shown in Figure 7b—d
for different zooms, there exists at each scale only one WTMMM, which
belongs to a unique maxima line Ly, () pointing to the singularity S. Note
that this WITMMM is located in the direction 6y, = 7/6 from the origin.
When following Ly, (a) from large to small scales, M| f2]{ Ly, ()] behaves as
a power law with an expoment 4(xy) = 0.2 (Fig. 8a), in remarkable
agreement with the theoretical prediction for the Hélder exponent of S.
Moreover, when investigating Ay|f2][Lx,(@)], one further gets directional
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FicuzE 8. Evolution of (a) My[f3] and (b) Ay[f] when following, from large to small
scales, the maxima line £y, (a) (*), which poiats to the singularity S. Same first-order analyzing
wavelet as in Figure 7.

information: Ay[fa] = —57/6 = By, — m, from which one learns about the
possible existence of some preferential direction as far as the Holder
regularity properties are concerned.

We will not treat here the case of local scale invariance with respect to
anisotropic self-affine dilations. We send the reader to Arneodo ef al. {108]
where the 2D WTMM method has been be applied to random self-affine
rough surfaces. '

C. The 2D Wavelet Transform Modulus Maxima (WTMM) Method

Before describing the methodology to be used to perform a multifractal
analysis of rough surfaces, we need to define the notion of singularity
spectrum of a fractal function from R? into R [108].

1. Definition

Let /' be a function from R? into R and S}, the set of all the points x; so that
the Holder exponent [Eq. (10)] of f at x; is £ The singularity spectrum D(/) of
/'is the function that associates with any /4, the Hausdorff dimension of 5

D(h) = dy{x € R*, h{x) =h} (20)

In the previous section, we have seen that the maxima lines defined from
the WITMMM computed at different scales can be used as a scanner of
singularities. They allow us to detect the positions where the singularities are
located as well as to estimate their strength A A rather naive way to
compute the D(%) singularity spectrum would thus consist in identifying the




MULIIPRAUILAL IMAGE ANALYSIS 19

g
Z(g,a) = Z [ sup Mylfl(x,d) (21)
Letfa L

x.a)eL,ad <a

smgularities. The characteristic feature of these sitgular functions is the

existence of a hierarchical distribution of singularities [47-50 62-65]
Locally, the Hélder exponent A(xg) is then governed by the sing;larities-
that accumulate at Xo. This results in unavoidable oscillations around the
expected power-law behavior of the wavelet transform modulus [47-50 79]

requires a _methgd jthat Is more feasible and more appropriate than a
systematic investigation of the wavelet transform local scaling behavior as

considex:ed function and therefore is likely to contain all the information
Zoncermng the ﬂuctuatlo_ns of point-wise Hélder regularity. Let us define
(a). as the set of all maxima Iies that exist at the scale @ and that contain

where ¢ € R. As compared to classic box-counting techniques [19-27], the
analyzing wavelet ¢ plays the role of a generalized “oscillating box”, the
scale a defines its size, while the WTMM skeleton indicates how to position
our oscillating boxes to obtain a partition (of §'==US}) at the considered
scale. Without the “sup” in Eq. (21), one would have implicitely considerad
a uniform covering with wavelets of the same size @. As emphasized [47—
50,74], the “sup” can be regarded as a way of defining a “Hausdorff-like”
scale-adaptative partition that will prevent divergencies to show up in the
caleulation of Z{g,a) for ¢ < 0.

Now, from the analogy that links the multifractal formalism to
thermodynamics [48,49,67-69,76,77], one can define the exponent 7{g)
from the power-law behavior of the partition function:

Z(g,a)~a™@,  a— 0t (22)

where ¢ and 7(g) play, respectively, the role of the inverse temperature and
the free energy. The main result of the wavelet-based multifractal formalism
is that in place of the energy and the entropy (i.e., the variables conjugated
to g and 7}, one has the Holder exponent % [Eq. (10)] and the singularity
spectrum D(#) [Eq. (20)]. This means that the D(#h) singularity spectrum of £
can be determined from the Legendre transform of the partition function
scaling exponent 7{g):

D(k) = min [gh — 7(q)] (23)

From the properties of the Legendre transform, it is easy to convince
opeself that homogeneous (monofractal) fractal functions that involve
singularities of unique Héalder exponent k= §7/8q are characterized by
a 7(g) spectrum that is a Znear function of g. On the contrary, a
nonlinear T(g) curve is the signature of nonhomogeneous functions that
display multifractal properties, in the sense that the Holder exponent /A(x)
is a fluctuating quantity that depends upon the spatial position x (in
other words the local roughness exponent is fluctuating from point to

peint),

3. Remark

The exponents 7(g) are much more than simply some intermediate
quantities of a rather easy experimental access. For some specific values
of ¢, they have well known meaning f48].




* ¢=0: From Egs. (21) and (22), one deduces that the exponent 7(0)
accounts for the divergence of the number of maxima lines in the limit
a — 0. This number basically corresponds to the number of wavelets
of size a required to cover the set S of singularities of /. In full analogy
with standard box-counting arguments [19-27], —7(0) can be identified
to the fractal dimension {capacity) of this set:

—7(0) = dr{x, h(x) < +o0} (24)

o g=1: As po_inted out [48], the value of the exponent 7(1) is related to
the fractal dimension (capacity) of the rough surface § defined by the
function f. More precisely {130]:

dr(S) = max(2,1 — 7(1)] (25}

¢ g=2: Ij: is easy to show that the exponent 7(2) is intimately related to
the scaling exponent /3 of the spectral density:

S0 =5 [ a6 | 7P ~ k7 (26)

T

where
B=4+7(2) (27)

From a practical point of view, the computation of the D(h) singularity
spectrum, via the Legendre transform defined in Eq. (23), first requires a
smoothing of the 7(g) curve. This procedure has a main disadvantage. This
smoothing operation prevents the observation of any nonanalycity in the
curves 7(g) and D(h) and the interesting physics of phase transitions
[49,71,131,132] in the scaling properties of fractal functions can be
completely missed. As suggested [49,131,133-137], one can avoid directly
performing the Legendre transform by considering the quantities # and D{h)
as mean quantities defined in a canonical ensemble, i.e., with respect to their
Boltzmann weights computed from the WTMMM [49,79]:

SUPY vy ez, 0 <a Molf](x, @)

W’%”U](Q’: Ls a) = Z(q (1)

(28)

where Z(g,a) is the partition function defined in Eq. (21). Then one
computes the expectation values:

h{g,a) = z In

Lelia)

sup M'V'J m (x, a’) Wy [f] (Qﬂ L, a) (29)

(x,a)eLl,a<a

and

Diga)= Y Wylfllg, £.a)n[Wy[f(g, £, a)] (30)

Lella)

from which one extracts

hig) = lim h(g,a)/na (31)
D(g) = lim D(g.a)/Ina (32)

and therefore the D(k) singularity spectrum.

4. Numerical Implementation

In this section, we briefly review the main steps of the numerical implement-
ation of the 2D WTMM method. Let us consider an n x n digitized image of a
rough surface.

s Step I. Computation of the 2D wavelet transform. We compute the two
components Ty, and T, of the wavelet transform [Eq. (4)] in the Fourier
domain, using 2D Fast Fourier Transform (FFT) [138] and inverse FFT.
We start our analysis by choosing the analyzing wavelet among the class
of radially isotropic wavelets defined in Section IL.A (Fig. 1). To master
edge effects we focus only onthen/2 x #/2 central part of the image where
our wavelet coefficients can be shown to be not affected by the boundary
of the original image. This means that we will be careful not to increase the
scale parameter a above a critical value amax S0 that the n/2 x n/2 central
wavelet coefficients remain safe of finite-size effects. In the opposite limit,
we will define a lower bound an;, to the accessible range of scales so that
the analyzing wavelet is still well resolved at that scale. (We refer the
reader to Section 1.3.3 of Decoster’s Ph.D. thesis [139] for a detailed
practical definition of the accessible [@min, dmax) Tange of scales.) Under
those precautions, one can be confident of our wavelet transform
microscope as far as the investigation of the scale invariance properties in
the range @ € [@mmn, Gmax] 15 concerned.

* Step 2: Computation of the wavelet transform skeleton. As explained in
Section ILB, at a given scale a, we identify the wavelet transform modulus
maxima as the points where My[f](b,a) [Eq. (7)] is locally maximum
along the gradient direction given by Ay[f](b, @) [Eq. (8)]. Then we chain
the points that are nearest neighbors (which actually have compatible
arguments). Along each of these maxima chains, we locate the local
maxima previously called WTMMM. Note that the two ends of an open
mazxima chain are not allowed positions for the WIMMM. Once




computed the set of WTMMM for a finite number of scales rangmg from
Omin 10 Gmax, ONE proceeds to the connection of these WTMMM from scale
to scale. One starts at the smallest scale a,;, and we link each WTMMM to
their nearest neighbor found at the next scale just above. We proceed
iteratively from scale to scale up to @mae. All the WTMMM that then
remain isolated are suppressed. All the WTMMM that are connected on a
curve across scales that does not originate from the smallest scale ay,, are
also suppressed. We then store the modulus My and the argument Ay of
the WITMMM that belong to the so-called maxima lines. Those lines are
supposed to converge, in the limit g — 0+, to the points where the
singularities of the image under study are located. As explained in Section
ILB, to define the wavelet transform skeleton, one has to sclect these
maxima lines that satisfy Eq. (15) from those that satisfy Eq. {17} and that
arewaveletdependent. Thisis done byincreasing the order of the analyzing
wavelet; forn large enough, the spurious maxima lines are suppressedbya
simple thresholding on My at the smallest scale ap,;,. Their roots are
definitely rejected as misleading singularity locations.

Step 3: Computation of the multifractal spectrum. Accordingto Eq. (21),
oneuses the wavelet transform skeleton to compute the partition function
Z(q, @) on the discrete set of considered scales amy, < < dyax. Then, for
a given value of ¢ € [gmin, ¢max], ONE extracts the exponent 7(g) [Eq. (22)]
from a linear regression fit of InZ(g,@) vs. Ina. As a test of the
robustness of our measurement, we examine the stability of our estimate
of 7(g) with respect to the range of scales (@i @] C [Omin, Umax] OVer
which the linear regression fit is performed. After estimating the exponent
7(g) foradiscrete set of g-values, we smooth the 7(g) curve using standard
procedure. Then, one determines the D{(#) singularity spectrum by
Legendre transforming the (g) curve according to Eq. (23). As a check
of the reliability of our results, we use the alternative strategy defined in
Eq. (28) to (32) to estimate the D(k) singularity spectrum without
performing explicitly the Legendre transform. When dealing specifically
with stochastic process, we generally have several images at our disposal
somehow corresponding to different realizations of this process. In
this case, we willmainly proceed to two different averagings corresponding
to the following:

* Quenched averaging: We extract the 7(g) curve from averaging
<InZ(g,a) > over the number of images:

e<1nz(q3a)> ~ aT(QJ’ a —» O+ {33)

In other words, the 7{g) spectrum is obtained by averaging over the
7(g) curves extracted from each individual image.

o Annealed averaging: One can alternatively compute the 7(g)
spectrum after averaging the partition functions obtained for each

image:
< Zlg,a) >~a®,  a-»0F (34)

Note that in most of the examples discussed in this work, we have_ not
observed any significant discrepency between the 7(g) spectra ob_taaned
using either one of these averagings. Consequently, in.the following we
will mainly show the results obtained when estimating the v(g) and
D(#) multifractal spectra using annealed averaging. - .

s Step 4. Computation of the WIMMM probability densrlsy functhns.
From the computation of the joint probability density function
Po(M, A), we first proceed to a test of the possible independence of M
and A. If it is so, we then investigate separately the scale dependence of
P (M) and P,(A). From the investigation of the shape of P, (A), and of
its possible evolution when varying @, one can then quanpfy some
possible departure from isotropic scaling as well as the existence of
possible privileged directions. When P,(M, A) does not factorize, then
M and A are intimately related. In this case, one can try to compgte
the 74(q) and D 4{h) multifractal spectra by conditioning the statistics
of the modulus fluctuations to a given value of the argument. Th_e
A-dependence of these spectra quantifies what one could call anisotropic
multifractal scaling properties.

IIE. TesT APPLICATIONS OF THE WIMM METHOD TO
MONOFRACTAL AND MULTIFRACTAL ROUGH SURFACES

A. Fractional Brownian Surfaces

Since its introduction by Mandelbrot and Van Ness [140], the fractional
Brownian motion (fBm) has become a very popular moedel in signal and
image processing [1-18,28-30]. In one dimension, f Bm has proved useful for
modeling various physical phenomena with Iong-rz.mge dependence, e.g.,
“1/f* noises. The f Bm exhibits a power spectral density S{w) ~ 1/w?, where
the spectral exponent 3 = 2H + 1 is related to the Hurst exponent 4. 1D
fBm has been extensively used as test stochastic signals for Hurst exponent
measurements. The performances of classic methods [33-36,39-42,141-143]
(c.g., height-height correlation function, variance apd power sp_ectral
methods, first return and multireturn probability distributions, maximum
likelihood techniques) have been recently competed by wavelet-based




techniques [144-157]. Comparative analysis of different wavelet-based
estimators for the self-similarity parameter H of f Bm can be found [152-154].

FBm’s are homogeneous random self-affine functions that have been
specifically used to calibrate the 1D WITMM methodology [47-49,79]. This
method was shown to be a very efficient tool to diagnose the monofractal
scaling properties of {Bm. Moreover, it provides very accurate new
estimators of the Hurst exponent with remarkable performances [158].
The purpose of this section is to carry out a test application of the 2D
WTMM methodology described in Section IL, on several realizations of 2D
fBm [108]. :

The generalization of Brownian motion to more than one dimension was
first considered by Levy [159]. The generalization of fBm follows along
similar lines. A 2D fBm Bg(x) indexed by H £[0,1] is a process with
stationary zero-mean Gaussian increments and whose correlation function
is given by {1,2,28,159,160]

<Bu(oBaly) > =5 (x™ - - x—y?) )

where < -+ > represents the ensemble mean value. The variance of such 3
process is

var(Bg(x)) = o°|x]*# {36)

from which one recovers the classic behavior var[By»(x)] = o2|x| for
uncorrelated Brownian motion with H = 1 /2. 2D fBms are self-affine
processes that are statistically invariant under isotropic dilations [Eq. (11)}:

Br(xo + M) — By (xo) = M B (x +u) — By(xg)] {(37)

where u is a unitary vector and ~ stands for the equality in law. The index H
corresponds to the Hurst exponent; the higher the exponent H, the more
regular the fBm surface. But since Eq. (37) holds for any x; and any
direction u, this means that almost all realizations of the fBm process are
continuous, everywhere nondifferentiable, isotropically scale-invariant as
characterized by a unique Hélder exponent h(x) = H,vx [1,2,28,158]. Thus
fBm surfaces are the representation of homogeneous stochastic fractal

functions characterized by a singularity spectrum that reduces to a single
point

D(h) = 2 ifh=H

=00 ifhtH (38)

By Legendre transforming D(#%) according to Eq. (23), one gets the following
expression for the partition function exponent [Eq. 22)1:

i he Fourier transform filtering
FiGure 9. FBm surfaces (128 x 128) generated with t rm
synthesis method, (a) H = 1/3; (b) H = 1/2; (¢} H = 2/3. In the top panels, By(x) is coded
using 32 gray levels from white (min By) to black (max By)-

r(g) = gH ~2 (9)

7(g) is a linear function of g, the signature of monofractal scaling, with a
sfope given by the index H of the {Bm. ' . ‘
i \%e%llave tested the 2D WTMM method described in Sect10n' II on fBm
surfaces generated by the so-called Fourier transform filtering methc_)d
[28,29,160]. We have used this particular synthesis m.ethod‘ becaus.e of its
im{alementation simplicity. Indeed it amounts to a fractional integration ofa
2D “white noise” and therefore it is expected to reproduce quite faithfully
the expected isotropic scaling invariance properties [Eqgs. (37)—(39)]. From a
visual inspection of Figure 9a (H =1/3), 9b (H = 1/2), and S¢c (H = 2/3),
one can convince oneself that the fBm surfaces .become less and l'ess
irregular when increasing the index H. This is nothing but the traduction
that the fractal dimension of fBm surfaces increases from 2 to 3 when H
covers [0,1] [Eq. 29)]:

dp(fBmS) =1 7(1)=3-H (40}

When increasing H, a f Bm surface becomes more and more similar to a

smooth Euclidean 2D surface. .
In Figure 10 are reported the results of a power-spectral analysis of a

{1024 x 1024) image of a f Bm rough surface with Hurst exponent & = 1/3.
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FIGURE 10. Power spectrum analysis of a (1024 x 1024) imaﬂge of a fBm surface B, I (x).
(a) in |By3(k)| as coded using 32 gray levels from white (min In| 5y 3) to black (max n|B, 30
(b) The spectral density S(|kI) vs. |kf in a logarithmic representation, The solid line corresponds
to the theoretical power-law prediction with exponent 8 =2H +2=3§ /3 [Eq. (41)].

In Figure 10a, the Fourier transform of B, ;3(x) does not display any
significant departure from radial symmetry. Isotropic scaling is actually
confirmed when averaging B /3(k) over several of such images. In Figure
10b, the power spectral density is shown to behave as a power law as a
function of the wavevector modulus k|, with an exponent that is in perfect
agreement with the theoretical prediction for the spectral exponent [Eq. (27)]:

B=4+7(2)=2+2H (41)

Along the lines of the numerical implementation procedure described in
Section IL.C, we have wavelet transformed 32 (1024 x 1024) images of
By-1y3 with an isotropic first-order analyzing wavelet. To master edge
effects, we then restrain our analysis to the 512 x 512 central part of
the wavelet transform of each image. In Figure 11 the computation of the
maxima chains and the WTMMM for an individual image at three different
scales is illustrated. In Figure 11b the convolution of the original image
(Fig. 11a) with the isotropic Gaussian smoothing filter ¢ [Eq. (5)] is shown.
According to the definition of the wavelet transform modulus maxima, the
maxima chains correspond to well-defined edge curves of the smoothed
image. The local maxima of M, along these curves are located at the points
where the sharpest intensity variation is observed. The corresponding
arrows clearly indicate that locally, the gradient vector points in the
direction (as given by .4;) of maximum change of the intensity surface.
When going from large scale (Fig. 11d) to small scale {Fig. 11c), the
characteristic average distance between two nearest neighbor WTMMM
decreases like a. This means that the number of WTMMM and, in turn, the
number of maxima lines proliferate across scales like a—2. The correspond-
ing wavelet transform skeleton is shown in Figure 12. As confirmed just

Gy

Froure 11. 2D wavelet transform analysis of Bp_i;(x). ¢ is a first-order radially
symmetric analyzing function (ses Fig. 1}. (a) Thirty-two gray-snclale coding of the cﬂttal 512
%512 portion of the original image. In (b) ¢ = 20w, (¢} a=2" aw, am'i (c_l a== 2oy are
shown the maxima chains; the local maxima of My along these cha%ns are m.dicatec_i by (*) from
which originate an arrow whose length is proportional to My, and its dlrect'mn (with respect to
the x-axis) is given by Ay. In (b), the smoothed image ¢y q * Biys [Eq. (5)] is shown as a gray-
scale coded background from white (min) to black (max).

below, when extrapolating the arborescent structure of this skeleton to the
limit ¢ — 0", one recovers the theoretical result that the support of the
singularities of a 2D fBm has a dimension dr = 2, i.e., By-1/3(x) is nowhere
differentiable [1,2,28,29,159].

The local scale invariance properties of a fBm rough surface are
investigated in Figure 13. When looking at the behavior of M, alo_ng some
maxima lines belonging to the wavelet transform skelet_on,. despite some
superimposed fluctuations, one observes a rather convincing power-law
decrease with an exponent i(xp) that does not seem to degend upon the
spatial location xg. Moreover, the theoretical value for the Holfier exponent
h(xg) = H = 1/3 provides a rather good fit of the slopes obtained at _small
scale in a logarithmic representation of My vs. a [Eq. (15)]: When looking at
the simultaneous evolution of Ay along the same maxima lines, one observes
random fluctuations. Unfortunately, because of the rather limited range Qf
scales accessible to our mathematical microscope, a € [ow, 2%cw], there is

"no hope of demostrating numerically that Ay actually performs a random

walk over [0, 2.
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Fioure 12. Wavelet transform skeleten of the 2D fBm image shown in Figure 11a. This
skeleton is defined by the set of maxima lines obtained after linking the WITMMDM detected at
different scales. Same analyzing wavelet as in Figure 11.
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FiGure 13, Characterizing the local Halder regulatity of Byi3(x) from the behavior of
the WIMMM along the maxima lines. Three maxima lines are investigated. (a) log, My, vs.
logya; (b} Ay vs. logya. Same analyzing wavelet as in Figure 11. The solid line in (z) corresponds
to the theoretical slope # = H = 1/3. a is expressed in o units.

In Figure 14 the results of the computation of the 7{g) and D(%) spectra
using the 2D WTMM method described in Section IT are reported. As
shown in Figure 14a, the annealed average partition function 2 (g,a} [over
32 images of Bj;3(x)] displays a remarkable scaling behavior over more
than three octaves when plotted versus @ in a logarithmic representation
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Figurg 14. Determination of the 7(g) and D(#) spectra of 2D fBm w.ith the 2_D -WTMM
method. (a) log, Z(g,a) vs. log,a; the solid lines correspond to the Fheo_reucal predictions m{g)
=gH — 2 [Eq. (39)] with H=1/3. (b) h(g, @) vs. logya; the solid lines correspond-to'the
theoretical slope H = 1/3. (c) 7{q) vs. ¢ for H = 1/3(*), 1/2 (M), and 2,/.3 (A); the solid ].1.1.1es
correspond to linear regression fit estimates of H. (d) D(7) vs. kr as obtamfl:d fron} the scaling
behavior of D(g, @) vs. logoa [Eq. (30)]; the symbels have the same meaning as in (c). Same
analyzing wavelet as in Figure 11. These results c-orrsspond to annealed averaging over 32
(1024 x 1024) fBm images. a is expressed in ch\umts.

[Egs. (21} and (22)]. Moreover, for a wide range of values of g € [—4, 6], the
data are in good agreement with the theoretical 7(g) spectrum [Eq. (39)].
When proceeding to a linear regression fit of the data over the first two
octaves, one gets the 7{(g) spectra shown in Figure 14c for three vahlws of the
fBm index H = 1/3, 1/2, and 2/3. Whatever H, the data systematically t_'all
on a straight line, the signature of homogegeous ‘(monofrgctal) sca}mg
properties. However, the slope of this straight line provides a slight
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Figurz 15, Pdfs of the WIMMM coefficients of By (x) as computed at different scales
a=1,2.4, and 8 (in op units). (&} P,(M} vs. M. (B) P.{A) vs. A. ¢ is the first-order analyzing
wavelet shown In Figure 1. These results correspond to averaging over 32 (1024 x 1024) fBm
images.

underestimate of the corresponding Hurst exponent H. Let us point out that
a few percent underestimate has also been reported when performing similar
analysis of 1D fBm [47-49,98]. Theoretical investigation of finite-size effects
and statistical convergence has been recently performed to explain this
experimental observation [98].

In Figure 15 are shown the pdfs Po(M) = [dAP,(M, A) and P,(A4) =
JdM P,(M, A), computed for four different values of the scale parameter
with By ;3(x). As seen in Figure 15a, P,(M) is not a Gaussian [in contrast to
the pdf of the continuous 2D wavelet coefficients when using Eq. (7], but
decreases fast to zero at zero. This explains that when concentrating on the
wavelet transform skeleton, the discrete sum on the r.hs. of Eq. (21} no
longer diverges when considering negative ¢ values. This remark is at the
heart of the 2D WTMM method; by allowing us to compute the 7(g)
spectrum for negative as well as positive g values, the 21D WTMM method is
a definite step beyond the 2D structure function method that is intrinsically
restricted to positive g values. The corresponding pdfs P, (A} are represented
in Figure 15b. P,(A) clearly does not evolve across scales. Moreover, except
some small amplitude fluctuations observed at the largest scale,
Py(A) = 1/2n is a flat distribution as expected for statistically isotropic
scale-invariant rough surfaces. The results reported in Figure 16 not only
corroborate statistical isotropy but they bring unambiguous evidence for the
independence of M and A. For two different scales, the pdf of M, when
conditioned by the argument A4, is shown to be shape invariant. We refer the
reader to Ameodo et al. [108] for a similar detailed discussion of the results
of the application of the 2D WTMM method to anisotropic monofractal
self-affine rough surfaces.
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FIGURE 16. Pdf of M as conditioned by A. The different curves correspon(j} to ﬁxing A
(mod 7) to 0= /8, n/d £ /8, 7/2 L /8 and In/4+=7/8. (a} ¢ =1; (b) a=2 (in o units).
Same 2D WTMM computations for By; as in Figure 15. ¢

B. Multifractal Rough Surfaces Generated by Random Cascades on
Separable Wavelet Orthogonal Basis

This section is devoted to the application of the 2D WTMM method to
multifractal functions synthetized from W-cascades on separable wavelet
orthogonal basis as defined in Decoster e al. [109]. A 2]_3 random W-
cascade is built recursively on the two-dimensional square grid of separgble
wavelet orthogonal basis, involving only scales that range betwegn a given
large scale L and the scale 0 (excluded). Thus the corresponding fractal
function f(x) will not involve scales greater than L. For that purpose, we
will use compactly supported wavelets defined by Daubechies [58,109].
Moreover we will mainly concentrate here on multifractal rough surfaces
that display isotropic scaling and that are generated with a ZD log-normal
Wh-cascade. If m and o2 are, respectively, the mean and the variance of ln. W,
where W is a multiplicative random variable with log-normal probability
distribution, then, as shown in Decoster et al. [109], a straightforward
computation leads to the following 7{g) spectrum:

m{q) = —logy < W > -2, Vg & R

__ P om 42)
= T2mz? Tm2f?

where < -+ > means ensemble average. The corresponding D(#) singularity
spectrum is obtained by Legendre transforming 7(g) {Eq. (23)]:
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According to the convergence criteria established in 1D [161], we will
consider only parameter values that satisfy the conditions:

m<0 and s ovin (44)

o2
Moreover, by solving D(h) = 0, one gets the extremal values Hmin and Aoy
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Figure 17 illustrates the computation of the maxima chains and the
WTMMM for an individual image of a multifractal rough surface generated
with the log-normal W-cascade model with parameter values:
m=—0381n2 and ¢? = 0.03 In 2. Again Figure 17b illustrates perfectly
the fact that the maxima chains correspond to edge curves of the original

(45)

hmax =

(b}

g

FiGure 17. 2D wavelet transform analysis of a multifractal rough surface generated with
the log-normal W-cascade model with parameter values m = —0.38 In 2 and o2 = 0.03 In 2. P is
the first-order radially symmetric analyzing wavelet shown in Figure 1. {a) Thirty-two gray-
scale coding of the original (1024 x 1024) image. In (b) a =220y, (¢) 2 = 2%y, and (d)
a = 2**gy are shown the maxima chains and the WTMMM for the central (512 x 512) part of
the original image [dashed square in (a)]. In (b), the smoothed fmage thq * f is shown as a gray-
scale-coded background from white (min) to black (max).

image after smoothing by a Gaussian filter ¢. From the WEMMM defined
on these maxima chains, one constructs the WT skeleton according to the
procedure described in Section IL.C. From the WT skeleton of 32
(1024 x 1024) images like the one in Figure 17a, one computes the annealed
average of the partition functions Z(gq,a). As shown in Figure I'Sa, when
plotted versus the scale parameter ¢ in a logarithmic representation, thfase
annealed average partition functions display a rather impressive scaling
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Ficurs 18. Determination of the 7{g) and D{}) spectra of multifractal rough surfaces
generated with the log-normal (o) random W-cascade models, using the 2D WTMM method.
4 is the first-order radially symmetric analyzing wavelet shown in Figure 1. (a) log, 2(g, a} vs.
logya; the solid lines correspond to linear regression fit of the ldata, over the first four octaves.
(b) h(g, @) vs. log,e; the solid {ines correspond to linear regression fit estimates of i(q). (¢} 7{q)
vs. ¢ as obtained from linear regression fit of the data in (a) over the first four loctlaves. () DR
vs. b, after Legendre transforming the 7{g) curve in (c). In {c} and (d}, the solid lines represent
the theoretical Jog-normal spectra given by Egs. (42) and (43), respectively.




behavior over a range of scales of about four octaves (i.e., o< a <160y,
- where o~ = 13 pixels). Let us point out that scaling of quite good quality is
found for a rather wide range of values of g: —6< ¢ < 8. When processing
to a linear regression fit of the data over the first four octaves, one gets the
7(g) spectrum (o) shown in Figure 18c. For the range of g values where
scaling is operating, the numerical data are in remarkable agreement with
the theoretical nonlinear 7{g) spectrum given by Eq. (42). Similar
quantitative agreement is observed on the D(k) singularity spectrum in
Figure 18d. Let us note that consistant parabolic shapes are obtained when
using either the Legendre transform of the 7(¢) data [Bq. (23)] or the
formula (31) and (32) to compute A(g) and D(g). In Figure 18b are reported
the results for the expectation values A(g,a) [Eq. (29)] vs. log,a; it is clear on
this figure that the slope 4(g) depends upon g, the hallmark of multifractal
scaling. Note that again, the theoretical predictions h(g) = &r/8g =
—o*q/Iln 2 — m/In 2 provide very satisfactory fits of the numerical data.
From Eq. (45), the multifractal rough surfaces under study display
intermittent fluctuations corresponding to Holder exponent values ranging
from Ay = 0.034 to A,y = 0.726. Unfortunately, to capture the strongest
and weakest singularities, one needs to compute the 7{g) spectrum for very
large values of |g|. This requires the processing of many more images of
much larger size, which is not within current computer capabilities. Note
that with the statistical sample studied here, one has D{A(g = 0) = 0.38) =
2.00 £ 0.02, which allows us to conclude that the rough surfaces under
consideration are singular everywhere.

From the construction rule of these synthetic log-normal rough surfaces
[109], the multifractal nature of these random functions is expected to be
contained i the way the shape of the WT modulus pdf P,(M) evolves when
varying the scale parameter a, as shown in Figure 19a. Indeed the joint
probability distribution P, (M, A) is expected to factorize as the signature of
the implicit decoupling of M and A in the comstruction process. This
decoupling is numerically retrieved in Figure 20 where, for two different
scales, the pdf of M, when conditioned by the argument 4, is shown to be
shape invariant. When varying the scale parameter @, no significant angular-
dependent evolution is observed in the distribution of the WTMMM. As
seen in Figure 19b, P,(A) does not exhibit any significant change when
increasing a, except some loss in regularity at large scales due to the
rarefaction of the maxima lines. Let us point out that even though P,(.A)
looks globally rather flat, one can notice some small amplitude almost
periodic oscillations at the smallest scales that reflects the existence of
privileged directions in the wavelet cascading process. These oscillations are
maximum for A = 0,7/2, 7 and 3n/2, as the witness to the square lattice
anisotropy underlying the 2D wavelet tree decomposition.
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Figure 19. Pdfs of the WTMMM coefficients of synthetic multifractal rough surfaces
generated with the log-normal W-cascade model (m = —038 In 2 {J.nd o = 0.03 In 2). (a) P,
(M) vs. M. (b) P, (A) vs. A < is a first-order radially symmetric analyzing wavelet. Four
different scales @ = 1,2, 4,8 (in oy units) are shown These results correspond to averaging over

32 (1024 x 1024) images.
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Fioure 20. Pdfs of M when conditioned by A. The different curves correspond tlolﬁsfjng A
(mod 7) to 0= n/8,x/4 4 /8, n/2 £ 7/8, and 3n/4:kw/8. (2) a=2"; () a=2" (in ow
units). Same 2D WTMM computations as in Figure 19.

1. Remark

We have reported results obtained with the first-order radially symmetric
analyzing wavelets shown in Figure 1. Possibly because of the range of
Holder exponent values that is restricted to & € [0,1], but more probably
because of the underlying multiplicative structure of the multifractal surface
itself, a first-order analyzing wavelet leads to numerical multifractal spectra
that are in remarkable agreement with the theoretical predictions. Let us
point out that quite robust results are obtained with the third-order
analyzing wavelet used in the previous subsection.




C. Distinguishing “Multiplicative from Additive” Processes
Underlying the Scale Invariance Properties of Rough Surfaces from
Space-Scale Correlation Analysis

Correlations in multifractals have already been experienced in the literature
[162-164]. However, all these studies rely upon the computation of the
scaling behavior of some partition functions involving different points; they
thus mainly concentrate on spatial correlations of the local singularity
exponents. The approach recently developed [85,100,165] is different since it
does not focus on (or suppose) any scaling property but rather consists in
studying the correlations of the logarithms of the amplitute of a space-scale
decomposition of the signal. More specifically, if x(x) is a bump function
such that ||x||; = 1, then by taking

(x,a) = 2™ f &= 7)/dIT A, @) dy (46)

one has

171 = [ #x xaa @)

Thus, 52_()(, a) can be interpreted as the local space-scale energy density of
the considered multifractal function f{x). Since £?(x, @) is a positive quantity,
we can define the magnitude of the function f at the point x and scale @ as

w(x,a) = % In £2(x, a) {48)

We have shown [109] that a multiplicative process can be revealed and
characterized through the correlations of its space-scale magnitudes:

C(x1, %2501, a2) = < &(X1, a1)@(xz, @) > (49)

where < --- > stands for ensemble average and & for the centered process
w-— < w >. When using W-cascade process, one can compute analytically
the “two-scale” correlation function C{Ax,a;,a;), between the magnitnde
at scale a; and the magnitude at scale a;. The function displays a logarithmic
behavior as long as Ax is greater than the supremum of @; and @, namely
(109,161,165

Ax

ClAx,a1,a) = & [lc)g2 (ZL;) —~24 Z_L_}

when sup{a;,a;) < Ax < L
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FiGURrE 21, Magnitude correlation function C{Ax, a;,;} vs. log;(Ax), as computed from
the continuous wavelet transform of 32 (1024 x 1024) images. The analyzing wavelet 1/ is the
radially symmetric first-order wavelet shown in Figure 1. (a) Log-normal W-cascades for
parameter values m——0.38In2 and o® =0.03In 2. (b) Fractional Brownian surfaces
By . 13(%). The symbols have the following meaning: a1 = @ =2(0); = L, a2 = L) a =
1,z = 22(00) and &y = 2,a7 = 2° {Q) in o units. In (2) the solid line represents the theoretical
pradiction given by Eq. (50). We have not shown any data points for Ax < op{~ 13pixels).

Thus, the ultrametric structure of the wavelet representation of multifractal
rough surfaces generated with the random W-cascade model implies that the
cross-correlation functions (across scales) decrease very slowly, independ-
ently of g; and a3, as a logarithm function of the spatial distance Ax.

In Figure 21a the results of the computation of C{Ax,a, )} when
averaging over 32(1024 x 1024) images of multifractal rough surfaces
generated with the log-normal W-cascade model for the same parameter
values as in Figure 17a are shown. One can see that for Ax > sup(ar, a2), all
the data points fall onto a unique curve when plotted versus log,(Ax),
independently of the considered pair of scales (a1, a;). Moreover, although
the analyzing wavelet is different from the one used in the construction
process of the W-cascade, these numerical data are in striking good
agreemeni with the theoretical prediction given by Eq. (50) for
o> =0.031n2 and L=1024. The observed slow (logarithmic) decay of
the space-scale correlation functions is thus a clear indication that
magnitudes in random cascades are correlated over very long distances
[100,109,161,165-167]. Note that both the scale independence and the
logarithmic decay are features that are not observed in “additive’ models
like fractional Brownian motions whose long-range correlations originate
from the sign of their variations rather than from the amplitudes. In Figure
21b are plotted the correlation functions C(Ax,a;,a2) computed from
32(1024 x 1024) images of isotropic fractional Brownian surfaces with index
H =1/3 (see Fig. 9a). When compared with Figure 21a, the difference is




impressive: for Ax > sup(ay, az), the magnitudes of By _ ; /3 (X) are found
uncorrelated.

D. Using the 2D WITMM Method to Perform Image Processing Tasks

We now want to discuss the ability to use the WTMM method for specific
purposes in image processing. We refer the reader to previous work [108] for
edge detection and image denoising applications, and also to the work of
Levy-Vehel [168,169] for previous attempts to use multifractal concepts for
image analysis. In this subsection, we want to address a specific image
processing segmentation problem that will be helpful when dealing with
medical applications in Section V1. Indeed, in the past 20 years, many signal
and image processing works have been devoted to medical research,
especially mammography [170,171]. A major point is the detection and the
characterization of clusters of microcalcifications, which are early signs of
breast cancer (Section VI). Qur goal is to demonstrate the ability of the 2D
WTMM method to do, in a very attractive way, such a task with both
synthetic surfaces and genuine mammographic scenes, Here by cluster or
aggregate we mean a set of small objects in which the distances between
them are small as compared to the size of the aggregate itself; otherwise
there is no way of speaking of aggregate—all we have are isolated objects.
Indeed the WTMM method allows us to discriminate two classes of
singularities from the space-scale information embedded in the WT
skeleton, and then to characterize separately the two resulting subsets by
computing the corresponding partition functions and multifractal spectra
[1151.

In Figure 22, we show synthetic images of clusters of small spots of
various heights over a background 2D fBm By (x) rough surface of Hurst
exponent fI = 0.6. The trivial case of a single isolated spot is shown in
Figure 22a. Figure 22b-d displays small spots located on a straight line, on
the border of a filled-in Julia set and on a dense area, respectively. Let us
recall that Julia sets are beautiful objects that arise in the study of iteration
of rational functions on the complex plane [1,2,28]. Here we use the well-
known example of a quadratic polynom as iterating function f; : z — 22 + ¢,
with ¢ = —0.85 4 0.20 % i. The Julia set is just the set of initial seed zy such
that the iterated sequence (z),en, Zns1 = 22 -+ ¢ does not go to infinity. In
Figure 23 is shown the filled-in Julia set that we have used to compute
Figure 22c. Each of these clusters has a known fractal dimension,
respectively 0,1, 1.68, and 2 for the point, line, Julia, and dense clusters.
Although these spots are not singularities but localized structures with
Gaussian shape of width ¢ = 3 pixels and random heights, the 2D WTMM

FiGUrE 22. Synthetic rough surfaces (512 x 512) with a 2D fBm background of Hurst
exponent H = 0.6 and containing a cluster of localized spots. (a) The cluster contains only one
spot in the middle of the image; (b) the spots are located on a straight line; (¢) the spots are
located on a Julia set; (d} the spots are randomly distributed in a square. The spots are modeled
by 2 gaussian of width o = 3 pixels and height randomly chosen in the range [1.2, 1.8]in oz,
unit, Same gray coding as in Figure 9.
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Fiours 23. Filled-in Julia set with parameter ¢ = —0.85 4 0.20 % 4.

method can be used in a very efficient way to identify them and characteri;e
the geometric properties of the aggregate to which they belong. As s.ho‘wn in
Section ILB, in the WT skeleton, one expects the maxima lines pointing to
the background texture to display local scaling properties corresponding to
a 2D fBm surface, ie. Alx) = H = 0.6 [Eq. (15)], whereas maxima lines
pointing to clustered spots are expected to display different local scaling
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FiGure 24, Scaling behavior of the WT modulus along some maxima lines of the WT
skeletons computed from the images shown in Figure 22a, 22b, 22¢ and 22d respectively using
the ﬁrst—order radially symmetric analyzing wavelet shown in Figure 1. Symbols (o) are for
maxima lines pointing to background By . ¢ texturs singnlarities and (A) for those pointing to
clustered small spots. The solid (resp. dashed) line corresponding to scaling exponent s = 0.6
{resp 2 = —1) is drawn the gnide the eyes.

properties with exponent % = —1 since they are seen (at scales @ > oW > o
by our op-resolved WT microscope) as Dirac singularities. Notice that
because these spots are quite smooth localized structures, one expects the
WTMM on these maxima lines to display a crossover at small scales (azow)
toward the behavior My[f](x0,4) ~ a™,a — 0+ [Eq. (17)] dictated by the
number of zero moment of the analyzing wavelet. In Figure 24 are shown, in
a logarithmic representation, the WT modulus versus scale parameter a for
Vario:as maxima lines belonging to the WT skeletons computed from the
fogr images in Figure 22. For each of the analyzed images, maxima lines
pointing to small spots clearly display a crossover from some increase of M
at small scales to a clear power-law decrease at large scales with a local
scaling exponent 421 that is negative and thus can be easily distinguished
from the monotonous power-law increase M, ~ a6 observed along the
maxima line pointing to a # = H = 0.6 background singularity. Now if one
proceeds to the computation of the partition functions Z(g, @) on the
subskeleton corresponding to identified small spots, one gets the results
reported in Figure 25. Even though there are quite few maxima lines in this
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Figurs 25. Determination of the fractal dimension Dy = —7(0) of the cluster of localized
spots in Figures 22a (o: isolated spot), 22b (A: linear cluster), 22¢ (: Julia cluster) and 224
(+: dense cluster). log, Z{g == 0, &)vs. log, (@) as computed with the 2D WTMM method after
discriminating the WT subskeleton corresponding to clustered spots ag illustrated in Figure 24.
The solid lines correspond to the theorctical fractal dimensions Dp =0,1,1.68 and 2

respectively.

subskeleton, one gets a rather nice scaling behavior for small values of ¢. In
particular the estimate of the exponent 7(0) for g == 0 achieves our aim to
classify geometrically these clusters of localized spots. Within numerical
uncertainties, one obtains the following estimates of the fractal dimensions
Dp=—7(0)=040.02,1£0.02,1.7+£0.04 and 24 0.02 for single spot,
linear cluster, Julia cluster, and dense cluster. These results are in quite good
agreement with the theoretical Dy values. They illustrate the ability of
WTMM methodology to extract clustered objects from a nontrivial
background and to retrieve a geometric characterization of the cluster, via
the estimate of its fractal dimension Dg.

IV. MULTIFRACTAL ANALYSIS OF HIGH-RESOLUTION SATELLITE
Ivaces o CLOUD STRUCTURE

The problem of nonlinear variability over a wide range of scales has been
considered for a long time with respect to the highly intermittent nature of
turbulent flows in fluid dynamics [18,44). Special attention has been paid to
their asymptotic and possibly universal behavior when the dissipation length
goes to zero, i.e., when the Reynolds number goes to infinity. Besides wind-
tunnel and laboratory (grid, jet, etc.) experiments, the atmosphere is a huge
natural laberatory in which high Reynolds number (fully developed)
turbulent dynamics can be studied. Clouds, which are at the source of the




hydrological cycle, are the most obvious manifestation of the earth’s
turbulent atmospheric dynamics [10,172,173]. By modulating the input of
solar radiation, they play a critical role in the maintenance of the earth’s
climate [174]. They are also one of the main sources of uncertainty in current
climate modeling [175], where clouds are assumed to be homogeneous media
lying parallel to the earth’s surface; at best, a linear combination of cloudy
and clear portions according to cloud fraction is used to account for
horizontal inhomogeneity when predicting radiative properties. For many
years, the lack of data hindered our understanding of cloud microphysics
and clound-radiation interactions. It is now well-recognized that clouds are
variable in all directions and that fractal [172,173,176-181] and multifractal
[10,182-184] concepts are likely to be relevant to the description of the
complex 3D geometry of clouds. Until quite recently, the internal structure
of clouds was probed by balloons or aircrafts that penetrated the cloud
layer, revealing an extreme variability of 1D cuts of some cloud fields [184-
192]. In particular, in situ measurements of cloud liquid water content
(LWC) were performed during many intensive field programs (FIRE [193],
ASTEX [194], SOCEX [195], etc.). Indeed, during the past 15 years, vast
amounts of data on the distribution of atmospheric liquid water from a
variety of sources were collected and analyzed in many different ways. All
these data contain information on spatial and/or temporal correlations in
cloudiness, enabling the investigation of scale invariance over a range from a
few centimeters to hundred of kilometers, An attractive alternative to i sifu
probing is to use high-resolution satellite imagery that now provides direct
information about the fluctuations in liquid water concentration in the
depths of clouds [177,179-181,196-202]. These rather sophisticated remote
sensing systems called “millimeter radars” are actually sensitive not only to
precipating raindrops but also to suspended cloud droplets. Spectral
analysis of the recorded 2D radiance field [196-202] confirms previous 1D
findings that make it likely that cloud scenes display scaling over a wide
range of scales.

One has to give credit to Lovejoy and co-workers [120-123,182,183,203—
206] for applying the multifractal description to atmospheric phenomena.
Using trace moment and double trace moment techniques [120-123,
204-206], they have brought experimental evidence for multiple scaling
(or in other words, the existence of a continuum of scaling exponent values)
in various geophysical fields. More recently, Davis and co-workers
[184,192,202] have used the structure function method to study LWC data
recorded during ASTEX and FIRE programs. Both these analyses converge
to the conclusion that the internal marine stratocumulus (Se) structure is
multifractal over at least three decades in scales. Similar multifractal
behavior has been reported by Wiscombe et al. [201] when analyzing liquid

water path (LWP) data (i.e., column integrated LWC), from the Atmospe‘ric
Radiation Measurement (ARM)} archives. Even though all these studies
seem to agree, at least as far as their common diagnostic of multifractal
scaling of the cloud structure, they all concern 1D data. To our knowlen_:lge,
the structure function method has also been applied to 1D cuts of high-
resolution satellite images [197,207], but we are not aware of any results
coming from a specific 2D analysis. Qur goal here is to take advantagf: of
the 2D WTMM method to carry out a. multifractal analysis of high-
resolution satellite images of Sc cloudy scenes [106,107,110]. Beyond the
issue of improving statistical characterization of in sifu and remotly sensed
data, ihere is a most challenging aspect, which consists in extracting
structural information to constraint stochastic cloud models, which in turn
will be used for radiative transfer simulations [180,182,202,208-215]. Then
by comparing the multifractal properties of the numerically generated
artificial radiation fields with those of actual measurements, one can hope to
achieve some degree of closure.

A. Landsat Data of Marine Stratocumulus Cloud Scenes

Over the past 15 years, Landsat imagery has provided the remote spnsing
community at large with a very attractive and reliable tool for studying tt_le
Earth’s environment [177,179-181,196-202,216,217]. One of the main
advantages of high-resolution satellite imagery is its rather low effectiv‘c
cost as compared to outfitting and flying research aircraft. Moreover this
instrument is well calibrated and it offers the possibility of reaching unusual
high spatial, spectral, and radiometric resolutions [197,216]. Ma?'nly two
types of statistical analysis have been applied so far to LaI:Ed§at imagery:
spectral analysis of the 2D radiance field [196-200,216] and joint area and
perimeter distributions for ensembles of individual clouds [177,179-181]
defined by some threshold in radiance. One of the most .remarkable
properties of Landsat cloud scenes is their statistical scale—invamance. over a
rather large range of scales, which explains why fractal and multﬂractgl
concepts have progressively gained more acceptance in the atmospheric
scientific community [10].

Of all cloud types, marine stratocumulus (Sc) are without doubt the ones
that have attracted the most atiention, mainly because of their first—order
effect on the Barth’s energy balance {10,173,197,216,218]. Being at once very
persistent and horizontally extented, marine Sc layers carry considerable
weight in the overall reflectance (albedo) of the planet and, from the.re,
command a strong effect on its global climate [174]. Furthermore,. vvtlth
respect to climate modeling [175] and the major problem of cloud-radiation




interaction [182,196,197,208-211], they are presumably at their simplest in
marine Sc that are relatively thin (~300 — 500 m), with well-defined
(quasiplanar) top and bottom, thus approximating the plane-parallel
geometry in which radiative transfer theory is well developed [173,182,
197,209,210,213). However, because of its internal homogeneity assumption,
plane-parallel theory shows systematic biases in large-scale average
reflectance [210,219] relevant to Global Circulation Model (GCM)
energetics and large random errors in small-scale values [213,220] relevant
to remote-sensing applications. Indeed, marine Sc have huge internal
variability [184,192], not necessarily apparent to the remote observer.

In this section we challenge previous amalysis [177,179-181,196-202,
216,217] of Landsat imagery using the 2D WTMM methodology [106-110]
with the specific goal of improving statistical characterization of the highly
intermittent radiance fluctuations of marine Sc, a prerequisite for
developing better models of cloud structure and, in turn, furthering our
understanding of cloud-radiation interaction. For that purpose, we analyze
[110] a (= 196 x 168 km?) original cloudy Landsat 5 scene captured with the
TM camera (1 pixel = 30 m) in the 0.6-0.7 um channel (i.e., reflected solar
photons as opposed to their counterparts emitted in the thermal infrared)
during the first ISCCP (International Satellite Cloud Climatology Project)
Research Experiment (FIRE)} field program [193], which took place over the
Pacific Ocean off San Diego in the summer of 1987. For computational
convenience, we actually select 32 overlapping 1024 x 1024 pixels® sub-
scenes in this cloudy region. The overall extent of the explored area is about
7840 km?. Figure 26a shows a typical (1024 x 1024) portion of the original
image where the eight-bit gray scale coding of the quasinadir viewing
radiance clearly reveals the presence of some anisotropic texture induced by
convective structures that are generally aligned to the wind direction.

B. Application of the 2D WTMM Method to Landsat Images of
Stratocumulus Clouds

We systematically follow the numerical implementation procedure described
in Section I1.C. We first wavelet transform the 32 overlapping (1024 x 1024)
images, cut out of the original image, with the first-order (r; = 1) radially
symmetric analyzing wavelet defined in Figure 1. From the wavelet
transform skeleton defined by the WTMMM, we compute the partition
functions from which we extract the 7(¢) and D(h) multifractal spectra. We
systematically test the robutness of our estimates with respect to some
change in the shape of the analyzing wavelet, in particular when increasing
the number of zero moments.

FIGURE 26. 20D wavelet transform analysis of a Landsat image of marine Sc clouds [110].
1 (%) is the first-order radially symmeiric analyzing wavelet showg in Figure 1. (a} A 22956 gray-
scale coding of a (1024 x 1024) portion of the original radiance image. In b)a =.2 - ow,.(c)
a=2Y0p, and (d) a = 2*%oy (where oy = 13 pixels = 390 m), are shown thfa maxima chains;
the local maxima of M, along these chains are indicated by (*) frem which o1j1gu.1atf_:s an arrow
whose length is proportional to M, and its direction (with respec?t to th_e )_c—ams). is given by Ay;
only the central (512 x 512) part delimited by a dashed square in (a) is taken into account to
define the WT skeleton. In (b), the smoothed image ¢n, = I is shown as a gray-scale coded
background from white (min) to black (max).

1. Numerical Computation of the Multifractal 7(q) and D(h) Spectra

Figure 26 illustrates the computation of the maxima chains and the
WTMMM for the marine Sc subscene. After linking these WIMMM across
scales, one constructs the WT skeleton from which one computes the
partition functions Z(g.a) {Eq. (21)]. As reported in Figare 27a, ‘the
annealed average partition functions (#) display some well-defined scaling
behavior over the first three octaves, i.e., over the range of scales 390 m < a
< 3120 m, when plotted versus « in a logarithmic representation. Indeed the
scaling deteriorates progressively from the large scale side when one goes to
large values of |g|=3. As discussed [110], besides the fagt that-we are
suffering from insufficient sampling, the presence of localized Dirac-like
structures likely explains the fact that the observed crossover to a steeper
power-law decay occurs at a smaller and a smaller scale when one increases
g > 0. Actually for g=3, the crossover scale a* S 1:200 m b.ecomes
significantly smaller than the so-called integral scale, which is approximately
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Ficure 27. Determination of the (g) ané D(k) spectra of radiance Landsat images of
marine Sc. The 2D WTMM method is used with either a first-order (®) or a third-order (o)
radially symmetric analyzing wavelst (see Fig. 1). (a) log;2(g, a) vs. logya; the solid lines
correspond to linear regression fits of the data over the first octave and a half. (b) 7(g) vs. g as
obtained from a linear regression fit of the data in (a). (c) D(k) vs. k, after Legendre
iransforming the +{g) curve in (b). In (b) and (c), the solid lines correspond to the theoretical
multifractal spectra for log-normal Wecascades with parameter values m = —0.38 In 2 and
o =0.07 n 2 [Egs. (42) and (43)]. The D(#) singularity spectrum of velocity (dotted line) and
temperature (dashed line) fluctuations in fully developed turbulence are shown for comparison
in {c}.

given by the characteristic width A ~ 1 5-6 km of the convective rolls (Fig.
26a). When processing to a linear regression fit of the data in Figure 27a over
the first octave and a half (in order to avoid any bias induced by the presence of
the observed crossover at large scales), one gets the 7{g) spectrum (#) shown in
Figure 27b. In contrast to the fractional Brownian rough surfaces studied in
Section ITL.A [108], this 7(¢) spectrum unambiguously deviates from a straight
line. When Legendre transforming this nonlinear 7(g) curve, one gets the D{(%)
singularity spectrum reported in Figure 27¢. Its characteristic single humped
shape over a finite range of Holder exponents is a clear indicatjon of the
multifractal nature of the marine Sc radiance fluctuations. We have checked
[110] that the estimate of the D(#) singularity spectrum from the scaling
behavior of the partition functions (g, @) [Eq. (29)] and D{g, a) [Eq. (30)] yields
similar quantitative results.
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In Figure 27 arc also shown for comparison the results (o) obtained when
applying the 2D WTMM method with a third-order (s, = 3) radially
symmetric analyzing wavelet (the smoothing function ¢ being the isotropic
2D Mexican hat). As seen in Figure 27a, the use of a wavelet that has more
Zero moments seems to somehow improve scaling. For the range of ¢g-values
investigated, the crossover scale turns out to be rejected at a larger scale,
enlarging by some amount the range of scales over which scaling properties
can be measured, especially for the largest values of |g|. The fact that one
improves scaling when increasing the order of the analyzing wavelet suggests
that perhaps some smooth behavior unfortunately deteriorates our
statistical estimate of the multifractal spectra of the original Landsat
radiance image. Let us recall that, as explained in Section IL.B, smooth (&
behavior may give rise to maxima lines along which My ~ a* (Fig. 6b);
hence the larger sy, the smaller is the overall contribution of those
“spurious™ maxima lines in the partition function summation over the WT
skeleton. As seen in Figures 26a, the anisotropic texture induced by the
convective streets or rolls might well be at the origin of the relative lack of
well-defined scale invariance. When looking at the corresponding 7(g)
spectrum (o) extracted from the data in Figure 27b, one gets quantitatively
the same estimates for g2-1. For more negative values of ¢, the data
obtained with the third-order analyzing wavelet clearly depart from the
previous estimates with the first-order wavelet. The slope of the new 7(g)
spectrum is somehow weakened, which implies, from the Legendre
transform properties, that the corresponding values of A(q) = 8r/8q are
reduced. The computation of the D(%) singularity spectrum (o) in Figure 27¢
enlightens this phenomenon: while the increasing left-hand branch (which
corresponds to the strongest singularities) of the D(k) curve appears to be
quite robust with respect to the choise of 4, the decreasing right-hand
branch (associated to the weakest singularities) is modified when increasing
the number of zero moments of . As shown in Figure 27b and c, the D(k)
spectrum as well as the 7(g) spectrum data are very well fitted by the
theoretical quadratic spectra predicted for log-normal random W-cascades
[Egs. (42) and (43)]. However, with the first-order analyzing wavelet, the
best fit is obtained with the parameter values m = —0.38 In 2 = —0.263 and
o2 = 0.07 In 2 = 0.049, while for the third-order wavelet these parameters
take slightly different values, namely m = —0.366 In 2 = —0.254 and
o2 = 0.06 In 2 = 0.042. The variance parameter o2 that characterizes the
mter mittent nature of marine Sc radiance fluctuations is therefore
somehow reduced when going from ny = 1 to ny = 3. Actually the lack of
statistical convergence because of insufficient sampling is actually the main
reason for this uncertainty in the estimate of o2 [110]. As previously
experienced [109] for synthetic multifractal rough surfaces, an accurate
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Figure 28. Pdfs of the WIMMM coefficients of the 32 (1024 x 1024) radiance Landsat
images as computed with the first-order radially symmetric analyzing wavelet. (a) P,(M) vs.
M; (b) Pi(A) vs. A; the symbols correspond to the following scales: a = 2%3 5y = 480,
m(e), 23y = 960m(c), and 223 gy = 1920m (x). The solid lines in (a) correspond to log-
normal distributions.

estimate of the exponents 7(gq) for ¢S —3 requires more than 32
(1024 % 1024) images. With the statistical sample of Landsat imagss we
have at our disposal, one gets D{k(g =0) =0.37 £ 0.02) = 2.00 £ 0.01,
which is a strong indication that the radiance field is singular everywhere.
From the estimate of 7(g=2)=—1.38 £0.02, one gets the following
estimate of the spectral exponent: 5 = 7(2) + 4 = 2.62 £ 0.02, i.e., 2 valuc in
good agreement with previous estimates [185--189,191,196-200,216].

2. WIMMM Probability Density Functions

This subsection is mainly devoted to the analysis of the joint probability
distribution function P,(M, A} [108-110] as computed from the wavelet
transform skeletons of the 32 (1024 x 1024) radiance images with the
first~order radially symmetric analyzing wavelet (n,, = 1). In Figure 28a and
b are respectively shown the pdfs P,(M) = [dAP,(M, A) and P (A) =
JdMP (M, A) for three different values of the scale parameter @ = 2035y
(480 m), 2130w (960 m), and 2237y (1920 m). First let us focus on the
results shown in Figure 28b for P,(A). This distribution is clearly scale
dependent with some evidence of anisotropy enhancement when going from
small to large scales, in particular when one reaches scales that become
comparable to the characteristic width of the convective structures (ie., a
few kilometers wide). Two peaks around the values A ~ 1 — 7/6 and 57/6
become more and more pronounced as the signature of a privileged
direction in the analyzed images. As one can check from a visual inspection
of Figure 26a, this direction is nothing but the perpendicular to the mean
direction of the comvective rolls that are generally aligned to the wind
direction. This is another clear indication that at large scales, the wavelet
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FIGURE 29. Pdfs of the WTMMM coefficients of the 32 (1024 x 1024) radiance Landsat
images as computed with a first-order radially symmetric analyzing wavelet. Pdfs of AM when
conditioned by 4. The different symbols correspond to fixing A (mod #) to 0% #/8(c}, w/4
4 w/8 (0), =/2x#/8 (A), and 3n/4Ln/8 (H). () a=2"0p =480,m; (b) a= 213
ow = 960, m.

transform microscope is sensitive to the conmvective roll texture, a rather
regular modulation superimposed to the background radiance fluctuations
[107-110].

Another important message that comes out from our analysis is
illustrated in Figure 29. When conditioning the pdf of M by the argument
A, the shape of this pdf is shown to be independent of the considered value
of A, as long as the value of the scale parameter ¢ remains small as
compared to the characteristic width of the convective structures. The
observation that the joint probability distribution actually factorizes, i.e.,
P (M, A) = P,(M)P,(A), indicates that A and A are likely to be
independent [107,110]. This implies that all the multifractal properties of
the marine Sc radiance fluctuations are contained in the way the shape of
the pdf of M evolves when one decreases the scale parameter a. This
evolution is fllustrated in Figure 28a when using a first-order radially
symmetric analyzing wavelet. Since by definition the WTMMM are
different from zero, P,(M) decreases exponentially fast to zero at zero.
As previously emphasized [108], this observation is at the heart of the 2D
WTMM method, which, for this reasoﬁ, does not suffer any problem with
divergency when estimating the 7(¢) spectrum for ¢ < 0. As shown in Figure
28a for any scale significantly smaller than the integral scale (~ 5-6 km, as
given by the characteristic width of the convective structures), all the data
points fall, within a good approximation, on a log-normal curve {106,110].
As shown [110], this experimental feature is not specific to some particular
shape of the analyzing wavelet since log-normal pdfs are also found when
using a third-order radially symmetric analyzing wavelet.
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FiGure 30, Magnitude correlation function C{Ax, a;,a0) vs. log,(Ax), as computed from
the 32 (1024 x 1024) radiance Landsat images using a first-order radially symmetric analyzing
wavelet. (a) WITMMM magnitude: w(x, a) = InJMy[f][£.{a)]]. (b} Continuous WT magnitude:
w(x,a) =4 In 2{x, a) [Eq. (48)]. The symbols have the following meaning: a; = a3 = 2oy =
780, m{o); &1 = o = 390, m, @ = 2oaw = T80 m{A); a1 = oy =390 m, gz = 4oy = 1560 m
(O): a1 = 20w = 780,m, @ = oy = 1560, m (©). The solid (dashed) lines correspond to the
theoretical prediction [Eq. (50)] for multifractal rough surfaces gensrated with the random
W-cascade model with parameters ¢ = 0.08 I 2 (0.16 In 2) and L = 220 pixels = 6.6 km.

C. Space-Scale Correlation Function Analysis of Radiance Landsat Images

As pointed out in Section IT1.C, the real demonstration of the existence of an
underlying multiplicative structure consists in taking advantage of the
space-scale unfolding provided by the continuous wavelet transform to
compute the cross-scale correlation functions. In Figure 30 the results of the
computation of C(Ax,a),a;) when averaging over the 32 (1024 x 1024)
radiance Landsat images, using either the WIMMM (Fig. 30a) or the
continuous WT (Fig. 30b) definition of the magnitude of f (Section ILC
[110]) are reported. One can see that for Ax > sup(a;, a;), all the data points
fall, in good approximation, onto a unique curve when plotted versus
log; (Ax), independently of the considered pair of scales (a1, a2). Moreover,
a straight line of slope —o? = —0.012 provides a rather reasonabie fit of
the data up to a separation distance Ax = 27 pixels ~ 3.8 km, where
decorrelation seems to be attained. Note that using the WTMMM instead
of the continuous WT does not make any difference; this is a strong
indication of the existence of some ultrametric properties underlying the
branching structure of the space-scale wavelet representation of the
radiance fluctuations. On top of the data in both Figure 30a and b, we
have shown, for comparison, the theoretical prediction [Eq. (50)] for the
“two-scale” correlation function of multifractal rough surfaces generated by
the random W-cascade model. This formula provides a reasonable fit of the
data when adjusting the model parameters to ¢* = 0.16 In 2 and L = 220

pixels = 6.6 km. Although the estimate of the integral scale seems to be
of the right order of magnitude as regard to the characteristic width
(A ~ 5-6 km) of the convective rolls, the value obtained for the intermit-
tency parameter o” is about twice as large as previous estimates derived
from the WTMM computation of the 7{g} and D{/) multifractal spectra
in Figure 27. At this point, let us emphasize that a similar discrepancy
has been previously noticed in the WTMM analysis of wind tunnel turbulent
velocity fields [85,152]. It may suggest that simple scale-invariant self-similar
cascades as pictured by the random W-cascade model are not sophisticated
enough to account for the space-scale structure of the radiance fluctuations
in marine Sc clouds. The interpretation of this feature in terms of
correlations between weights at a given cascade step or in terms of a more
complex geometry of the tree underlying the multiplicative structure of the °
radiance field is underway. The possible importance of the intermittently
distributed localized downward spike structures is also under consideration.
Before drawing definite conclusions, there is clearly a need to repeat the
“two-point™ correlation function analysis on the background radiance
fluctuations, once all the maxima lines corresponding to those Dirac-like
singularities are removed from the WT skeleton.

D. Comparative WTMM Multifractal Analysis of Landsat Radiance Field
and Velocity and Temperature Fields in Fully Developed Turbulence

Let us point out that a similar 1D WTMM analysis of the velocity
fluctuations in high Reynolds number turbulence has come to conclusions
very close to those of the present study [81-87,221]. Besides the presence of
rather localized Dirac-like structures that witness the probing of vorticity
filaments [62,84,127,221], the multifractal nature of turbulent velocity is
likely to be understood in terms of a log-normal cascading process that is
expected to be scale-invariant in the limit of very high Reynolds numbers
[81-87]. In Figure 27¢ are shown for comparison the results obtained for the
D(h) singularity spectrum of the radiance Landsat images together with the
D(f) data extracted from the 1D analysis of a turbulent velocity signal
recorded at the Modane wind tunnel (R, ~ 2000) [82,85] [indeed D{k) -+ 1 is
represented for the latter in order to compare 1D to 2D data]. The turbulent
velocity D(h) spectrum significantly differs from the results obtained for
the marine Sc cloud. They have a common feature, i.e., the Hélder exponent
most frequently encountered in the radiance field & =m/ln 2 = h{qg =0)
= 07/8q|,..o =0.38=0.01 is indistinguishable from the corresponding
exponent i = h(g = 0) = 0.39 = 0.01 found for the turbulent velocity field.
Note that these values are significantly larger than the theoretical value




h = 1/3 predicted by Kolmogorov in 1941 [222] to account for the observed
k=>/* power-spectrum behavior. The main difference comes from the
intermittency parameter, which is much stronger for the cloud, 02/1n 2 =
0.07£0.01(ny =1)ore?/In 2 = 0.06 + 0.01(ny, = 3), than for the turbulent
velocity, ¢%/In 2 = 0.036 + 0.004. This indicates that the radiance field is
much more intermittent than the velocity field: the D(k) singularity
spectrum for the former is unambiguously wider than the corresponding
spectrum for the later. For the sake of comparison, in Figure 27c we have
also reported the multifractal D(%) spectrum of the temperature fluctuations
recorded in a Ry =400 turbulent flow [223]. The corresponding single
humped curve is definitely much wider than the velocity D(%) spectrum and
it is rather close to the data corresponding to the marine Sc radiance field. It
is well recognized, however, that liquid water is not really passive and that
its identification with a passive component in atmospheric dynamics offers
limited insight into cloud structure since, by definition, near-saturation
conditions prevail and latent heat production affects buoyancy [202]. So
cloud microphysical processes are expected to interact with the circulation at
some, if not all, scales [224]. Nevertheless, our results in Figure 27¢ indicate
that from a multifractal point of view, the intermittency captured by the
Landsat satellite looks statistically equivalent to the intermittency of a
passive scalar in fully developed 3D turbulence. The fact that the internal
structure of Sc cloud somehow reflects some statistical properties of
atmospheric turbulence is not such a surprise in this highly turbulent
environment. The investigation of different sets of Landsat data is urgently
required in order to test the degree of generality of the results reported in
this first WIMM analysis of high-resolution satellite images. In particular,
one may wonder to what extent the marine Sc Landsat data collected off the
coast of San Diego on July 7, 1987 under specific observation conditions
actually reflect the specific internal structure of Sc clouds. Work in this
direction is currently in progress.

Finally, with respect to the issue of cloud modeling, the WTMM analysis
of marine Sc Landsat data indicates that the 2D random W-cascade models
introduced [109] are much more realistic hierarchical models than
commonly used multifractal models such as the fractionally integrated
singular cascade [120,123,200,205,216] or the bounded cascade models
[218,225]. We are quite optimistic in view of using the log-normal W-
cascade models with realistic parameter values for radiation transfer
simulations. To our opinion, random W-cascade models are a real
breakthrough, not only for the general purpose of image synthesis, but
more specifically for cloud modeling. It is likely that better cloud modeling
will enable further progress in our understanding of cloud-radiation
interactions possible.

V. MULTIFRACTAL ANALYSIS OF 3D TURBULENCE SIMULATION DATA

A. Multifractal Description of Intermittency

1. Intermittency Based on the Velocity Field

Since Kolmogorov’s founding work in 1941 (K41) [222], fully developed
turbulence has been intensively studied theoretically, numerically, and
experimentally [18,44,226-229]. A standard way of analyzing a turbulent
flow is to look for some universal statistical properties of the fluctuations of
the velocity increments over a distance [:

§v(r,le) = v(r + Je) — v(r) {51)

where e is an arbitrary unit vector. For instance, investigating the scaling
properties of the longitudinal structure functions:

Sp(1) = < (ebv(r, le)f >~1¢,  p>0 (52)

where < --- > stands for ensemble average, leads to a spectrum of scaling
exponents , that has been widely used as a statistical characterization of
turbulent fields [18,44,226,228,229]. Based upon assumptions of statistical
homogeneity, isotropy, and constant mean energy dissipation per unit mass
¢, K41 asymptotic theory predicts the existence of an inertial range
n < I « L for which the structure functions behave as

Sy(I) ~ e3P (53)

where 7 is the Kolmogorov dissipative scale and L the so-called integral
scale. Although these assumptions are usually considered to be correct, there
has been increasing numerical [18,226,230,231] and experimental
[18,44,226,228,229,232-240] evidence that {, deviates substantially .from
the K41 prediction (, = % p, at large p. The observed nonlinear beha.mo'r of
the {, spectrum actually characterizes some evolution of th.e lon'gltudmal
velocity increment probability density function (pdf) in the inertial range,
from a Gaussian shape at large scales to stretched exponential tails toward
smaller scales [228,234,235,241-245]. This evolution of the longitudinal
velocity increment statistics across scales is at the heart of the multi.ﬁl"actal
description of the intermittency of small scales, pioneered by Parisi and
Frisch in 1985 [43]. K41 theory is actually based on the assumption that. at
each point r of the fluid, the velocity field has the same scaling behavior
e.6v(r, le) ~ ['/3, which yields the well-known £{k) = k=>/3 enexgy spectrum
[18]. By interpreting the nonlinear behavior of {; as a direct consequence .of
the existence of spatial fluctuations in the local regularity of the velocity
field, namely




e.5v(x, le) ~ ) (54)

where th_e exponent A depends upon r, Parisi and Frisch [43] propose to
capture intermittency in a geometric framework. For each 4, if one calls
D(h) the fractal dimension of the set of spatial points r for which A(r) = 4,

~ then by suitably inserting this local scaling behavior [Eq. (54)] into Eq. (52),
one can bridge the so-called singularity spectrum D{(%) and the set of scaling
exponent ¢, by a Legendre transform:

D{y = min{ph — G + d) (55)

where d = 3 is the dimension of the velocity field. From the properties of the
Legendre transform, a nonlinear ¢, spectrum is equivalent to the assumption
that there is more than a single exponent /4. But as already mentioned in the
introduction (Section I), Eq. (55) is valid for positive (integer) p values only,
which precludes the computation of the entire D(h) spectrum (in particular
its right decreasing part corresponding to the weakest singularities is
inaccessible to the structure function method) [50]. In the early 1990s, the
1D WTMM method [47-50] was introduced to overcome the insufficiencies
of the numerical techniques commonly used to perform multifractal analysis
(e.g., the structure function method, and the box-counting techniques). The
use of wavelets (instead of increments or boxes) actually allows us to
compute partition functions that scale like Z{(g,4) ~ a™@, where the
exponents 7(g) are nothing but a generalization of the exponents ¢p in the
sense that ¢ is now a real number going from —oo to +co. Then, as
demonstrated [74,75], one can prove that by Legendre transforming the {q)
spectrum, one gets both the increasing (g > 0) and the decreasing (g < 0)
parts of the D(#) singularity spectrum. Preliminary results obtained for high
Reynolds wind tunnel experimental data with the 1D WTMM method have
confirmed the nonlinearity of the 7(g) spectrum and consequently the
multifractal nature of the longitudinal velocity fluctuations [47-49].

Let us note that from low to moderate Reynolds number turbulence, the
inertial range revealed in numerical simulations as well as in experiments is
rather small, which makes the estimate of the scaling exponents ¢ and 7(g)
not very accurate. Actually, the existence of scaling laws such as Eq. (52) for
the structure functions [240,246,247], as well as for the WTMM partition
functions [81-83,85], is not clear experimentally, even at the highest
accessible Reynolds numbers. Indeed, there is a persistent curvature when
one plots In [§,(7)] vs. In (/), which means that, rigorously speaking, there is
no scale invariance. This observation somehow questions the validity of the
multifractal description. Benzi ez al. [248-250] proposed some remedy to the
observed departure from scale invariance by looking at the scaling behavior
of one structure function against another. More precisely, ¢p can be

estimated from the behavior S, (1) ~ 53 ()%, if one assumes that (5 = 118].
The relevance of the so-called extended self-similarity (ESS) hypothesis
improves and further extends the scaling behavior toward the dissipative
range [230,248-250). From the application of ESS, some broad consensus
among European researchers was reached in 1996 [240], at least as far as
isotropic homogeneous turbulence is concerned. In this context, the ESS
hypothesis has received strong support from the “propagator (across
scales)” approach originally developed by Castaing and co-workers
[235,246,251-257] and recently revisited with the wavelet transform
methodology [81-83,85,221,258]. Let us notice that Castaing’s approach
can be linked to the recently proposed Fokker-Planck/Langevin description
of intermittency [259-261]. According to this description, the velocity field is
a Markov process across scales which suggests that the velocity increment °
pdf at different scales obeys a Fokker-Planck differential equation
characterized by a drift and a diffusion coefficient. Even though this
description remains, to a large extent, formal from a mathematical point of
view and very phenomenological, it can be interesting because of its great
versatility as far as scaling behavior is concerned [262]. Let us note that
some theoretical works have tried to build some bridge between the
Fokker-Planck approach and the Navier-Stokes dynamics [263,264]. Very
recently, a systematic computation of the cumulants of the magnitude In
le.6v(r,le)} of 1D longitudinal velocity profiles stemming from three
different expertmental setups and covering a broad range of Taylor-scaled
Reynolds numbers from R) =89 to 2500 has clearly revealed some
inconsistency with the ESS hypothesis [87]. Indeed this study shows that
the breaking of scale invariance is mainly contained in the first-order
cumulant, which is found to strongly depend on Reynolds number and
experimental conditions, whereas, surprisingly, the second-order cumulant
displays universal scale invariance behavior from R, values as low as
R, ~ 100. Furthermore, when extrapolating these results to the limit of
infinite Reynolds number, this study confirms the asymptotic validity of
the log-normal multifractal description of the intermittency phenomenon;
the ¢, spectrum is quadratic:

2

G=1(p)+d=~Cp-C5 (56)

with a well-defined intermittency parameter C, = 0.025 £ 0.003 [87]. Note
that a plausible explanation to the scale invariance symmetry breaking
observed in the magnitude first-order cumulant at finite Reynolds number
[and which turns out to pollute the scaling behavior of S,(/) for every p] is
the presence of anisotropic velocity fluctuations in the inertial range that are
likely to originate from large-scale boundary and forcing effects. We refer




the reade}' to Reijs. [265-268], which show how to master these anisotropic
effects using the irreducible representations of the rotation group.

2. Intermittency Based on the Energy Dissipation Field

A gent_ral quantity in the K41 theory [222] is the mean energy dissipation e
which is supposed to be constant [Eq. (53)]. The observed nonlinear be]ctawimi
of the C{, spectrum [Eq. (56)] is generally interpreted as a direct consequence
of the intermittency phenomenon displayed by ¢, which is not spatially
homogeneous but undergoes local intermittent fluctuations [18,226,227,233].
Under the so-called Kolmogorov refined similarity hypothesis (RSH)
[269,270], the velocity structure functions can be rewritten as
Sp(l) ~ < ey > w3

~ [/ 3+p/3 (57)

whe.re ¢(r) is the spatial average of the encrgy dissipation over a ball of
radius / centered at the point r and of volume Vyes 14

&(r) =% g (') d%’ (58)

Note that the dissipation rate « is related to the symmetric part of the strain
tensor (7,j = 1,2,3):

v
€ = EZf,j(ajvi + Bgvj)l
(59)
= zyzi’jsgsﬂ,

where

1
S;j = E (Qi'l)j + vaj) (60)
Agzc)o[r&i]ng to Eq. (57), the scaling exponents of S, are thus related to those of
elr :

G =7(p/3)+p/3 (61)

By Legen@re transforming both sides of this equation, one gets the following
relationship between the singularity spectra of € and v:

a=3h,  fla)=D(h) (62)

where f.() is the Hausdorff dimension of the set of spatial points such that
&(1) behaves like

gty~11 a5 =0 (63)

Considered as a measure, the dissipation has singularities of exponent o — 1
on sets of dimension:

file) = min(g(e = 1) = 7(g) + d) (64)

Several experimental and numerical works have tested various facets of the
RSH hypothesis [164,221,227,250,251,271-282]. The support for the RSH is
strong but not unequivocal. In the experiments, besides some possible
artifact that may result from the use of the Taylor’s hypothesis (which
consists in substituting time derivatives for space derivatives) [18], the so-
called surrogacy issue concerns the shortcoming of replacing ¢ by its

surrogate:
au\?
d = 15u(a) (65)

where  is the recorded longitudinal velocity component. Indeed themwossity
of working with ihe surrogate dissipation amounts to agsuming that the local
dissipation e is well approximated by an isotropic form, which is strictly valid
in an ensemble-averaged sense in high Reynolds number flows and not
obviously satisfied in real experimental conditions [283,284]. In the direct
Navier—Stokes simulations (DNS), there are strong indications that the
detailed structures of the pdfs of the energy dissipation and its 1D surrogate
are different and that the velocity increments conditioned on €} do not follow
the RSH to the same degree as those conditioned on ¢ [282].

Since Richardson’s cascade pioneering picture [285], multiplicative
cascade models have enjoved a lot of interest as the paradigm of methods
for obtaining multifractal dissipation measures [1,2,18,67-71,76,122,
123,164,206,227]. The notion of cascade actually refers to a self-similar
process whose properties are defined multiplicatively from coarse to fine
scales. In that respect, it occupies a central place in the statistical theory of
turbulence [18,69,226-228]. Over the past 40 years, since the log-normal
model proposed by Kolmogorov [269] and Obukhov [270] (KO62) to
account for the correction to K41 theory, refined cascade models have
flourished in the literature such as the random F-model, the a-model, the
p-model (for reviews see [18,69,227]), the log-stable models [120--123,286],
and more recently the log-infinitely divisible cascade models [254,287-291]
including the rather popular log-Poisson model advocated by She and
Leveque [292]. Very generally, a self-similar cascade is defined by the way
the scales are refined and the statistics of the multiplicative factor at each
steps of the process {76,123,167,227,293.204]. One can thus distinguish




discrete cascades that involve discrete scale ratios leading to log-periodic
corrections to scaling (discrete scale invariance [295,296]) from continuous
cascades without preferable scale factors (continuous scale invariance). As
far as the fragmentation process is concerned, one can specify whether some
conservation laws are operating or not” [76]; in particular one can
discriminate between conservative (the measure is conserved at each cascade
step) and nonconservative (only some fraction of the measure is transferred
at each step) cascades. More fundamentally, there are two main classes of
self-similar cascade processes: deterministic cascades that generally corres-
pond to solvable models [69,227] and random cascades that are hikely to
provide more realistic models but for which some theoretical care is required
as far as their multifractal limit and some basic multifractal properties
(including multifractal phase transitions) are concerned [76]. As a notable
member of the later class, the independent random cascades introduced by
Mandelbrot [297,298] as a general model of random curdling in fully
developed turbulence have a special status since they are the main random
cascade model for which deep mathematical results have been obtained
[299,300]. Recently, these multiplicative random cascade models have been
recast in a Fokker—Planck/Langevin description of the pdf of In(e) across
scales [301,302].

There has been early experimental attemps to measure the fi(a)
singularity spectrum [Eq. (64)] of the dissipation rate ¢ with the specific
goal to discriminate between the most popular multiplicative cascade
models [69,227,303-305]. Surprisingly, the simplest version of the weighted
curdling models proposed by Mandelbrot [297,298], namely the binomial
model, turns out to account reasonably well (at least at a certain level of
description) for the observed multifractal 7.{g) and Je(a) spectra (see Ref.
[296] for a recent analysis). Indeed, all the existing cascade models appeal to
adjustable parameters that are difficult to determine by plausible physical
arguments and that generally provide enough freedom to account for the
experimental data. Moreover, a quantitative validation of any model seems
rather illusive since various technical difficulties may have disturbed the
measurement of the dissipation multifractal spectra. We refer the reader to
Ref. [306] for a review of the possible problems involved in the experimental
process. We will mention only two main experimental limitations. The first
one results from the fact that the multifractal model of turbulence implies a
dependence of the viscous cutoff on the singularity exponent n{a)/L =
Re~3/G+) [18,306-310]. It is thus a crucial question if the current hot-wire
probes can resolve the scales implied by exponents o significantly less than
1, i.e., those that correspond to the strongest singularities of the dissipation
measure. The second one is the fact that single probe measurement of the
longitadinal velocity requires the use of the 1D surrogate dissipation ¢

approximation [Eq. (65)], which may introduce severe bias in the estimate of
the multifractal spectra mainly because of the presence of global and local
anisotropic effects. A genuine 3D multifractal processing of tu_rbulence
dissipation data is at the moment feasible only for numerically simulated
flows. But there is a price to pay for the additional gain of not using Ta.ylor"s
frozen flow hypothesis; these simulations are still somehow .]imitf.:d in
Reynolds number to regimes where scaling just begins to ma;ufest. itself,
thus making reliable measurements of multifractal properties difficult
[247,274,282,311]. Nevertheless several numerical studies [274,312] agree
that, at least at low and moderate Reynolds numbers, the lD—surrogaFe
energy dissipation is in general more intermittent than the full field, which 1s
found nearly log-normal in the inertial range [274,313]. Note that some
departure from log-normality can be observed for high—ordmj moments
(large g > 0) [274] and is likely to define local anisotropic effects induced by
strongly localized events [314,315]. o
Besides the experimental difficulties of measuring the energy dissipation
field, there is some additional intrinsic imitation to the multifractal analysis
of turbulent fields that comes from the numerical techniques commonly
used in the literature to process the experimental as well as the numerical
data. For instance, the multifractal spectra {, of the longitudinal velocity
and 7.(¢) of the energy dissipation are commonly computed usipg,
respectively, the structure functions [18,43,44] and the box-counting
[24,67,227] methods. The fact that the former method allows us to cgmpute
the longitudinal velocity exponents ¢, for positive p values only explains why
for many years the validity of the RSH relationships (61) and (62) has been
partially tested [227,274]. More recent checks using the 1D WTMM method
[221] and an alternative two-scale method [316,317] have clea_rly -revealed the
failure of Eq. (61) for negative p values when identifying e with its surrogate
€. This means that the decreasing part of the singularity spectra f»{a) and
D(h) (corresponding to the weakest singularities of both ﬁelds)‘ signilﬁcan'tly
differs with respect to numerical uncertainty. Moreover, there is an implicit
normalization constraint inherent to the box-counting technique, namely
7.(1) = 7/(1) = 0, which makes this method quite inappropria‘te for studying
nonconservative multiplicative cascade processes. Indeed a blind use of box-
counting algorithms will always yield multifractal spectra that can rbe
misleading compared to the theoretical spectra of the conservative cascading

Process.

3. Intermittency Based on the Enstrophy Field

An important step in the understanding of small-scale turbulence driv-en. by
expectations of umiversality is to proceed to a comparative statistical




analysis of.dissipation and enstrophy in isotropic turbulence. Note that the
enstrophy is related to the antisymmetric part of the strain tensor:

1
0= 525’}-(8]-1;,- — vaj)z

(66)
- ZEi,jw,-jwﬁ
where
1
Wy = 5 (Q;v,; — 8,-'0;) (67)

The. relationship between ¢ = 2052 and Q = 2 {w=V Av is the usual
vorticity pseudovector) is

€

—=0+42 Z(ajvfafuj) (68)
if

Fr01‘11 t_he i}lcompressibility condition, one can show that the global averages

of dissipation and enstrophy are related:

<e>=v<0> (69)

But this does not imply that their local averages e (r 58
- - : d
scale identically, where s o) [Ba. (9] and (e

) :% /V Q@)dr, (70)

Nevertheless, if they do, this will imply that the power-law scaling of
< Qf > and < ¢/ > in the inertial range must be the same m(¢) = 7.(¢) and
in turn .the corresponding singularity spectra fo(o) = f;(c). There has been
Interesting recent controversy concerning the relative scaling properties of
enstrophy and dissipation densities. Different theoretical studies have
conve?ged to the conclusion that the asymptotic scaling exponents must be
equal in the limit of infinite Reynolds number [265,266,318-320]. Pioneering
pumen'cal DNS studies [321,322] have shown that the  field is more
mtermittent than the e field. The 1D measurements of the streamwise
components of ¢ and w, obtained at both high and low Reynolds numbers
[323,324], conclude that the degrees of intermittency in the dissipation and
the enstrophy fields are not the same. This observation is corroborated by
the analysis of circulation data [325]. More recent DNS studies at moderate
Reynolds number (R, = 216) [326] confirm that there are differences
!jetyveen the two scalings. As suggested by Chen er al. [327], this difference
is likely to result from the difference observed in the scaling exponents (&
and C;T of longitudinal and transverse structure functions, respectively

[256,328-333]. More precisely, Chen er al. [327] reported numerical results
that demonstrate the possible validity of a different RSH for the transverse
direction (RSHT) that connects the statistics of the transverse velocity
increments with the locally averaged enstrophy in the inertial range. The
important implication of RSHT is the possible existence of two independent
sets of scaling exponents related, respectively, to the symmetric (dissipation
physics) and antisymmetric (vortex dynamics) parts of the strain rate. But
some caution should be taken when extrapolating these results to high
Reynolds numbers. The statistical analysis of the dissipation and enstrophy
fields induced by a set of Burger vortices in He ez al. [319] is very eloguent in
that respect. For this model system, finite-range scaling exponents for € and
) are different but the asymptotic scaling exponents can be shown to be
equal in the limit of infinite Reynolds number.

B. Application of the 2D WIMM Method to 2D
Cuts of a Turbulent 3D Dissipation Field

In this section, we want to revisit previous multifractal analysis of the
dissipation field e(r) in isotropic turbulence using the 2D WTMM
methodology described in Section IL.C. Given the uncertain nature of the
existing knowledge, it is important to study the scaling properties of both
the dissipation and enstrophy fields without resorting to the artifacts
mentioned in Section V.A. We thus employ the numerical data from DNS
of isotropic turbulence carried out by Meneguzzi [334] with the same
numerical code as previously developed by Vincent and Meneguzzi [231] but
at a higher resolution. The DNS were performed using 512° mesh points in a
3D periodic box and a viscosity of 5 x 104, A statistically steady state was
obtained by forcing low Fourier modes in a deterministic way. The Taylor
microscale Reynolds number R, = 216 is close to the value attained in the
DNS reported [274,282,326,327). Here we will examine only one snapshot of
both dissipation and enstrophy 3D spatial fields. Indeed we will mainly
proceed to a comparative multifractal analysis of 2D cuts of both fields
using classical box-counting techniques. and the 2D WTMM method. The
corresponding 7.(q), ™(q), and f:(a), fala) spectra will result from an
annealed averaging over 512 (512 x 512) 2D cuts in a 512 cube.

Figure 31a is a picture of the fluctuations of the local dissipation as seen
on an arbitrary 2D cut when using a 256 gray-level coding. The highly
intermittent nature of these fluctuations is striking and further illustrated in
Figure 31c on an arbitrary 1D spatial profile. We systematically follow the
numerical implementation procedure described in Section II.C. We first
wavelet transform the 512 (512 x 512) images of ¢ with the first-order
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Fraure 31. 512° DNS of the dissipati
 Tet - pation and enstrophy fields at R, = 216 [334
(I;;s;gahon feld. (8} 2D cut of e(r); (b) 2D cut of In &(r); (¢} 1D cut of (r). Enstrophy [ﬁeld]:
cut o S'Z(r); (e) 2D cut of In O(r): (D) 1D cut of §2r). In (a), (b}, (d), and (e), € and O arel
represented using a 256 gray scale coding from black {min) to white {max) ’

(ny = I).and_the third-order (n, = 3) radially symmetric analyzing wavelets
defined in Figure 1. From the wavelet transform skeleton defined by the
WTMMM, we compute the partition functions Z(g, a) from which we
extract the 7.(g) and £;(c) multifractal spectra.

1. Remark

Let us point out that the WIMM definit;

int ¢ _ lon of the 7P7(g) spectrum
[Eq. (22)] is slightly different from the one defined in Eq. (('Sq’/')) ffom the
moments of the ¢ pdf (< ef >~ /%) and from the “standard” box-

counting definition 75C(g) found in the literature. for ¢ i
and Sreenivasan [2275]: ’ remple i Menevean

©

G

Frcure 32. 2D wavelet transform analysis of the 2D cuts of the dissipation and enstrophy
fields shown in Figure 31a and d, respectively. 1{x) is the first-order radially symmetric
analyzing wavelet shown in Figure 1. Dissipation field: (a) a = 2%o'w; (b) a = 2*oy. Enstrophy
field: (c) a = 22ow; {d) a = 2°cw. The local maxima of My along the maxima chains are
indicated by (*) from which originates an arrow whose length is proportional to M, and whose
direction (with respect to the x-axis) is given by Ay. ‘

¥ (g) =7.{q) —d =7(q) —dg = (¢ — 1)Dy — dg (71)

3

where d = 2 when investigating 2D cuts of the 3D dissipation field and D,
are the generalized fractal dimensions defined in Refs. [20-26]. Note that the
Legendre transforms used in the three different cases lead to the same
estimate of the £, (o) singularity spectrum.

2. Numerical Computation of the 7.(q) and f.(q) Multifractal Spectra

Figure 32a and b illustrates the computation of both the maxima chains and
the WTMMM of the 2D cut of € shown in Figure 31a when using the first-
order analyzing wavelet at two different scales. After linking these
WTIMMM across scales, one constructs the WT skeleton from which one
computes the partition functions Z(g, a) [Eq. (21)]. As shown in Figure 33a,
the annealed average of a?Z(g,a)(e) displays some well-defined scaling
behavior over the range of scales 2oy Sa<2%cw(where ow is the
characteristic size of ¢ at the smallest scale), when plotted versus g in a
logarithmic representation and this for values of ¢ in the interval [-2, 4] for
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FiGURE 33. Determination of the 7.(g) and f,(a) spectra of 512 2 issipati
field. Tht_a 2D WTMM method is nsed with either(a }ui-order (*) or z:lD tflitds-gt;c;];: (Calal)s S::c;zﬁn
symmetric analyzing W'avelet (see Fig. 1). Results obtained with box-counting technigues (A§
;re shown for comparison. (2) logy[2°Z(g, &)] vs. logya; (b) w{g) vs. q; (©) fia) vs. o, after

egend.l:e trangformmg the 7.(g) curve in (b). In (a) the different data curves have’ been
arb1tra¥ﬂy vertically shifted for the sake of clarity. Tn (b) and (c), the solid lines correspond
respectively, to the theoretical log-normal multifractal spectra (72) and (74) for the parall;eter’
values C = 0.11 and_ €2 = 0.18 [Eq. (73)]. In (c), the dashed Bne corresponds to the average
F '(a} sp.ectrum obtained by Menevean and Sreenivasap from the analysis of surro agt
dissipation. data using a box-counting algorithm [227]. e

which statistical convergence turns out to be achieved. Indeed some
curvature can be observed in this logarithmic representation as the
1nd1cat10_n of some scale symmetry breaking as previously observed for
the _101_1g1tudinal velocity [81-83,85,221,246-258,267]. The extension of this
statistical analysis to time averaging over a few turnover times is currently
u1'1der progress. When processing to a linear regression fit of the data in
Figure 33 over the range 20w < a < 2365y, one gets the 7.(g) spectrum
(*) shown in Figure 33b. In this accessible range of g values, the 7.(g)
spectrum  obtained unambiguously deviates from a monofra;:tal Iinl:ar
spectrum. Actually the data are remarkably well fitted by a parabola, the
hallmark of log-normal multifractal spectra: ’

2

(@) = —Cig - G (72)
with
¢ =0.11+0.01, C; =0.18£0.01 (73)

By Legendre transforming this quadratic 7.(¢) spectrum, one gets data for
the fi(e) singularity spectrum that are well parameterized by the
corresponding parabolic log-normal singularity spectrum:

2
N (74)

We have checked that the estimate of the f.(«) singularity spectrum from the
scaling behavior of the partition functions o{g,a) = A(g,a) +1 [Eq. (29)]
and f(g,a) = D(g,a) [Eq. (30)] yields similar quantitative resuits. Figure 33
also shows for comparison the results (o) obtained when applying the 2D
WTMM method with a third-order (#y = 3) radially symmetric analyzing
wavelet (the smoothing function ¢ being the isotropic 2D Mexican hat). An
overall comparison with the previous results shows a remarkable robustness
of the estimates of the 7.(¢) and f.(g) spectra with respect to the order of the
analyzing wavelet. Both spectra are still strikingly well fitted by the log-
normal multifractal model predictions [Eqgs. (72) and (74), respectively] with
the parameter values

C,=007+£001, C;=0.19£001 (75)

which, up to the numerical uncertainty, are quite consistent with the
previous values in Eq. (73).

Figure 33 also shows for comparison the results (/\) obtained when using
classical box-counting techniques (indeed we use boxes with Gaussian shape
in order to take advantage of part of our 2D WT software). It is clear in
Figure 33a that the data obtained for a?Z(g,a) with the box-counting
method significantly differ from those obtained with the 2D WTMM
methodology. Actually, as reported in Figure 33D, the 7.(g) data are still
reasonably well accounted by the theoretical log-normal spectrum [Eq. (72)],
but with significantly different parameter values:

Cy=—0094£001, C =020£001 (76)

Note that the difference is not so much in the intermittency coefficient Cs,
which is found to be robust to the method used to estimate it and in good
agreement with the results of previous DNS studies [231,274,282,313,
326,327]. Let us emphasize that the C; values in Eqs. (73), (75), and (76) are
at the lower bound of the range of values (0.20 to 0.28) found in




experimental measurements based on surrogate dissipation data [227,277,
303-305,323,324]. The main difference between the 2D WTMM and the
box-counting results concerns the estimate of the coefficient € of the linear
term i 7.(g). This is a direct consequence of the normalization constraint
(1) =0 intrinsic to the box-counting method, which implies the
relationship Cy = —C;/2 between the two parameters of the log-normal
Te(q) spectrum [Eq. (72)]. The results reported in Figure 33 dramatically
reveal the failure of commonly used box-counting algorithms when the
considered measure results from a nonconservative log-normal multifracta]
process as characterized by a negative cancellation exponent [335-337]
7e(1) = —0.20 & 0.01, the signature of a signed measure (i.e., a distribution
that varies in sign on small scales). As a consequence, the f.{a) spectrum is
misleadingly shifted to the right when using box-counting techniques as
illustrated in Figure 33c (this shift is also present when studying 1D cuts of
the dissipation field as reported in Roux’s thesis i221]). This observation
seriously questions the validity of most of the experimental and numerical
box-counting estimates of the Je(c) singularity spectrum reported so far in
the literature. Figure 33c¢ shows for comparison some average fi(c)
spectrum obtained by Meneveau and Sreenivasan [227] from the analysis
of surrogate dissipation data; the agreement with our box-counting estimate
is very good for the left increasing {g > 0) branch while the right decreasing
(g < 0) branch departs somehow to a larger value of « as an indication of a
slightly larger intermittency coefficient C; = 0.25 as compared to the value
C> =020 in Eq. (76). This is an additional indication that surrogate
dissipation is likely to be more intermittent than real dissipation [282].

3. WITMMM Probability Density Functions

This subsection is mainly devoted to the analysis of the joint probability
density function P,(M, A) as computed from the WT skeletons of 512 2D
cuts of the dissipation field with the first-order radially symmetric analyzing
wavelet (n, = 1). Figure 34a and b show the pdfs P, (M) = [dAP, (M, A)
and Po{A) = [dMP,(M,A) for three different values of the scale
parameter ¢ in the scaling range. First let us focus on the results shown in
Figure 34b for P,(A). P,(A) does not evolve accross scales and is almost
flat. Actually some oscillations are observed with maxima for A =0,7/2,7
and 37/2 as an indication of some anisotropy induced by the cubic lattice
discretization in the DNS. All the multifractal properties of € 2D cuts are
thus contained in the way the shape of P,{M) evolves when one decreases
the scale parameter g as shown in Figure 34a. Actually, for the three selected
scales, all the data points fall, within a good approximation, on a log-normal
curve (see for comparison the pdfs in Fig, 28a), which is a strong indication
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Figure 34. Pdfs of the WIMMM coefficients of 512 2D cuts of the diss'ipa.tim aintd
i - dially symmetric analyzing wavelet.
enstrophy fields as computsd with the first-order 1@ . ‘
Dissipation field: (a) P,(M) vs. M; (B) Pa(A) vs. A Enstrophy feld: gc) P, (Mz) vs, M, (d(i
P,{A) vs. A The symbols correspond to the following scales a = 2'ow(*),2°cw(c), an

2%1’]3/()(}.

that the WIMMM have 2 log-normal distribution in the in'ertial range. This
observation of log-normal statistics strengthens the previous estimates of
log-normal quadratic 7.(g) and f.{c) spectra. (We refe1j the rgader to Wang
et al. [282] for similar conclusions on the entire 3D dissipation field when

using box-counting techniques.)

4. Space-Scale Correlation Function An?lysis

As pointed out in Section IIL.C, to go from Iog-nor-mzf.l d‘lagnos1s to tt_ie
demonstration of the existence of an underlying multiplicative structure in
the 2D fluctuations of the dissipation field, one can take advantage of the
space-scale unfolding provided by the WT skeleton to compute the cross-
scale correlation functions. Figure 35a shows the results of the computation
of C.(Ax, ay,a;) when averaging over the 512 2D cuts of € One can see that
for Ax > sup{ay,a,), all the data points fall onto a unique curve when
plotted versus log,(Ax), independently of the considered pair of scales
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FIGURE 35. Magnitude correlation function ClAx,a1,m) [Bq. (49)] vs. log,{Ax), as
computed from the WT skeleton of 512 images, The analyzing wavelet is the radially symmetric
first-order wavelet shown in Figure 1. The symbols have the following meaning:
@ =lm=20chm=20=30)anda =1,q = 3(A) in ow units. (2) Dissipation field ¢
the solid line represents the theoretical prediction given by Eq. (50) with 0% = C, In 2 = 0.12
[C2 = 0.18 as given by Eq. (73)]. (&) Enstrophy field {; the solid ling has the same meaning as in

(a); the dashed line represents the theoretical curve given by Eq. (50) when fixing o2 = C; In 2
=10.20 [(; = (.29 as given by Eq. (78)].

(a1, a2). Moreover this curve is in remarkable agreement with the theoretical
prediction [Eq. (30)] for the random cascading process when plugging into
this equation the value o2 = ¢, In 2 = 0.12 as previously estimated in Eq.
(73). These consistent observations strongly suggest that a 2D nonconser-
vative log-normal cascading process provides a reasonable model for the
intermittent fluctuations observed along 2D cuts of the dissipation field.

C. Application of the 2D WITMM Method to
2D Cuts of a Turbulent 3D Enstrophy Field

Let us now proceed to a comparative statistical analysis of the correspond-
ing numerical enstrophy field Q(r). Figure 31d and illustrates a 2D cut of
Qr) in linear and in semilogarithmic representations, respectively. The
intermittent aspect of Q(r) is enlightened on the 1D cut shown in Figure 31f.
We proceed, as for the dissipation field in Section V.B, by applying the 2D
WTMM method described in Section I1.C to 512 (512 % 512) images of O
with analyzing wavelets of different orders and we compare the m(g) and
n (o) multifractal spectra obtained with the corresponding estimates from
box-counting computations.

L. Numerical Computation of the Multifractal Tolq) and folq) Spectra

Figure 32c and d illustrates the maxima chains and the WITMMM of the 2D
cut of 2 shown in Figure 31d as computed with the first-order (ny =1)
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FIGURg 36. Determination of the m{g) and fo(o) spectra of 512 2D cuts of the enstro_phy
field. The 2D WTMM method is used with either a ﬁrSt-DrdeI.‘ (®yora thzrc.:l—order (o.) radially
symmetric analyzing wavelet (see Fig. 1). Results obtained with box-counting techniques (4)
are shown for comparison. (a) log,[a*Z(g,a)] vs. logya; (b) TQ(Q) vs. ¢; (€) fala) vs. a, %fter
Legendre transforming the (g} curve in (b). In (a) the different dajta curves have ;in
arbitrarily vertically shifted for the sake of clarity. In (b) and (c), the solid lines correspon0 13
the theoretical log-normal multifractal spectra (77) and (79) for the parameter valugs €y = 0.

and C; = 0.29 [Eq. (78)].

analyzing wavelet (Fig. 1) at two different scales. After linkin_g these
WTMMM across scales, one constructs the WT skeleton .fror.n which one
computes the partition functions Z(g, a) [Eq. (21)]. Asshown in Flgure 36a, t‘he
annealed average of a2Z(g, )(#) displays some well-defined scaling b§hawor
over the range of scales 2o S a < 240w for —2 < ¢ 5 4. Indeed some s-hght but
systematic curvature can be noticed in the log-log plots very much‘hke what
has been observed for the dissipation in Figure 33a. If we proceed asin Sg:gtmn
V.B to a linear regression fit of the data over the range 21:00W < a'g ‘2 fow,
one gets the m(g) spectrum (¢) shown in Figure 36b, which is again in quite
good agreement with a parabolic log-normal spectrum:

2




with
Cy=0.19+001, Cy =0.294+0.01 (78)

Consisten_tly, we find in Figure 36c that the corresponding fo,(c) singularity
spectrum 1s remarkably well fitted by the parabolic log-normal curve:

2
fale) =2 - 2212 D) (79)

Figure 36b and c also show for comparison the results (o) obtained when using
the third-order (my = 3) analyzing wavelet, The estimates of the ta{g) and
fg_ () spectra are in very good agreement with the results obtained previously
with the first-order (1, =1} analyzing wavelet. These spectra are still
remarkably approximated by a parabola [Eqs. (77) and {791 with the
following parameter values:

C; =018+ 0.01, C> = 0.28 +0.01 (80)

which are within the error bars of the values reported in Eq. (78).

The robustness of these multifractal spectra estimates with respect to
some change in the shape of the analyzing wavelet is even more striking
when one compares these estimates to those extracted from a box-counting
algorithm (A). Very much like what we have observed for e, this standard
technique also yields parabolic spectra but with significantly different
parameter values (mainly for C;):

Cy = —0.1340.02, C;=029+0.01 (81}

pecause of the normalization requirement (1) =0, ie, C =-C/2,
mlqerent to this method. Let us point out that whatever the technique, the
estimate of the intermittency parameter C» of the enstrophy [Egs. (78), (80),
(sl)‘] Is much larger than the corresponding value found for the
d-lss1pation [Eqgs. (73), (75), (76)]. This confirms that the enstrophy field is
likely to be more intermittent than the dissipation field as previously
suggested [321-327]. However the WTMM method reveals that the Ja(a)
spectrum is noticeably shifted toward smaller o values (corresponding
to stronger singularities) as compared to the box-counting estimate
(Fig. 36¢c). We will come back to this point as well as to the possible
nonconservative nature [m(1) =~ —0.34 < 0] of the underlying log-normal
multiplicative structure.

2. WIMMM Probability Density Functions

The pdfs Po{M) and P,(A) of the WTMMM modulus and argument of the
enstrophy field {r) are shown in Figure 34c and d, respectively.

Quantitatively one recovers similar results as previously observed for ()
(Fig. 34a and b). In Figure 34d, P,(A) is rather flat (with some small

- amplitude oscillations induced by the cubic lattice discretization in the

DDNS) and does not evolve across scales. When looking at P,(M) in Figure
34c, one sees that at each scale, the data points fall on a curve, which 13 well
approximated by a log-normal pdf and which evolves across scales as
governed by the log-normal m(g) spectrum computed just above [Eqs. (77)
and (78)].

3. Space-Scale Correlation Function Analysis

In Figure 35b the results of the computation of the magnitude correlation
function Co{Ax,ar,a;) when averaging over the 512 2D cuts of {) (r) are
reported. One can see that consistently with a multiplicative cascade
structure, all the data points fall onfo a unique curve when plotted versus
log,{Ax), for Ax > sup(ai,as), and this independently of the considered
pair of scales {a;,a). As far as the pertinence of Eq. (50) for modeling the
numerical data, it seems that when plugging this theoretical prediction into
the parameter value ¢? = C; In 2 = 0.20, according to the previous estimate
of the intermittency parameter Cs in Eq. (78), one gets a poorer agreement
than when comparing it with the theoretical curve predicted for the
dissipation field {¢? = 0.12, C;, = 0.18). Actually, if one focuses on spatial
distances Ax that are not too large (i.e., smaller than the integral scale L),
for which the linear term o2log, (L/Ax) becomes dominant in Eq. (50), then
the observed slope of Cq(Ax,ay, a2} is quite in agreement with the expected
value 02 = 5 In 2 = 0.20. The results in Figure 35b are thus an additional
indication that a 2D nonconservative log-normal multiplicative process can
be used to model the intermittent fluctuations observed in 2D cuts of the
enstrophy field.

D. Discussion

We have wsed the 2D WIMM method to characterize statistically the
multifractal properties of 2D cuts of both the dissipation and the enstrophy
fields issued from (512)3 DNS at Ry = 216 [334]. As a general result, we find
that the intermittent nature of the corresponding spatial landscape can be
well modeled by a 2D nonconservative log-normal multiplicative process.
To some extent this result is not so surprising since it is most likely that
dissipation and enstrophy are not conserved along 2D cuts. We hope that
the generalization in 3D of the WTMM method will allow us to decide
whether this nonconservativity is a 2D cut effect that is likely to disappear
when increasing the Reynolds number or if it is an intrinsic property of the




underl}_iing 3D multiplicative spatial structures of both fields. Moreover the
averaging over several turnover times will allow us to investigate larger
values of |g| (i.e., higher order moments) and possibly to evidence some
fieparture from the theoretical log-normal multifractal spectra as suggested
in Refs. {274,314,315] as an indication of some local anisotropy induced by
.strongly localized events (e.g., vorticity filaments). Work in this direction is
In progress.

One_ of the main disturbing results reported in this section is the
numencal demonstration that most of the numerical and experimental
estlmz}tes of the multifractal spectra of ¢ and { fields previously reported in
the literature are strongly biased by the normalization constraint
'r(q‘z 1) =0 inherent to the commonly used box-counting techniques
whlc_h -turr'l out to be quite inappropriate to study nonconservativé
mu‘1t1phcat1ve cascading processes. These techniques yield f.q(c) spectra
which h‘ave almost the right width as given by the intermittency’r exponent C;
but which are significantly shifted to the right (ie., to larger o values
corresponc_hng to weakest singularities) with an estimate of the most
i_‘f;cilu;nt SJ.J;gulgri‘f[y }é(qf= 0) = a{g = 0) —1 = —C;, which is misleadingly

positive instead of negative as re i

Fios. Tao s o vealed by our 2_D WTMM analysis
.F'mal%y, our comparative 2D WTMM multifractal analysis of the
d?SSIpatIOII and enstrophy fields shows an unambiguous quantitative
dxfferencq between the f.(o) and fy(«) singularity spectra. The width of
the late}' is significantly larger than the one of the former as given by the
respective values of the intermittency parameter: CP = 0.29 +0.01
> (3 =0.19+£001. Moreover fo{a) is maximum for ag(g=0)=
halg=0)+1=1- C? =~ (.80, a value that is smaller than ae(g} =0)=h,
(g=0)+1=1-C{~090 for which f,(e) is maximum. These results
demonstrate that the enstrophy spatial landscape is more intermittent
Fhan'the dissipation spatial landscape in the semse that the support of
its singularity exponent is wider and that it reaches smaller values
of 4=« —1 corresponding to stronger singularities. Note that for both
fields the maximum of the f, n(a) curves is equal to 2 ln(g=0)=
7a(g =0) = 0], which means that the corresponding 2D spatial
la.ndsca.pe.s are singular everywhere. These results confirm the conclusions
of preliminary comparative box-counting studies of the dissipation and
enstrophy fields [321-327]. We hope to extend this 2D WTMM analysis
to t_h-e current highest accessible Reynolds number DNS with the
specific goal of investigating the validity of several theoretical studies
[265,266,318-320] that predict the asymptotic {Rj — +oc) equality of
the multifractal spectra of both fields, namely ~.(g) = m(g) and

Jea) = fala}.

VI. MULTIFRACTAL ANALYSIS OF DIGITIZED MAMMOGRAMS

Breast cancer, the most common cancer among women in western countries,
has become a major problem of public health. Statistics indicate that in the
United States approximately 1 in 10 women will develop breast cancer
during her lifetime [338]. Each year, breast cancer kills about 10,000 women
in France (120,000 in the world); it is still the leading cause of cancer-related
death in women. It is a slowly evolving dicease; the average duration of
fumor growth to obtain a palpable mass is about 10 to 13 years.
Mammography (X-ray examination) is widely regarded as the most effective
method for early detection of breast cancer. In the past 20 years, several
national mass screening mammography programs [e.g., Health Insurance
Plan of Greatest New-York (1982) and the Swedish 2-county Program of
Mammography Screening for Breast Cancer (1992)] have shown that early
diagnosis can significantly decrease breast cancer mortality about 23 to 31%
in women aged 49 to 69 (see Dilhuydy and Barreau [339] for a complete
discussion of the pros and cons of mass mammography). Because no way to
prevent breast cancer (as opposed to lung cancer, for example} has been
found so far, mammography actually plays a vital role in diagnosis of the
decease as well as pretherapeutic management and control during and after
treatment, whereas MRI (magnetic resonance imaging) and echography are
helpful only when the mammogram is questionable.

However, the radiological interpretation of mammograms is a rather
difficult task since the mammographic appearance of normal tissue is highly
variable. In the context of breast cancer screening, abnormalities have to be
detected at an early stage in a large number of asymptomatic women. For
this reason, independent reading of screening mammograms by two expert
radiologists is required to reduce the number of interpretation errors. In
spite of this, about 10% to 30 % of cancers that could have been detected are
missed and a high percentage of patients called back at screcning turn out
not to have cancer.

Recently, much research has been devoted to developing reliable
computer-aided diagnosis (CAD) methods (see Dol et al. [340] for a general
review). Many of these methods are’ based on multiresolution analysis
[341-344], difference image technique and global and local thresholding
[345-349], statistical approaches [350-354], neural networks [355-360], fuzzy
logic [361-363], and the wavelet transform (WT) and related techniques
[342-344,360,362,364-371]. Currenily most of these methods are often
combined to detect and classify clusters of microcalcifications (MC), which
are an important mammographic sign of early (in sifu) breast cancer despite
the fact that several benign diseases show MC as well [347,353,354,359,




360,362,366,367,369—373]. In the mid-1990s, fractal methods were applied to
the analysis of radiographic images with some success in improving the
performances of previous CAD schemes [352,374-379]. But most of these
methods have been intrinsically elaborated based on the prerequesite that
the background roughness fluctuations of normal breast texture are
statistically homogeneous (i.e., monofractal) and uncorrelated. Regions
that contain statistical aberrations that deviate from this monofractal
picture are considered as abnormal regions in which tumors or MC are
likely to be found. Qur goal here is to propose the 2D WTMM method as an
alternative method to perform multifractal analysis of digitized mammo-
grams [1135].

As we want to study scaling properties of digitized mammograms, we
chose to use full-breast images from the Digital Database for Screening
Mammography (DDSM) project [380], which provides online more than
2600 studies' sorted into three categories: normal, cancer, and benign.
Mammograms were digitized using a 12-bit scanner with both a good spatial
resolution of 43.5 um. Full-breast images enable us to select about 50
overlapping 512 x 512 pixel squares; indeed, to master edge effects, only
cores of the images were used for the computation of the WT skeleton and
partition functions.

A. Application of the 2D WTMM Method to Mammographic Tissue
Classification: Dense and Fatty Tissues

Several studies in the mid-1970s showed that an association existed between
mammographic parenchymal patterns and the risk of developing breast
cancer [381-383]. However, it appears that very few image processing works
[363] have been devoted to automatic breast tissue density measurement,
since Boyd et al. [383] studied the relation between mammographic densities
and breast cancer risk using both radiological classification and semiauto-
matic user-assisted computer measurement based on gray-level histogram
thresholding. Here we analyze normal mammary parenchyma with our
multifractal 2D WTMM method with the specific goal of proposing a
computerized method to calculate a breast density fluctuations index.

We have selected a set of 10 images in the DDSM database according to
ACR breast density rating with some index ranking from 1 to 4, as assigned
by an experienced mammographer: five fatty (rated 1 on ACR density scale)
and five dense (rated 4) breasts. The main steps of the 2D WTMM
computations are illustrated in Figure 37 on two full-breast images selected,

! http://marathon.csee.usf.edu/Mammography/Database.html.

- respectively, to be representative of dense—glandular anc.i fatty ]?lifaSthS.
Figure 37a and e shows the original images, _respectlvely, with the
(superimposed) grid used to cut out 49 (512 x 5-12 pixels) subscenes. F1guk1l‘e
37b and f represents a zoom in the respective cgntral su.bscenes. T g
corresponding WT modulus landscape and WT maxima chains compute
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Figure 37. 2D wavelet transform analysis of two MAMMOIAMS; (a~d}) Fiense b]re;ast t_mzﬁz
and (e-h) fatty breast tissus. The analyzing wavelet is the first-order isotropic wave e; s(q(ﬁbx)sand
isotropic gatssian function) shown in Figure 1. (a) and () are the t\:&_fo full breast ]??g) S.h () and
(f) represent some zooming in the central part of the two ongm.al nna..ges..(c) .9.113 ' tgh Show the
WT modulus at the scale a = 3op with the same gray-level co_dmg as in Figure cl, le maxima
chains are shown for comparison. In (d) ard (h) only the maxima chains and the local ma

of M, aleng these chains are represented (#) at the scale g = 2.50w.
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at the scale g = 39 pixels are shown in Figure 37c and g, respectively.
Figure 37d and h represents, at a smaller scale, the location of the
WTMMM () from which originate an arrow that represents the WT vector
T, [f] (b, @). Figure 38 shows the results of the computation of the partition
functions Z{g, @) [Eq. (211, k(g. a) [Eq. (29)], and D{q, o) [Eq. 30)]
obtained when averaging over 49 nonoverlapping (512 x 512) images cut
out of the original dense and fatty mammograms. As shown in Figure 38a
and b, both dense and fatty tissues display rather good scaling properties
over two and a half octaves. The scaling actually deteriorates progressively
when considering large scales, due to finite size effects. When proceeding to
a linear regression fit of log, [Z (g, a)] vs. log,(a) over the range of scales
extending from iy = .60y 0 dpye, = 4ow, one obtains the 7(g) spectra
reported in Figure 38c. From a simple visual inspection, one realizes that
dense and fatty breast tissues display quite different scaling properties. The
latter presents a +(g) spectrum, which is remarkably linear in the range
g € [—3,3] with a slope H = 0.25 + 0.05, while the former presents a larger
slope H = 0.65 == 0.05 with some possible nonlinear departure, which might
indicate multifractality. This monofractal vs. multifractal discrimination
between fatty and dense breast tissues is also evidenced by the computation
of the corresponding D(k) singularity spectra in Figure 38d. However, the
multifractal diagnosis for dense tissues requires further numerical analysis to
ensure statistical convergence of the 7(g) exponents for large values of ]
Nevertheless, what seems to be robust, considering the whole set of
processed images, is the fact that fatty tissues display monofractal scaling
behavior with a Hurst exponent & taking a value in the range [0.20,0.35] as
an indication of antipersistent roughness fluctuations while dense tissues
display (possibly muitifractal) scaling with A € [0.55, 0.75] as an indication
of persistent long-range correlations. Furthermore, in the most general case,
we have shown that in any full-breast mammogram, those two kinds of
tissue are present and only those two. In particular, one can assign a color
{e.g., blue or red) to each square of the working grid according to its dense
or fatty area identification. Work is in progress to make this segmentation
independent of the square grid used to cut out subscenes. Finally, let us note
that in previous work, Heine et al, [379,384] already used self-similarity
(fractal) analysis to study mammographic density, using the Fourier power
spectrum method to extract the scaling exponent B=2H+2 [Eq. (41)].
They obtained a histogram of 2 values with an average H of 0.469 and a
rather small standard deviation of 0.045, This finding may be interpreted in
light of our results. Indeed we may think that most of the images analyzed
by Heine et al. Clearly contain both fatty (H € [0.20, 0.35]) and dense (H e

[0.55, 0.75]) areas, so that the power spectrum exponent is an average of two
dictinct behaviors.
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FiGURE 38. Determination of the 7(g) and D(%) spectra of dense (*) and fatty (o) breasts
with the 2D WTMM methed. (a) log, z(g, @) vs. loga. (b). h(g, a) vs. logz.a. (c‘) T(g);;s. th (d)
D(h) vs. h obtained from Egs. (31) and (32). Same analyzing wavelet as in Flgur;:f “. ; :s;
results correspond to annealed averaging over 49 (512 x 512) squares cut out of fu -tre
images. « is expressed in o units. In (a) and (b), ¢ goes from —1 to 3 from bottom to top.

B. Detecting Microcalcifications through WT Skeleton Segmentation

The presence of clustered MC is one of the most import:ant and somet{xéaes
the only sign of cancer in a mammogram. As a potennal. com_puter—a,lthe

diagnostic tool, let us show how our WT met.hodology can 1dent1fy MC that
are small calcium deposits in tissue, appearing as cluste;s of bylght spots.
Figure 39 illustrates how one can actually detect MC by inspecting the WT
maxima chains. Indeed, at the smallest scale resolved by our WT microscope
(0w = 13 pixels), MC, which can be considered as strong singularities, are
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Figure 39. Detection and characterization of microcaleifications. (a) Original 726 x 726
image of dense breast tissue containing MC. (b) Scaling behavior of the WT modulus My elong
some maxima lines pointing toward dense tissue background (o) and microcalcifications (),
The solid (respectively dashed) straight line corresponds to the slope # = 0.65 (respectively —1)
characteristic of background tissue roughness fluctuations {respectively MC). (c) and (d) show
the maxima chains obtained after eliminating background tissue maxima chains at scales @ =
ow (c) and 2.30w (d), when using the WT skeleton space-scale information.

contour shaped by some maxima chains. Because the average size of MC is
about 200 um (5 pixels), these singularities are seen by our mathematical
microscope as Dirac singularities; thus the corresponding maxima lines
pointing to the MC are likely to display scaling properties with a local
Hélder exponent & = —1{My[f] ~ a~1) down to scales of the order of the
MC size where one should observe a crossover to the value
h=0{My[f] ~ ¢} as an indication of the discontinuity induced by the
MC boundary. The behavior of the WT modulus along several maxima lines
pointing to background points and to MC is illustrated in Figure 39b. One
can thus classify these lines according to the behavior of My f] along these
lines, and then separate MC (i~ ~1) from dense background tissue
(h ~ 0.65£0.05) as experienced on synthetic images in Section ITL.D.
Figure 39¢ and d shows the maxima chains that are found to correspond 1o
MC at two different scales. We see that these maxima chains can be used not
only to detect MC at the smallest resolved scale (Fig. 39¢), but also to
perform MC clustering when investigating largest scales (Fig. 39d).

As pointed out in Section IIL.D, the MC WT subskeleton can be used to
compute the corresponding partition functions, apd thus to fully
characterize the fractal geometry of the MC cluster. Figure 40 shows the
results of the computation of the partition functions from the subskelgton (?f
WT maxima lines pointing toward MC (h =~ —1). Let us Fecall that_ in this
case k(g, ) (Fig. 40a) is simply the average scaling behavior (see Flg. 39b)
along all the maxima lines of this subskeleton. As expected, one retrieves a
crossover between small scale scaling properties (2 = 0 induced by the MC
boundaries) and larger scale (Qow < a<3.7oy) scaling properties
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Fioure 40. Determination of the 7(g) and D(4) spectra of the MC cluster §hown in
Figure 39a. The partition functions are computed from the MC WT skeleton obtained after
eliminating the background tissue maxima lines (see Figure 39}. (a) i(g, @) vs. log; a._(b) Dig, ;z)
vs. log, a. (c) T(g) vs. g. (d) D(#) vs. k obtained from Eqs. (?‘yl) a:nd (32). Same analyzing wavelet
as in Figure 37. a is expressed in op units. The solid line in (a) corresponds to the slope
=045 and in (b) to Dp = 1.2.




(h ~ —0.4) since maxima lines, pointing toward MC, have not all reached
the asymptotic (2 = —1) Dirac singularities behavior because of finite size
effegts. In the same finite range of scales, D(g, @) (Fig. 40b) displays good
scahng-prol?erties for ¢ values between —1 and 3, which resuits, to a good
apprommanqn, in a D(k) singularity spectrum that reduces to a single point
he-04 (Eg. 40d). This result is consistent with the slope of the
corres;_)ondmg 7(g) spectrum (Fig. 40¢) that is found to be linear up to
numerical uncertainty. Moreover, from the slope of D(g = 0, ) vs. log a, as
well as from the estimate of 7(0) = ~ Dy, one can assign with no ambigﬁity
the fractal dimension Dy = 1.2 + 0.05 to the MC cluster, which is definitely
larger than 1 and smaller than 2, the hallmark of fractal geometry. We have
also applied our methodology to a small number of benign and malign
c{usterg; work is in progress to determine to what extent the fractal
dun‘ensmn of a MC cluster can be used as a discriminating index between a
benign state and malignancy.

We have presented a new space-scale methodology for studying, within
the same algorithmic framework, background tissue properties and
abnormal singularities associated with breast cancer. For its ability to
reveal and distinguish persistent and nonpersistent long-range correlations
the EP WTMM method looks very promising in classifying tissues b5;
quantifying breast density fluctuations in a very accurate way. Furthermore
we pl_ar_l to improve detection and segmentation of MC by mixing a.nci
f:ombm1ng the 2D WTMM method with neural network techniques to assist
in diagnosis of digitized mammograms.

VII. CoNcLusION

To smarﬁe, we have presented a first step toward a statistical theory of
multifractal images based on the wavelet theory. The 2D WTMM method
[106-110] relies on the computation of partition functions from the WT
skele_ton defined by the wavelet transform modulus maxima. This skeleton
provides an adaptative space-scale partition of the fractal distribution under
study from which one can extract the 7(g) and D(k) [or f(a)] multifractal
spectra as the equivalent of thermodynamic functions. With some
appropriate choice of the analyzing wavelet, we have shown that the
WTMM method provides a natural but necessary generalization of the
f:las.su:al box-counting and structure function techniques that both have
intrinsic and fundamental limitations. Indeed we believe that the 2D
WTMM method for characterizing the roughness fluctuations of a fractal
landscape, a rough surface, a turbulent flow, or the image of a fractal object

is likely to become as useful as the well-known phase portrait reconstruc-
tion, Poincaré section, and first return map techniques for the analysis of
chaotic time series [385-388]. Besides the new concepts involved in this
methodology and its potential theoretical interest, there is a more concrete
and technical contribution [139] that is likely to have a strong impact on
future research. For both image analysis [107,108,139] and image synthesis
[109,139] purposes, we have implemented new algorithms and developed
new software that can be routinely used to analyze as well as to model
experimental data. In particular, some of these numerical tools take
advantage of the space-scale information contained in the WT skeleton to
g0 beyond the classical (one-point) multifractal description via the estimate
of (two-point) space-scale correlation functions. Prior to experimental
applications, all these numerical tools were calibrated via systematic test
applications on random self-affine surfaces (e.g., isotropic fractional
Brownian surfaces and anisotropic monofractal rough surfaces [108]) as
well as on synthetic multifractal rough surfaces [109]. To illustrate the wide
range of potential applications of this wavelet-based image processing
method, we have reported the most significant results obtained when
applying the 2D WTMM methodology to three rather different experi-
mental situations, namely the statistical analysis of high-resolution satellite
images of the cloud structure, of 2D cuts of the dissipation and enstrophy
fields in 3D direct numerical simulations of homogeneous and isotropic
trubulence, and of digitized mammograms. We are convinced that this
methodology will lead to significant progress in the understanding of the
multiscale mechanisms that underly the formation of rough surfaces and the
spatiotemporal evolution of intermittent fields in various domains of
fundamental as well as applied sciences such as erosion and corrosion
processes, deposition and growth phenomena, catalysis, fracture propaga-
tion, turbulence, medical imaging, and many other areas in physics,
astrophysics, chemistry, biology, geology, meteorology, and material
sciences.
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