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Abstract. We generalize the so-called wavelet transform modulus maxima (WTMM) method to multi-
fractal image analysis. We show that the implementation of this method provides very efficient numerical
techniques to characterize statistically the roughness fluctuations of fractal surfaces. We emphasize the
wide range of potential applications of this wavelet-based image processing method in fundamental as well
as applied sciences. This paper is the first one of a series of three articles. It is mainly devoted to the
methodology and to test applications on random self-affine surfaces (e.g., isotropic fractional Brownian
surfaces and anisotropic monofractal rough surfaces). Besides its ability to characterize point-wise regu-
larity, the WTMM method is definitely a multiscale edge detection method which can be equally used
for pattern recognition, detection of contours and image denoising. Paper II (N. Decoster, S.G. Roux, A.
Arnéodo, to be published in Eur. Phys. J. B 15 (2000)) will be devoted to some applications of the WTMM
method to synthetic multifractal rough surfaces. In paper III (S.G. Roux, A. Arnéodo, N. Decoster, to be
published in Eur. Phys. J. 15 (2000)), we will report the results of a comparative experimental analysis of
high-resolution satellite images of cloudy scenes.

PACS. 47.53.+n Fractals – 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.-a
Fluctuation phenomena, random processes, noise, and Brownian motion – 68.35.Bs Surface structure and
topography

1 Introduction

Ever since the explosive propagation of fractal ideas [1]
throughout the scientific community in the late 70’s and
early 80’s, there have been numerous applications to sur-
face science [2–12]. Both real space imaging techniques
(including scanning tunneling microscopy, atomic force
microscopy, transmission electron microscopy, secondary
electron microscopy and optical imaging techniques) and
diffraction techniques (including electron, atom, light and
X-ray scattering) have been extensively used to study
rough surfaces [11]. The characterization of surface rough-
ness is an important problem from a fundamental point
of view as well as for the wealth of potential applications
in applied sciences. Indeed, a wide variety of natural and
technological processes lead to the formation of complex
interfaces [1–17]. Assigning a fractal dimension to those
irregular surfaces is now become routine in various fields
including topography, defect and fracture studies, growth
phenomena, erosion and corrosion processes, catalysis and
many other areas in physics, chemistry, biology, geology,
meteorology and material sciences [1–17]. For isotropic
and self-similar interfaces when magnified equally in all
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directions, algorithms (e.g., box-counting algorithms,
fixed-size and fixed-mass correlation algorithms) were de-
signed and shown to provide a good estimate of the frac-
tal dimension DF [18–24]. For rough surfaces which are
well described by self-affine fractals displaying anisotropic
scale-invariance [1,3,4,6,25–28], various methods (e.g., di-
vider, box, triangle, slit-island, power spectral, variogram
and distribution methods) of computing DF were shown
to give different results [29–33]. Limited resolution as
well as finite-size effects are well known to introduce bi-
ases in the estimate of DF, which are indeed method
dependent [29,33,34]. For a documented discussion of the
possible reasons for these differences in fractal dimension
measurements, we refer the reader to the review article of
Lea Cox and Wang [35]. An alternative strategy consists
in computing the so-called roughness exponent H [1,3,6]
that describes the scaling of the width (or thickness) of the
rough interface with respect to measurement scale. Dif-
ferent methods (e.g., height-height correlation function,
variance and power spectral methods, detrented fluctua-
tion analysis, first return and multireturn probability dis-
tributions) [30–33,36–39] are available to estimate this
exponent which is supposed to be related to the fractal
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dimension DF = d−H of self-affine surfaces embedded in
a d-dimensional space. Again a number of artifacts may
pollute the estimate of the roughness exponent [33]. Since
sensitivity and accuracy are method dependent, it is usu-
ally recommended to simultaneously use different tools in
order to appreciate in a quantitative way, the level of con-
fidence in the measured exponent.

But beyond some practical algorithmic limitations,
there exists a more fundamental intrinsic insufficiency of
fractal dimension measurement in the sense that the frac-
tal dimension DF, as well as the roughness exponent H,
are global quantities that do not account for possible fluc-
tuations (from point to point) of the local regularity prop-
erties of a fractal surface. Box-counting and correlation al-
gorithms were successfully adapted to resolve multifractal
scaling for isotropic self-similar fractals by computation
of the generalized fractal dimensions Dq [19–23]. As to
self-affine fractals, Parisi and Frisch [40] proposed, in the
context of the analysis of fully-developed turbulence data,
an alternative multifractal description based on the inves-
tigation of the scaling behavior of the so-called structure
functions [17,41]: Sp(l) = 〈(δfl)p〉 ∼ lζp (p integer > 0),
where δfl(x) = f(x + l) − f(x) is an increment of the
recorded signal over a distance l. Then, after reinterpret-
ing the roughness exponent as a local quantity [40,42–46]:
δfl(x) ∼ lh(x), the D(h) singularity spectrum is defined as
the Hausdorff dimension of the set of points x where the
local roughness (or Hölder) exponent h(x) of f is h. In
principle, D(h) can be attained by Legendre transforming
the structure function scaling exponents ζp [40,45,46]. Un-
fortunately, as noticed by Muzy et al. [47], there are some
fundamental drawbacks to the structure function method.
Indeed, it generally fails to fully characterize the D(h) sin-
gularity spectrum since only the strongest singularities of
the function f itself (and not the singularities present in
the derivatives of f) are a priori amenable to this analy-
sis. Even though one can extend this study from integer
to real positive p values by considering the increment ab-
solute value, the structure functions generally do not exist
for p < 0. Moreover, singularities corresponding to h > 1,
as well as regular behavior, bias the estimate of ζp [45–47].

In previous work [44–47], one of the author (A.A.),
in collaboration with Bacry and Muzy, has shown that
there exists a natural way of performing a multifractal
analysis of self (multi)-affine functions, which consists in
using the continuous wavelet transform [48–62]. By us-
ing wavelets instead of boxes, like in the classical multi-
fractal formalism [21,63–67], one can take advantage of
the freedom in the choice of these “generalized oscillating
boxes” to get rid of possible smooth behavior that might
either mask singularities or perturb the estimation of their
strength h [44–47]. The other fundamental advantage of
using wavelets is that the skeleton defined by the wavelet
transform modulus maxima (WTMM) [68,69], provides an
adaptative space-scale partitioning from which one can ex-
tract the D(h) singularity spectrum via the scaling expo-
nents τ(q) of some partition functions defined on the skele-
ton. The so-called WTMM method [44–47] therefore gives
access to the entire D(h) spectrum via the usual Legendre

transform D(h) = minq(qh− τ(q)). We refer the reader to
references [70,71] for rigorous mathematical results. Since
the WTMM method is mainly devoted to practical ap-
plications to stochastic systems, let us point out that the
theoretical treatment of random multifractal functions re-
quires special attention. A priori, there is no reason that
all the realizations of the same stochastic multifractal pro-
cess correspond to a unique D(h)-curve. Each realization
has its own unique distribution of singularities and one
crucial issue is to relate these distributions to some av-
eraged versions computed experimentally. As emphasized
by Hentschel [72], one can take advantage of the anal-
ogy that links the multifractal description to statistical
thermodynamics [21,46,63,64,73], by using methods cre-
ated specifically to study disorder in spin-glass theory [74].
When carrying out replica averages of the random parti-
tion function associated with a stochastic function, one
gets multifractal spectra τ(q, n) that generally depend on
the number of members n in the replica average (let us
note that n = 0 and n = 1 respectively correspond to
commonly used quenched and annealed averagings [72]).
Then, by Legendre transforming τ(q, n), some type of av-
erage D(h) spectra are being found [72]. Some care is thus
required when interpreting these average spectra in order
to avoid some misunderstanding of the underlying physics.

Applications of the WTMM method to 1D signals have
already provided insight into a wide variety of outstand-
ing problems [58], e.g., the validation of the cascade phe-
nomenology of fully-developed turbulence [44–46,75–81],
the discovery of a Fibonacci structural ordering in 1D cuts
of diffusion-limited aggregates (DLA) [82–84], the charac-
terization and the understanding of long-range correla-
tions in DNA sequences [85–87], the demonstration of the
existence of a causal cascade of information from large
to small scales in financial time-series [88,89]. Let us also
note that from a fundamental point of view, the WTMM
multifractal formalism [44–47,70] has been recently re-
visited [90–92] in order to incorporate in this statistical
“canonical” description (which applies for cusp-like sin-
gularities only), the possible existence of oscillating sin-
gularities [69,90,93]. This new “grand canonical” descrip-
tion [91,92] allows us to compute the singularity spectrum
D(h, β) which accounts for the statistical contribution of
singularities of Hölder exponent h and oscillation expo-
nent β (where β characterizes the local power-law diver-
gence of the instantaneous frequency).

The purpose of the present work is to generalize the
canonical WTMM method [44–47,70] from 1D to 2D,
with the specific goal to achieve multifractal analysis of
rough surfaces with fractal dimension DF anywhere be-
tween 2 and 3. In recent years, increasing interest has been
paid to the application of the wavelet transform (WT)
to image processing [23,57,58,61,94–96]. In this context,
Mallat and collaborators [68,69] have extended the
WTMM representation in 2D in a manner inspired from
Canny’s multiscale edge detectors commonly used in com-
puter vision [97]. Our strategy will thus consist in using
this representation to define a (3D) WT skeleton from
which one can compute partition functions and ultimately



A. Arnéodo et al.: A wavelet-based method for multifractal image analysis. I 569

extract multifractal spectra. The main lines of this ap-
proach has been sketched in a previous short note [98]
with some preliminary applications to synthetic and ex-
perimental 2D data. This paper is mainly devoted to a de-
tailed description of the 2D WTMM methodology. Some
test applications to random self-affine surfaces displaying
isotropic as well as anisotropic (with respect to space vari-
ables) scale similarity properties are reported to illustrate
both the efficiency and the accuracy of this method. This
paper is the number I of a series of three papers. In paper
II [99], we will apply the 2D WTMM method to synthetic
random multifractal surfaces generated by algorithms that
are reasonable candidates to simulate cloud structure. In-
deed we will mainly focus on two models: as originally pro-
posed by Schertzer and Lovejoy [101], the first one consists
in a simple power-law filtering (fractional integration) of
singular cascade measures; the second one is the foremost
attempt to generate random cascades on 2D orthogonal
wavelet basis. Paper III [100] will be devoted to exper-
imental applications of the 2D WTMM method to high
resolution LANDSAT satellite images of cloudy scenes [98,
102]. This study will bring into light the underlying mul-
tiplicative structure of marine stratocumulus clouds [102].
Moreover, we will comment on the multifractal properties
of stratocumulus radiance fields comparatively to previous
experimental analysis of velocity and temperature fluctu-
ations in high Reynolds number turbulence [102].

The paper is organized as follows. In Section 2, we
review some background material on the 2D continu-
ous wavelet transform [23,61,94,103]. We then describe
the 2D WTMM representation introduced by Mallat
et al. [68,69] as the equivalent of multi-scale Canny edge
detection. In Section 3, we present the continuous WT as
a mathematical microscope which is well suited for char-
acterizing the local regularity of rough surfaces. For prac-
tical purposes, the WTMM representation is emphasized
as a very efficient and accurate numerical tool for scan-
ning the singularities of fractal landscapes. In Section 4,
we describe the 2D WTMM method as a natural gener-
alization of box-counting algorithms and structure func-
tion techniques previously used for multifractal analysis of
isotropic self-similar interfaces and multi-affine surfaces.
Section 5 is devoted to the application of the 2D WTMM
method to fractional Brownian surfaces [1,3,25] that dis-
play isotropic (with respect to space variables) scaling
properties. For this class of isotropic homogeneous random
rough surfaces, we address the issues of statistical conver-
gence and finite-size effects. In Section 6, we illustrate the
ability of the 2D WTMM method to reveal and to master
anisotropic scale invariance hidden in the roughness fluc-
tuations of a random surface. On a more general ground,
we show in Section 7 that the 2D WTMM method can
be used for many purposes in image processing including
edge detection, pattern recognition and image denoising.

2 Image processing with the 2D continuous
wavelet transform
In this section, we quickly review some background defi-
nitions of the continuous wavelet transform in two dimen-

sions [23,94,103], with special emphasis on the Canny’s
multi-scale edge detector like wavelet transform designed
by Mallat and collaborators [68,69]. We refer the reader
to references [61,94,104] for detailed discussion.

2.1 The continuous wavelet transform in 2D

As originally introduced by Murenzi [103], when one in-
tends to generalize to 2D, the whole wavelet transform ma-
chinery developed for the ax+b affine group, it is quite nat-
ural to use the 2D Euclidean group with dilations, i.e. the
similitude group of R2. Hereafter denoted G, this group
is a nonunimodular locally compact group. Ω(b, θ, a) de-
fined just below, is its most natural unitary representa-
tion in the space L2(R2,d2x) of square integrable (finite
energy) functions over the real plane R2:

ψb,θ,a(x) = Ω(b, θ, a)ψ(x) ,
= a−1ψ

(
a−1r−θ(x− b)

)
,

(1)

where b, θ and a are the displacement vector, the rotation
angle and the dilation parameter respectively. Note that
the rotation operator rθ acts on x = (x, y) as usual:

rθ(x) = (x cos θ − y sin θ, x sin θ + y cos θ) ,
0 ≤ θ < 2π . (2)

As shown by Murenzi [103], this representation turns out
to be both irreducible and square integrable.

Let now f ∈ L2(R2, d2x) be an image. Its continu-
ous wavelet transform Tψ(b, θ, a) with respect to a given
analyzing wavelet ψ is, up to normalization, the scalar
product of f with the transformed wavelet ψb,θ,a:

Tψ(b, θ, a) = C
−1/2
ψ 〈ψb,θ,a|f〉 ,

= C
−1/2
ψ a−1

∫
d2x ψ∗

(
a−1r−θ(x− b)

)
f(x) ,

(3)

where Cψ is a positive normalization constant defined just
below (the asterisk denotes the complex conjugate). In
Fourier space, equation (3) becomes

Tψ(b, θ, a) = C
−1/2
ψ a

∫
d2k eikbψ̂∗(ar−θk)f̂(k) , (4)

where the Fourier transform of a function f(x) is defined
by

f̂(k) = (2π)−1

∫
d2x e−ikxf(x) , (5)

with k·x = kxx+kyy for the Euclidean scalar product. For
the wavelet transform to be invertible, the wavelet ψ(x)
must satisfy the admissibility condition

Cψ = (2π)2

∫
d2k |k|−2

∣∣ψ̂(k)
∣∣2 <∞ , (6)
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where |k|2 = k ·k. If ψ is regular enough, the admissibility
condition simply means that the wavelet has zero mean:

ψ̂(0) = 0⇔
∫

d2x ψ(x) = 0. (7)

The reconstruction formula can be written as:

f(x) = C
−1/2
ψ

∫∫∫
a−3d2bdθda Tψ(b, θ, a)ψb,θ,a(x),

(8)

where a−3d2bdθda is the left invariant Haar measure of
G. From equations (6) and (8), it is straightforward to
convince oneself that the continuous 2D wavelet transform
conserves energy:∫

d2x
∣∣f(x)

∣∣2 =
∫∫∫

a−3d2bdθda
∣∣Tψ(b, θ, a)

∣∣2 . (9)

Remark

The information contained in the continuous 2D wavelet
transform is actually very redundant. This is the direct
consequence of the existence of the so-called reproducing
kernel [103], namely the transform of ψ by itself:

K(b′, θ′, a′|b, θ, a) = C−1
ψ 〈ψb′,θ′,a′ |ψb,θ,a〉. (10)

Via this kernel, one can express a wavelet coefficient
Tψ(b′, θ′, a′) as a weighted (continuous) sum over the
other coefficients:

Tψ(b′, θ′, a′) =∫∫∫
a−3d2b dθ da K

(
b′, θ′, a′|b, θ, a

)
Tψ(b, θ, a). (11)

In other words, the reproducing kernel quantifies the cor-
relations between the wavelet coefficients.

2.2 Some examples of analyzing wavelets

As already experienced in 1D [48–62], the choice of the
analyzing wavelet ψ is even more crucial in 2D. According
to the goal one pursues, it is clear that some analyzing
wavelets will be more appropriate and more efficient than
others. One can even imagine designing a specific wavelet
for a given problem in order to optimize some aspects
of the analysis [68,69,94–96,105,106]. In this section, we
review some of the most popular wavelets that have been
proposed and tested in previous works.

The 2D Mexican hat [23,94,103]

In its most general form, the 2D Mexican hat reads:

ψA(x) =
[
2− (xAx)

]
e−xAx/2 , (12)

or in Fourier space:

ψ̂A(k) = |detB|1/2(kBk)e−kBk/2 , (13)

where A is a 2× 2 positive definite matrix and B = A−1.
The Mexican hat is thus a real wavelet which is rotation
invariant when A = λI. Anisotropic wavelets are gener-
ated when using the diagonal matrix A = diag(1/ε, 1),
with ε ≥ 1. The Mexican hat was shown to have an ex-
cellent selectivity in position variables but a rather poor
selectivity in scale and in direction (and this even if a
large anisotropy ε is used) [94]. Therefore it should mainly
be used for point-wise analysis purpose (singularity track-
ing [23], edge detection [23,107], fractal analysis [23], vi-
sual contrast [94,108]).

The optical wavelet [95,96]

Band-pass filtering can be performed experimentally us-
ing optical diffraction techniques. The simplest acceptable
shape for the kind of filter to be used in Fourier space is
a binary approximation of the Fourier transform of the
isotropic Mexican hat:

ψ̂(k) = 1, for k1 ≤ |k| ≤ k2,

= 0, otherwise.
(14)

The optical wavelet transform is an experimental device
which combines optics and robotic. The wavelet transform
is carried out by successively using up and down scaled
versions of this band-limited annular filter. We refer the
reader to reference [96], where the optical wavelet trans-
form was shown to be a very efficient experimental tool to
resolve geometrical multifractality.

The 2D Morlet wavelet [94,103,108]

This is a prototype of an oriented wavelet with an intrinsic
direction:

ψ(x) = eik0xe−xAx/2 − e−k0Bk0/2e−xAx/2. (15)

Its Fourier transform takes the form:

ψ̂(k) =

|detB|1/2
[
e−(k−k0)B(k−k0)/2 − e−k0Bk0/2e−kBk/2

]
.

(16)

A is a 2 × 2 positive definite matrix and B = A−1. The
counterterms in ψ and ψ̂ guarantee that ψ̂(0) = 0, i.e.,
that the admissibility condition (7) is fulfilled. In prac-
tice, k0 is chosen in such a way that these counterterms
are negligible. The Morlet wavelet is thus complex. In its
approximate version (without counterterms), the modu-
lus is a Gaussian, whereas the phase is constant along the
direction perpendicular to k0. The Morlet wavelet is well
known for its good angular selectivity, together with rea-
sonable scale and position selectivity [94,104,108]. Its use
is recommended for the analysis of images that contain
directional features (edge detection, oriented texture).
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Miscellaneous 2D wavelets

Many other 2D wavelets have been introduced in the liter-
ature for various practical purposes. For some reviews, we
refer to references [94,104]. Let us just mention among the
proposed directionless wavelets, the Halo and Arc cylindri-
cal wavelets for their ability to detect any wavevectors k0

regardless its orientation [109]. Directional wavelets can
then be used to detect possible privileged directions. On
the other hand, multidirectional wavelets such as the so-
called “fan” wavelet obtained by superposing n suitably
copies of ψ, provide the adequate tool to characterize some
global or local n-fold symmetry more or less hidden in the
image [94,104]. In this context, we refer to the work of
Arrault and collaborators [105,106] for a very nice applica-
tion of multidirectional wavelets to the statistical analysis
of branching angles in fractal aggregates.

2.3 Analyzing wavelets for multi-scale edge detection

The edges of the different structures that appear in an
image are often the most important features for pattern
recognition. Hence, in computer vision [110,111], a large
class of edge detectors look for points where the gradi-
ent of the image intensity has a modulus which is lo-
cally maximum in its direction. As originally noticed by
Mallat and collaborators [68,69], with an appropriate
choice of the analyzing wavelet, one can reformalize the
Canny’s multi-scale edge detector [97] in terms of a 2D
wavelet transform. The general idea is to start by smooth-
ing the discrete image data by convolving it with a filter
and then to compute the gradient on the smoothed signal.

Let us consider two wavelets that are, respectively, the
partial derivative with respect to x and y of a 2D smooth-
ing function φ(x, y):

ψ1(x, y) =
∂φ(x, y)
∂x

and ψ2(x, y) =
∂φ(x, y)
∂y

· (17)

We will assume that φ is a well localized (around x =
y = 0) isotropic function that depends on |x| only. In this
work, we will mainly use the Gaussian function:

φ(x, y) = e−(x2+y2)/2 = e−|x|
2/2 , (18)

as well as the isotropic Mexican hat (Eq. (12)):

φ(x) = (2− x2)e−|x|
2/2 . (19)

The corresponding analyzing wavelets ψ1 and ψ2 are il-
lustrated in Figure 1. They have one and three vanishing
moments when using respectively the Gaussian function
(Eq. (18)) and the Mexican hat (Eq. (19)) as smoothing
function.

For any function f(x, y) ∈ L2(R), the wavelet trans-
form with respect to ψ1 and ψ2 has two components and
therefore can be expressed in a vectorial form:

Tψ[f ](b, a) =Tψ1 [f ] = a−2
∫

d2x ψ1

(
a−1(x− b)

)
f(x)

Tψ2 [f ] = a−2
∫

d2x ψ2

(
a−1(x− b)

)
f(x)

 . (20)

Fig. 1. The analyzing wavelets ψ1 and ψ2 defined in equa-
tion (17). First-order analyzing wavelets obtained from a Gaus-
sian smoothing function φ (Eq. (18)): (a) ψ1; (b) ψ2. Third-
order analyzing wavelets obtained from the isotropic Mexican
hat smoothing function φ (Eq. (19)): (c) ψ1; (d) ψ2.

Then, after a straightforward integration by parts, one
gets:

Tψ[f ](b, a) = a−2

(
∂
∂bx

[∫
d2x φ

(
a−1(x− b)

)
f(x)

]
∂
∂by

[∫
d2x φ

(
a−1(x− b)

)
f(x)

]) ,
(21)

which can be rewritten as:

Tψ[f ](b, a) = a−2∇
{∫

d2x φ
(
a−1(x− b)

)
f(x)

}
,

=∇
{
Tφ[f ](b, a)

}
,

=∇{φb,a ∗ f} .
(22)

If φ(x) is simply a smoothing filter like the Gaussian
function (Eq. (18)), then equation (22) amounts to de-
fine the 2D wavelet transform as the gradient vector of
f(x) smoothed by dilated versions φ(a−1x) of this filter.
If φ(x) has some vanishing moments, then Tφ[f ](b, a) in
equation (22) is nothing but the continuous 2D wavelet
transform of f(x) as defined by Murenzi [103] (Eq. (3)),
provided φ(x) be an isotropic analyzing wavelet so that
the integration over the angle θ becomes trivial.

Remark

The normalization used in equation (1) guarantees the
unitary of the representation of the group G but it is not
essential for the practical use of the 2D wavelet transform.
As already experienced in references [98,102], for the spe-
cific purpose of singularity tracking and fractal analysis,
it is more convenient to consider a different normaliza-
tion, i.e., the one that preserves the L1-norm instead of
the L2-norm. This explain the a−2 normalization factor in
equation (20), as well as in the definition of Tφ in equa-
tion (22):

Tφ[f ](b, a) = a−2

∫
d2x φ

(
a−1(x− b)

)
f(x). (23)
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Since we will deal exclusively with image analysis with-
out reconstruction, we have arbitrary fixed the absolute
normalization Cψ = 1 for the sake of simplicity.

As far as notations are concerned, we will mainly use
the representation involving the modulus and the argu-
ment of the wavelet transform:

Tψ[f ](b, a) =
(
Mψ[f ](b, a),Aψ[f ](b, a)

)
, (24)

with

Mψ[f ](b, a) =
∣∣Tψ[f ](b, a)

∣∣ ,
=
[(
Tψ1 [f ](b, a)

)2 +
(
Tψ2 [f ](b, a)

)2]1/2

(25)

and

Aψ[f ](b, a) = Arg
(
Tψ1 [f ](b, a) + iTψ2 [f ](b, a)

)
. (26)

From this representation, we will explain in Section 3.3,
how to construct the wavelet transform modulus maxima
skeleton. At each scale a, in the spirit of Canny’s edge
detection [97], we will simply detect the points where the
modulus M is locally maximum along the gradient di-
rection given by the argument A. The so-called WTMM
skeleton will be the cornerstone of the 2D wavelet-based
multifractal methodology described in Section 4.

3 Characterizing the local regularity
properties of rough surfaces with the wavelet
transform modulus maxima

In the present work, we will use the term rough surface
for an irregular surface on which there are no overhanging
regions. This means that the surface can be correctly de-
scribed by a function z = f(x), which specifies the height
of the surface at the point x = (x, y). Of particular interest
are the rough surfaces corresponding to self-affine fractals
in R3 [1,3,4,6,25–27]. Self-affine fractals are objects which
are invariant under affine transformations:

dx→ λxdx , dy → λydy , dz → λzdz, (27)

where dx and dy are the horizontal distances and dz the
vertical distance. This means that if a small piece of the
fractal surface is blown up in an anisotropic way, the en-
larged version can be made to match the whole object.
For deterministic self-affine surfaces this can be done ex-
actly, while for random rough surfaces the above com-
parison is valid only in a stochastic sense. Requiring that
affine transformations (Eq. (27)) can be combined implies
a group structure [33,101,112–114]. As a consequence, λy
and λz have to be homogeneous functions of, say, λx:

λy = λαx , λz = λHx . (28)

Isotropy along the (x, y) plane implies α = 1. In this
case a single exponent H, commonly called roughness or

Hurst exponent [1,3,4,6,25–27], is needed to character-
ize the global regularity of the self-affine surface. Other-
wise, α can be seen as an exponent that quantifies the
anisotropic scaling properties of the rough surface in the
(x, y) plane [33,101].

3.1 Global and local regularity of fractal functions

A rough surface can thus be defined by a single-valued
self-affine function satisfying: ∀x0 = (x0, y0) ∈ R2, ∀x =
(x, y) ∈ R2 in the neighborhood of x0, ∃H ∈ R such that,
for any λ > 0, one has [1,3,4,6,25–27]:

f(x0 + λx, y0 + λαy)− f(x0, y0) w
λH
[
f(x0 + x, y0 + y)− f(x0, y0)

]
. (29)

If f is a stochastic process, this identity holds in law for
fixed λ and x0. According to the value of the exponent α,
this self-affine function will display either isotropic scale
invariance with respect to the space variables (α = 1)
or anisotropic scale invariance (α 6= 1) [33,101,112–114].
The Hurst exponent H characterizes the global regular-
ity of the function f . Let us note that if H < 1, then f
is nowhere differentiable and that the smaller the expo-
nent H, the more singular f . For H = 1 and α = 1, the
rough surface defined by f in R3, is a self-similar frac-
tal in the sense that it is invariant under some isotropic
dilations [1,33,112–114].

In various context [1–17], several methods have been
used to estimate the Hurst exponent of self-affine func-
tions. In most studies, isotropic scale invariance was used
as a prerequisite to the application of commonly used
methods to the analysis of 1D fractal landscapes, e.g.,
the height-height correlation function, the variance and
power spectral methods, the detrented fluctuation analy-
sis, the first return and multi-return probability distribu-
tions [30–33,36–39]. The strategy followed in these studies
reduces the analysis of rough surfaces to the investigation
of self-affine (1D) profiles obtained through 2D cuts in a
three-dimensional representation. As long as the estimate
of the Hurst exponent H is independent of the intersec-
tion plane, there is no inconsistency in the methodology.
When H is found to be sensitive to the orientation of the
intersecting plane, this means that the isotropic scale in-
variance hypothesis does not apply and that one needs to
have recourse to methods fully adapted to the characteri-
zation of rough surfaces. Unfortunately, to our knowledge,
most of the methods listed above have been extended to
self-affine functions from R2 to R under the implicit as-
sumption of isotropic scaling. Let us review briefly some
of these methods among the most popularly used [3–11].

The variance method [3–11]

The variance of height fluctuations is a quantitative mea-
sure of the width or thickness of the rough surface:

W 2(l) = 〈f2(x)〉l − 〈f(x)〉2l , (30)
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where the brackets 〈. . . 〉l denote spatial (over a domain
of characteristic spatial scale l) and ensemble averages. In
practice, one chooses many different windows along the
surface and averages over the obtained results. For small
l, one gets that the width W (l) behaves as

W (l) = lH , (31)

where H is the Hurst exponent.

The height-height correlation function method [3–11]

Another quantity that scales, a priori, in the same way as
the surface width is the height-height correlation function:

C(l) =
[
〈
(
f(x + l)− f(x)

)2〉]1/2 ∼ lH , (32)

where the brackets 〈. . . 〉 mean averaging over space (x),
as well as over the direction of the increment vector l,
together with ensemble average.

The power-spectrum method [3–11]

Most of the experimental determinations of H have been
based on scattering experiments with X-rays, neutrons or
light. Generally H is extracted from the scaling behavior
of the power-spectrum as a function of the modulus of the
wavevector k = (k, θ):

S(k) =
1

2π

∫
dθ
∣∣f̂(k, θ)

∣∣2 ∼ k−β ,
with β = 2H + 2 . (33)

But some care is required when using these methods
since they may lead to conflicting estimates of the Hurst
exponent [33]. Besides the implicit assumption of isotropic
scale invariance which deserves some experimental check,
most of these methods are sensitive to bias in the data
such as an overall ramp (or any other smooth polynomial
behavior) that can easily be shown to drastically affect
the scaling law. Moreover, on a more fundamental
ground, these methods are not adapted when the fractal
function under consideration is not a homogeneous fractal
function with a constant roughness associated to a unique
exponent H.

Fractal functions generally display multi-affine proper-
ties in the sense that their roughness (or regularity) fluctu-
ates from point to point [40,42–46]. To describe these mul-
tifractal functions, one thus needs to change slightly the
definition of the Hurst regularity of f so that it becomes
a local quantity h(x0). A rigorous definition of the Hölder
exponent (as the strength of a singularity of a function f
at the point x0), is given by the largest exponent h(x0)
such that there exists a polynomial of degree n < h(x0)
and a constant C > 0, so that for any point x in the
neighborhood of x0 one has [68,69,105]:∣∣f(x)− Pn(x− x0)

∣∣ ≤ C|x− x0|h(x0) . (34)

If f is n times continuously differentiable at the point
x0, then one can use for the polynomial Pn(x − x0)
the order-n Taylor series of f at x0 and thus prove
that h(x0) > n. Thus h(x0) measures how irregular the
function f is at the point x0. The higher the exponent
h(x0), the more regular the function f .

For fractal functions of one variable involving cusp
singularities only, i.e., satisfying f ′ = df/dx is
Hölder h(x0) − 1 iff f is Hölder h(x0), the Hölder
exponent [1,60–62] h(x0) was shown to fully account
for the behavior of f around x0. As discussed in
references [68,70,90–92,115,116], this is no longer true
if there exist oscillating singularities (or chirps) which
are characterized by two exponents, the Hölder exponent
h(x0) and the oscillation exponent β(x0) that quantifies
the divergence of the local frequency. In this work, we will
mainly consider fractal functions of two variables which
possess only cusp-like singularities. (We refer the reader to
reference [117], for rigorous mathematical results concern-
ing 2D chirps.) But the situation is a little bit more tricky
than in 1D. Indeed one has to distinguish two main cases
depending on whether scale invariance is under isotropic
or anisotropic dilations [1,33,112–114,118].

Isotropic dilations

Local scale invariance under isotropic dilations means that
locally, around the point x0, the function f behaves as:

f(x0 + λu) − f(x0) w λh(x0)
(
f(x0 + u)− f(x0)

)
, (35)

where λ > 0 and u is a unit vector. If the scaling ex-
ponent h(x0) does not depend upon the direction of u,
then f displays isotropic local scale-invariance around x0

and the corresponding singularity is of Hölder exponent
h(x0). If, on the contrary, the scaling exponent depends
upon the direction of u, then the Hölder exponent is the
minimum value of h over all the possible orientations of
u. Thus f displays anisotropic scale-invariance around x0

with one, several or a continuum of privileged directions
along which the variation of f defines the Hölder exponent
of the singularity located at x0.

Anisotropic dilations

Local scale invariance under anisotropic dilations means
that locally around the point x0, the function f behaves
as [101,112–114,118]:

f
(
x0 + Λα(λ)rθu

)
− f(x0) w λh(x0)

(
f(x0 + u)− f(x0)

)
,

(36)

where λ > 0 and u is a unit vector. rθ is a rotation matrix
and Λα(λ) is a positive diagonal 2×2 matrix that accounts
for anisotropic self-affine scale transformation in the θ-
rotated referential with origin x0:

Λα(λ) =

(
λ 0
0 λα

)
. (37)
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The function f thus displays anisotropic scale-invariance
around x0 and the Hölder exponent is given by the
behavior of f in the direction θ (α < 1) or θ + π/2
(α > 1).

Remark

Let us remark that the gain of an additional degree of
freedom when going from 1D to 2D, opens the door to dif-
ferential rotational effects in the zooming operation. This
issue has been addressed by Lovejoy and Schertzer [113]
under the concept of Generalized Scale Invariance (GSI).
Let us point out that 2D spiraling cusp-like singularities
correspond to discrete scale invariance in any orthogonal
cross-section through x0.

3.2 2D wavelet analysis of local Hölder regularity

The purpose of this section is to illustrate, via some rather
crude calculations on a specific example, the ability of the
2D wavelet transform defined in Section 2.3, to character-
ize pointwise Hölder regularity [98,105]. Let us consider
the following function f from R2 to R with an isolated
isotropic singularity of Hölder exponent h(x0) ∈]n, n+ 1[
located at the point x0:

f(x, y) =∑
0≤p≤n

1
p!

[
(x− x0)

∂f

∂x
+ (y − y0)

∂f

∂y

][p]

(x0, y0)

+ C
[
(x− x0)2 + (y − y0)2

]h(x0)/2
, (38)

where

[
(x− x0)

∂f

∂x
+ (y − y0)

∂f

∂y

][p]

(x0, y0) =∑
α1+α2=p

Aα1,α2(x− x0)α1(y − y0)α2
∂pf

∂α1x∂α2y
(x0, y0) .

(39)

As defined by equation (38), the singularity occurs in the
n-order partial derivatives of f .

According to the definition (20), the 2D wavelet trans-
form reads:

Tψ[f ](x0, a) =

(∫
d2x ψ1(x)f(x0 + ax)∫
d2x ψ2(x)f(x0 + ax)

)
. (40)

Now if one plugs the definition of f (Eq. (38)) into equa-
tion (40), one gets the following expression for the first

component of the wavelet transform:

Tψ1 [f ](x0, a) =∑
0≤p≤n

1
p!

∫
d2x ψ1(x)

[
ax
∂f

∂x
+ ay

∂f

∂y

][p]

(x0, y0)

+ ah(x0)C

∫
d2x ψ1(x)[x2 + y2]h(x0)/2. (41)

Let us develop one of the terms involved in the discrete
sum in the r.h.s. of equation (41):∫

d2x ψ1(x)
[
ax
∂f

∂x
+ ay

∂f

∂y

][p]

(x0, y0) =

ap
∑

α1+α2=p

Aα1,α2Mα1,α2 [ψ1]
∂pf

∂α1x∂α2y
(x0, y0) , (42)

where

Mα1,α2 [ψ1] =
∫∫

dxdy xα1yα2ψ1(x, y) . (43)

Note that if one uses separable analyzing wavelets like the
ones shown in Figure 1, i.e., such that ψ(x, y) = %(x)ϑ(y),
then:

Mα1,α2 [ψ1] =
∫

dx xα1%(x)
∫

dy yα2ϑ(y). (44)

The analyzing wavelet will be said to be of order nψ, if
the following condition is satisfied:

Mα1,α2 [ψ1] = 0 , ∀α1 , α2 ∈ [0, nψ − 1]. (45)

Now two cases have to be distinguished:
(i) nψ < h(x0): In this case, the number of vanishing mo-

ments of ψ is not large enough for the wavelet trans-
form microscope to be blind to the polynomial terms
of order p ≥ nψ. Then, the scaling behavior of Tψ1 [f ]
is dominated by the polynomial term in equation (41)
which totally masks the contribution coming from the
singular term:

Tψ1 [f ](x0, a) ∼ anψ , a→ 0+ . (46)

In other word, the scaling behavior of the wavelet
transform is governed by the order of the analyzing
wavelet.

(ii) nψ > h(x0): In this case the first term in the r.h.s. of
equation (41) vanishes and the Hölder exponent h(x0)
can be directly extracted from the scaling behavior of
the wavelet transform:

Tψ1 [f ](x0, a) ∼ ah(x0) , a→ 0+. (47)

Since the above results equally apply to Tψ2 [f ], one gets
the following scaling behavior for the wavelet transform
modulus (Eq. (25)):

Mψ[f ](x0, a) =
[(
Tψ1 [f ](x0, a)

)2 +
(
Tψ2 [f ](x0, a)

)2]1/2
,

∼ ah(x0) , a→ 0+

(48)
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provided nψ > h(x0). Therefore one can extract the ex-
ponent h(x0) from a log-log plot of the wavelet transform
versus the scale parameter a. Let us remark that if f is
infinitely differentiable at x0 (h(x0) = +∞), then

Mψ[f ](x0, a) ∼ anψ , a→ 0+. (49)

According to this observation, one can thus hope to
detect the points where f ∈ C∞ by just checking the
scaling behavior of Mψ when increasing the order nψ of
the analyzing wavelet.

Remark

Similar calculations can be performed for anisotropic self-
affine singularities. In the particular case defined in equa-
tion (36) with θ = 0 (anisotropic dilations operate along
the x and y axis), Tψ1 [f ] and Tψ2 [f ] can be shown to
scale with two different exponents h and h/α. The scal-
ing behavior of Mψ is then given by min{h, h/α}, which
is nothing but the Hölder exponent h(x0) as defined in
equation (36). In any case, the wavelet transform modu-
lus is the key quantity to estimate the Hölder exponent.
But the separate analysis of Tψ1 [f ] and Tψ2 [f ] can provide
a decisive test of anisotropic self-affine scaling.

3.3 Singularity detection and processing
with the wavelet transform modulus maxima

As just explained, in order to recover the Hölder exponent
h(x0) of a function f from R2 to R, one needs to study
the behavior of the wavelet transform modulus inside a
cone |x−x0| < Ca in the (space-scale) half space [98,105,
119]. As originally proposed by Mallat and collaborators
[68,69], a very efficient way to perform point-wise regu-
larity analysis is to use the wavelet transform modulus
maxima.

In the spirit of Canny edge detection [97], at a given
scale a, the wavelet transform modulus maxima (WTMM)
are defined as the points b where the wavelet transform
modulusMψ[f ](b, a) (Eq. (25)) is locally maximum along
the gradient direction given by the wavelet transform ar-
gument Aψ[f ](b, a) (Eq. (26)). These modulus maxima
are inflection points of f ∗ φa(x). As illustrated in the ex-
amples just below, these WTMM lie on connected chains
hereafter called maxima chains [98,102,105]. In theory,
one only needs to record the position of the local maxima
ofMψ along the maxima chains together with the value of
Mψ[f ] and Aψ[f ] at the corresponding locations. At each
scale a, our wavelet analysis thus reduces to store those
WTMM maxima (WTMMM) only. They indicate locally
the direction where the signal has the sharpest variation.
This orientation component is the main difference between
1D and 2D wavelet transform analysis. These WTMMM
are disposed along connected curves across scales called
maxima lines [98,102,105]. We will define the WT skeleton
as the set of maxima lines that converge to the (x, y)-plane
in the limit a→ 0+. This WT skeleton is likely to contain
all the information concerning the local Hölder regularity
properties of the function f under consideration.

Fig. 2. Three-dimensional representation of the function

f1(x) = Ae−(x−x1)2/2σ2
+B|x−x0|0.3. The isotropic singular-

ity S is located at x0 = (−256,−256). The Gaussian localized
structure G of width σ = 128 is located at x1 = (256, 256).
The parameter values are A = 1 and B = −1.

Fig. 3. Wavelet transform (Eq. (20)) of the function f1 shown
in Figure 2, with a first-order analyzing wavelet (φ is the
isotropic Gaussian function). (a) Tψ1 [f1]; (b) Tψ2 [f1] coded us-
ing 32 grey levels from white (min Tψ) to black (maxTψ). (c)
M [f1] coded from white (M = 0) to black (maxM ). (d)
|A [f1]| coded from white (|A | = 0) to black (|A | = π).
The considered scale is a = 23σW where σW = 13 (pixels) is
the characteristic size of  at the smallest resolved scale.

Example 1: Isotropic singularity interacting with a localized
smooth structure

Let us first illustrate the above definitions on the function
f1 shown in Figure 2:

f1(x) = Ae−(x−x1)2/2σ2
+B|x− x0|0.3. (50)

This function is C∞ everywhere except at x = x0 where f1

is isotropically singular with a Hölder exponent h(x0) =
0.3. Its 2D wavelet transform (Eq. (20)) with a first-
order analyzing wavelet (the smoothing function φ(x) is
the isotropic Gaussian function) is shown in Figure 3 for
a given scale a = 23σW, where σW = 13 is the width
(in pixel units) of the analyzing wavelet at the smallest
scale where it is still well enough resolved. Indeed σW is
the smallest scale (or the highest resolution) accessible to
our wavelet transform microscope. Tψ1 [f1] and Tψ2 [f1] are
shown in Figures 3a and 3b respectively. The correspond-
ing modulusMψ[f1] and argumentAψ[f1] are represented
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Fig. 4. Maxima chains (solid line) defined by the WTMM
of the function f1 (Fig. 3). The local maxima (resp. minima)
along these chains are indicated by (•) (resp. (◦)) from which
originates an arrow whose length is proportional to M [f1]
and its direction (with respect to the x-axis) is given by the
WTMM argument A [f1]. The scale parameter is a = 23.5

(a), 24.7 (b), 25.5 (c), 26.3 (d), 26.8 (e) and 27.5 (f) in σW units.
Same first-order analyzing wavelet as in Figure 3.

in Figures 3c and 3d. From a simple visual inspection of
Figure 3c, one can convince oneself that the modulus is ra-
dially symmetric around x0 where is located the singular-
ity S. This is confirmed in Figure 3d where Aψ[f1] rotates
uniformly from 0 to 2π around x0. The WTMM as well as
the WTMMM are shown in Figure 4 for various values of
the scale parameter a ranging from a = 23.5σW (Fig. 4a)
to 27.5 (Fig. 4f). At small scale, there exist mainly two
maxima chains. One is a closed curve around x0 where
is located the singularity S. The other one is an open
curve which partially surrounds G. On each of these max-
ima chains, one finds only one WTMMM (•) whose cor-
responding arguments are such that the gradient vector
points to S and G respectively. As far as the singularity
S is concerned, this means that the direction of largest
variation of f1 around S is given by θx0 = Aψ[f1] + π,
where Aψ[f1] is the argument of the corresponding WT-
MMM. When increasing the scale parameter, the max-
ima chains evolve; in particular the closed maxima chain
around S swells (it characteristic size behaves like a) un-
til it connects with the maxima chain associated with G
(Fig. 4d) to form a single closed curve surrounding both S
and G (Fig. 4f). The topological evolution of the maxima
chains in the space-scale half-hyperplane is illustrated in
Figure 5. This three-dimensional representation enlight-

Fig. 5. Three-dimensional representation of the topological
evolution of the WTMM chains of f1 in the space-scale half-
hyperplane. The WTMMM (•) are disposed on connected
curves called maxima lines. These maxima lines are obtained
by linking each WTMMM computed at a given scale to the
nearest WTMMM computed at the scale just above. There ex-
ist two maxima lines, Lx0(a) and Lx1(a), pointing respectively
to the singularity S and to the smooth localized structure G in
the limit a→ 0+.

ens the existence of two maxima lines obtained by linking
the WTMMM step by step (i.e. as continuously as possi-
ble) from small to large scales. One of these maxima lines
points to the singularity S in the limit a→ 0+. As shown
in Figure 6a, along this maxima line (Lx0(a)), the wavelet
transform modulus behaves as [68,69]

Mψ[f1]
(
Lx0(a)

)
∼ ah(x0) , a→ 0+ (51)

where h(x0) = 0.3 is the Hölder exponent of S. Moreover,
along this maxima line, the wavelet transform argument
evolves towards the value (Fig. 6c):

Aψ[f1]
(
Lx0(a)

)
= π + θx0 , (52)

in the limit a→ 0+, where θx0 is nothing but the direction
of the largest variation of f1 around x0, i.e. the direction
to follow from x0 to cross the maxima line at a given
(small) scale. From the maxima line Lx0(a), one thus gets
the required amplitude as well as directional informations
to characterize the local Hölder regularity of f1 at x0. Note
that along the other maxima line Lx1(a) which points to
x1 where is located the smooth localized structure G, the
wavelet transform modulus behaves as (Fig. 6b):

Mψ[f1]
(
Lx1(a)

)
∼ anψ , a→ 0+ (53)

where nψ = 1 is the order of the analyzing wavelet.
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Fig. 6. Evolution ofM [f1] and A [f1] when following, from
large scale to small scale, the maxima lines Lx0(a) and Lx1(a)
pointing respectively to the singularity S ((a) and (c) resp.)
and to the localized smooth structure G ((b) and (d) resp.).
The symbols (•) and (◦) have the same meaning as in Figure 4.
Same first-order analyzing wavelet as in Figure 3.

Remark

As seen in Figure 5, as well as in the evolution of
Aψ[f1](Lx0(a)) in Figure 6c, the maxima line Lx0(a) ex-
hibits a bubble structure in a finite range of scale as the
result of the influence of G on S when decreasing magni-
fication. When increasing a, one first observes a subcrit-
ical bifurcation from which originate two maxima curves
(with hysteresis phenomenon) which collide at a larger
scale to form again a unique maxima curve. Let us point
out that this observation is very much parameter depen-
dent and that small changes in the parameters of f1 can
modify and even suppress the bubble structure evidenced
in Figure 5. Moreover, in any case, from our definition of
the maxima lines, there will be no problem to compute
Lx0(a). When proceeding to the linking of the WTMMM
from small to large scales, when the scale parameter will
reach the subcritical bifurcation value, our algorithm will
connect the maxima line to either one of the two maxima
curves which form the bubble (indeed to the closest one
if symmetry is broken). Since the bubble maxima curve
left starts and ends at finite scales, it is not a maxima line
that belongs to the WT skeleton; it is definitely removed
from our WTMMM analysis.

Example 2: Two competing isotropic singularities

Let us now consider the function f2 shown in Figure 7a:

f2(x) = A|x− x0|0.3 +B|x− x1|0.8 . (54)

This function has two isotropic singularities of Hölder ex-
ponent h(x0) = 0.3 and h(x1) = 0.8, located respectively

at x0 and x1. When looking at its wavelet transform at
different scales in Figure 8, we see almost the same evolu-
tion of the maxima chains as for f1. At small scale, around
the strongest singularity S0 (x0), the maxima chain is a
closed curve along which one finds only one WTMMM.
Similarly, a single WTMMM is found on the open max-
ima chain that partly surrounds the weakest singularity
S1 (x1). When increasing a, those two maxima chains ul-
timately collide into a unique closed maxima chain sur-
rounding both singularities. When linking the WTMMM
from small to large scales, no bubble effect is observed
and one generates two distinct maxima lines Lx0(a) and
Lx1(a). Lx0(a) exists up to the largest scale investigated in
our study. Lx1(a) disappears at a finite large scale. When
going from large to small scales, Lx1(a) appears when the
magnification is large enough so that our wavelet trans-
form microscope succeeds in distinguishing the presence of
two singularities S0 and S1. As shown in Figure 9a, when
following Lx0(a) from large to small scales, the wavelet
transform modulusMψ[f2](Lx0(a)) displays a slow cross-
over to the expected power-law behaviorMψ[f2] ∼ ah(x0),
where h(x0) = 0.3 is the local Hölder exponent. This cross-
over is the consequence of the progressively diminishing
influence of the weakest singularity S1 on the scaling prop-
erties of f2 around the strongest singularity S0. Similarly,
Mψ[f2](Lx1(a)) displays the expected power-law behav-
ior at small scales with an exponent in good agreement
with the local Hölder exponent h(x1) = 0.8. In Figure 9b
are shown Aψ[f2] as computed when following the max-
ima lines Lx0(a) and Lx1(a). No significant evolution is
observed in both cases. As previously discussed in equa-
tion (52), Aψ[f2] − π tell us about the direction of the
largest variation of f2 around the considered singularity.
One finds θx0 = − 3π

4 and θx1 = π
4 which, according to

the relative positioning of the singularities S0 and S1, is
a clear indication of the mutual interaction of these sin-
gularities (the asymptotic isotropic scaling properties, as
quantified by the power-law exponents h(x0) and h(x1),
are not affected but the corresponding prefactors yes).

Example 3: Isotropic singularities in the presence
of a superimposed smooth component

This example consists in superposing a ramp in the x-
direction to the image shown in Figure 7a. The corre-
sponding function f3(x) is simply:

f3(x) = f2(x) +
x

2
· (55)

It is represented in Figure 7b. When investigating its
maxima lines, as computed as before with a first-order
analyzing wavelet, one gets a unique maxima line Lx0(a)
along which one observes a very slow cross-over of
both Mψ[f3](Lx0(a)) and Aψ[f3](Lx0(a)) as shown
in Figures 10a and 10c respectively. At large scale,
Mψ[f3](Lx0(a)) behaves more likely with a power-law
exponent h(x0) = nψ = 1, as the signature of the bias
introduced in the scaling properties of the WTMMM
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Fig. 7. Images representing the functions (a) f2(x) (Eq. (54))
and (b) f3(x) (Eq. (55)). The grey scale runs from white
(min f) to black (max f). (c) and (d) are profiles obtained along
the dashed lines in (a) and (b) respectively. The singularities
S0 and S1 are located at x0 = (−64,−64) and x1 = (64, 64)
respectively. The parameter values are A = −80 and B = −1.

Fig. 8. Maxima chains (solid line) defined by the WTMM
of the function f2 (Fig. 7a) as computed with a first-order
analyzing wavelet (φ(x) is the isotropic Gaussian function).
The local maxima (resp. minima) are indicated by (•) (resp.
(◦)). The arrows have the same meaning as in Figure 4. The
scale parameter values are a = 22 (a), 23.8 (b), 24.7 (c) and
26.9 (d) in σW units.

Fig. 9. Evolution of (a) M [f2] and (b) A [f2] when follow-
ing, from large to small scale, the maxima lines Lx0(a) (•) and
Lx1(a) (�) which point to the strongest S0 and the weakest S1

singularities respectively. Same first-order analyzing wavelet as
in Figure 8.

Fig. 10. Evolution ofM [f3] andA [f3] when following, from
large to small scales, the maxima lines Lx0(a) (•) and Lx1(a)
(�) which point to the strongest S0 and the weakest S1 sin-
gularities respectively. The analyzing wavelet  is a first-order
wavelet (φ(x) is the isotropic Gaussian function) in (a) and
(c).  is a third-order wavelet (φ(x) is the Mexican hat) in (b)
and (d).

by the superimposed linear ramp. At small scale, one
converges progressively to the correct scaling behavior as
given by the Hölder exponent h(x0) = 0.3 of the strongest
singularity S0. This cross-over comes along with a contin-
uous evolution of Aψ[f3](Lx0(a)) from 0 (θx0 = −π) to
π/4 (θx0 = −3π/4). When using a first-order analyzing
wavelet which is not orthogonal to the x/2 additional
term in equation (55), not only the scaling behavior
observed along Lx0(a) is drastically affected (towards
the large scales), but more dramatically, the maxima
line Lx1(a) has completely disappeared. Because nψ is
not large enough, the optics of our wavelet transform
microscope is not adapted to the considered situation.
As a consequence, the strongest singularity S0 is strongly
perturbed while the weakest one S1 is totally masked (at
least in the investigated range of scales) by the linear
ramp.

There is thus a need to increase the order of the analyz-
ing wavelet so that our mathematical microscope becomes
blind to the linear ramp. The results obtained when using
a third-order analyzing wavelet (φ(x) is the Mexican hat
defined in Eq. (19)) are shown in Figures 10b, 10d and 11.
As seen on the WTMMM computed at different scales in
Figure 11, one recovers the two maxima lines Lx0(a) and
Lx1(a) pointing respectively to S0 and S1. Up to some
bubble effect observed on Lx0(a) in Figure 10d, one cap-
tures again the correct information about the regularity
properties of f3(x) from the scaling behavior of Mψ[f3]
along those two maxima lines. As shown in Figure 10b,
one recovers, in the limit a → 0+, a power-law behavior
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Fig. 11. Maxima chains (solid line) defined by the WTMM
of the function f3(x) (Fig. 7b) as computed with a third-order
analyzing wavelet (φ(x) is the Mexican hat). The local maxima
(resp. minima) are indicated by (•) (resp. (◦)). The arrows have
the same meaning as in Figure 4. The scale parameter values
are a = 23.3 (a), 24.8 (b), 25.0 (c), 25.3 (d), 25.4 (e), 25.7 (f),
27.0 (g) and 29.5 (e) in σW (= 13 pixels) units.

in quite good agreement with the local Hölder exponents
h(x0) = 0.3 and h(x1) = 0.8. Let us note that the re-
sults reported in Figure 11 are quite the same as those
obtained when performing similar analysis on f2, i.e., in
the absence of the linear ramp. This is the demonstration
that a third-order analyzing wavelet allows us to get rid of
a smooth linear background component in the image that
may bias and even mask the singular behavior of interest.

Example 4: Anisotropic singularity

Let us illustrate on a specific example, the possibility for
a function f4(x) to display anisotropic local scale invari-
ance with respect to isotropic dilations. In Figure 12a is
represented the following function:

f4(x) = f4(ρ, θ) = −ρh(θ) , (56)

Fig. 12. WTMM analysis of the function f4(x) defined in
equation (56). (a) f4(x) as coded using 32 grey levels from
white (min f4) to black (max f4). The maxima chains (solid
line) and the WTMMM (•) are shown for the following values
of the scale parameter a = 2 (b), 28 (c) and 211 (d) in σW

units. Same first-order analyzing wavelet as in Figure 3.

Fig. 13. Evolution ofM [f4] andA [f4] when following, from
large to small scales, the maxima line Lx0(a) (•) which points
to the singularity S. Same first-order analyzing wavelet as in
Figure 12.

with

h(θ) = 0.3 sin(θ − 2π/3) + 0.5 . (57)

The exponent h(θ) is nothing but the Hölder exponent at
ρ = 0 of the 1D profile obtained when intersecting the im-
age in Figure 12a along the direction θ. As far as the whole
2D problem is concerned, the Hölder exponent of the sin-
gularity S is h(x0) = min

θ
h(θ) = 0.2. It quantifies the

sharpest variation of f4(x) which occurs in the direction
θx0 = π/6. As shown in Figures 12b, 12c and 12d for dif-
ferent zooms, there exists at each scale only one WTMMM
which belongs to a unique maxima line Lx0(a) pointing to
the singularity S. Note that this WTMMM is located in
the direction θx0 = π/6 from the origin. When following
Lx0(a) from large to small scales,Mψ[f4](Lx0(a)) behaves
as a power-law with an exponent h(x0) = 0.2 (Fig. 13a),
in remarkable agreement with the theoretical prediction
for the Hölder exponent of S. Moreover, when inves-
tigating Aψ[f4](Lx0(a)), one further gets a directional
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information: Aψ[f4] = −5π/6 = θx0 − π, from which one
learns about the possible existence of some preferential
direction as far as the Hölder regularity properties are
concerned.

Example 5: Self-affine singularities

We will not treat here the case of local scale invariance
with respect to anisotropic self-affine dilations. We send
the reader to Section 6 where the 2D WTMM method
will be applied to random self-affine rough surfaces.

Through the above examples, we have seen that, pro-
vided the order nψ of the analyzing wavelet is high
enough, the maxima lines defined from the linking of the
WTMMM across the scales, are likely to contain all the
information about the point-wise Hölder regularity of any
function f from R2 to R. If there is no such lines pointing
to a given point x0, then f is uniformly Lipschitz nψ in
a neighborhood of x0 (i.e. h(x) ≥ nψ in a neighborhood
of x0). If there is a maxima line pointing to x0, then from
the power-law behavior ofMψ[f ] versus a along this line,
one can estimate (via a simple regression fit in a log-log
representation) the Hölder exponent h(x0) of the singu-
larity located at x0. Moreover, by following the evolution
of Aψ[f ] along this maxima line, one gets direct informa-
tion about the direction θx0 = Aψ[f ] − π along which f
displays its sharpest variation around x0. Therefore, the
maxima lines are a very efficient tool to detect and iden-
tify the singularities of a given function from R2 to R.
As seen in Example 1, this does not exclude the possibil-
ity that there could be maxima lines in a region where
f is not singular. Note that those maxima lines are easy
to identify since along these lines, the power-law decay
of Mψ[f ] ∼ anψ is wavelet dependent. By choosing nψ
large enough, these maxima lines can be suppressed by a
simple thresholding on Mψ[f ] at small scale. The set of
maxima lines left defines the wavelet transform skeleton
from which we will build, in Section 4, the foundations
towards a multifractal description of rough surfaces.

4 The 2D wavelet transform modulus maxima
method

Before describing the methodology to be used to perform a
multifractal analysis of rough surfaces, we need to define
the notion of singularity spectrum of a fractal function
from R2 into R.

Definition 1 Let f be a function from R2 into R and Sh
the set of all the points x0 so that the Hölder exponent (Eq.
(34)) of f at x0 is h. The singularity spectrum D(h) of f
is the function which associates with any h, the Hausdorff
dimension of Sh:

D(h) = dH
{
x ∈ R2 , h(x) = h

}
. (58)

In the previous section, we have seen that the max-
ima lines defined from the WTMMM computed at dif-
ferent scales, can be used as a scanner of singularities.
They allow us to detect the positions where the singulari-
ties are located as well as to estimate their strength h. A
rather naive way to compute the D(h) singularity spec-
trum would thus consist in identifying the set of maxima
lines along which the wavelet transform modulus behaves
with a power-law exponent h (Eq. (51)) and then to use
classical box-counting techniques [18–24] to compute the
fractal dimension D(h) of the set of points {xn} ⊂ R2 to
which these maxima lines converge. Unfortunately, when
investigating deterministic as well as random fractal func-
tions, the situation is somewhat more intricate than when
dealing with isolated singularities. The characteristic fea-
ture of these singular functions is the existence of a hi-
erarchical distribution of singularities [44–47,58–61]. Lo-
cally, the Hölder exponent h(x0) is then governed by the
singularities which accumulate at x0. This results in un-
avoidable oscillations around the expected power-law be-
havior of the wavelet transform modulus [44–47,75]. The
exact determination of h from log-log plots on a finite
range of scales is therefore somewhat uncertain [120,121].
Note that there have been many attempts to circumvent
these difficulties in 1D [75,122]. But in 2D (rough surfaces)
as well as in 1D (multi-affine profiles), there exist funda-
mental limitations (which are not intrinsic to the wavelet
technique) to the local measurement of the Hölder expo-
nents of a fractal function. Therefore, the determination
of statistical quantities like the D(h) singularity spectrum
requires a method which is more feasible and more ap-
propriate than a systematic investigation of the wavelet
transform local scaling behavior as experienced in refer-
ences [120,121].

4.1 Methodology

Our strategy will consist in mapping the methodology de-
veloped in references [44–47], for multifractal analysis of
irregular 1D landscapes, to the statistical characterization
of roughness fluctuations of 2D surfaces [98,105]. The 2D
WTMM method relies upon the space-scale partitioning
given by the wavelet transform skeleton. As discussed in
Section 3.3, this skeleton (see Fig. 17) is defined by the
set of maxima lines which point to the singularities of the
considered function and therefore is likely to contain all
the information concerning the fluctuations of point-wise
Hölder regularity. Let us define L(a) as the set of all max-
ima lines that exist at the scale a and which contain max-
ima at any scale a′ ≤ a. As discussed in Section 3.3, the
important feature is that each time the analyzed image has
a Hölder exponent h(x0) < nψ, there is at least one max-
ima line pointing towards x0 along which equation (51) is
expected to hold. In the case of fractal functions, we thus
expect that the number of maxima lines will diverge in
the limit a → 0+, as the signature of the hierarchical or-
ganization of the singularities. The WTMM method con-
sists in defining the following partitions functions directly
from the WTMMM that belong to the wavelet transform
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skeleton:

Z(q, a) =
∑
L∈L(a)

(
sup

(x,a′)∈L,a′≤a
Mψ[f ](x, a′)

)q
, (59)

where q ∈R. As compared to classical box-counting tech-
niques [18–24], the analyzing wavelet ψ plays the role of
a generalized “oscillating box”, the scale a defines its size,
while the WTMM skeleton indicates how to position our
oscillating boxes to obtain a partition (of S = ∪Sh) at
the considered scale. Without the “sup” in equation (59),
one would have implicitly considered a uniform covering
with wavelets of the same size a. As emphasized in ref-
erences [44–47,70], the “sup” can be regarded as a way
of defining a “Hausdorff like” scale-adaptative partition
which will prevent divergencies to show up in the calcula-
tion of Z(q, a) for q < 0.

Now, from the deep analogy that links the multifractal
formalism to thermodynamics [45,46,63–65,72,73], one
can define the exponent τ(q) from the power-law behavior
of the partition function:

Z(q, a) ∼ aτ(q) , a→ 0+ , (60)

where q and τ(q) play respectively the role of the inverse
temperature and the free energy. The main result of the
wavelet-based multifractal formalism is that in place of the
energy and the entropy (i.e., the variables conjugated to q
and τ), one has the Hölder exponent h (Eq. (34)) and the
singularity spectrum D(h) (Eq. (58)). This means that the
D(h) singularity spectrum of f can be determined from
the Legendre transform of the partition function scaling
exponent τ(q):

D(h) = min
q

(
qh− τ(q)

)
. (61)

From the properties of the Legendre transform, it is easy
to convince oneself that homogeneous (monofractal) frac-
tal functions that involve singularities of unique Hölder
exponent h = ∂τ/∂q, are characterized by a τ(q) spec-
trum which is a linear function of q. On the contrary, a
nonlinear τ(q) curve is the signature of nonhomogeneous
functions that display multifractal properties, in the sense
that the Hölder exponent h(x) is a fluctuating quantity
that depends upon the spatial position x (in other words
the local roughness exponent is fluctuating from point to
point).

Remark

The exponents τ(q) are much more than simply some in-
termediate quantities of a rather easy experimental access.
For some specific values of q, they have well known mean-
ing [45,105].

• q = 0: From equations (59) and (60), one deduces
that the exponent τ(0) accounts for the divergence
of the number of maxima lines in the limit a → 0+.
This number basically corresponds to the number of
wavelets of size a required to cover the set S of singular-
ities of f . In full analogy with standard box-counting

arguments [18–24], −τ(0) can be identified to the frac-
tal dimension (capacity) of this set:

−τ(0) = dF

{
x , h(x) < +∞

}
. (62)

• q = 1: As pointed out in reference [45], the value of the
exponent τ(1) is related to the fractal dimension (ca-
pacity) of the rough surface S defined by the function
f . More precisely [123]:

dF(S) = max
(
2, 1− τ(1)

)
. (63)

• q = 2: It is easy to show that the exponent τ(2) is inti-
mately related to the scaling exponent β of the spectral
density (Eq. (33)):

τ(2) = β − 4 . (64)

From a practical point of view, the computation of the
D(h) singularity spectrum, via the Legendre transform
defined in equation (61), requires first a smoothing of the
τ(q) curve. This procedure has a main disadvantage. This
smoothing operation prevents the observation of any non-
analycity in the curves τ(q) and D(h) and the interesting
physics of phase transitions [46,67,124,125] in the scaling
properties of fractal functions can be completely missed.
As suggested in references [46,124,126–130], one can avoid
directly performing the Legendre transform by considering
the quantities h and D(h) as mean quantities defined in a
canonical ensemble, i.e. with respect to their Boltzmann
weights computed from the WTMMM [46,75]:

Wψ[f ](q,L, a) =

∣∣∣sup(x,a′)∈L,a′≤aMψ[f ](x, a′)
∣∣∣q

Z(q, a)
, (65)

where Z(q, a) is the partition function defined in equa-
tion (59). Then one computes the expectation values:

h(q, a) =∑
L∈L(a)

ln

∣∣∣∣∣ sup
(x,a′)∈L,a′≤a

Mψ[f ](x, a′)

∣∣∣∣∣ Wψ[f ](q,L, a),

(66)

and

D(q, a) =
∑
L∈L(a)

Wψ[f ](q,L, a) ln
(
Wψ[f ](q,L, a)

)
,

(67)

from which one extracts

h(q) = lim
a→0+

h(q, a)/ ln a , (68)

D(q) = lim
a→0+

D(q, a)/ ln a , (69)

and therefore the D(h) singularity spectrum.
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4.2 Probability density functions

From the definition of the partition function in equa-
tion (59), one can transform the discrete sum over the
WTMMM into a continuous integral overMψ[f ]:

Z(q, a)/Z(0, a) = 〈Mq〉(a) =
∫

dMMqPa(M), (70)

where M is a condensed notation for either
Mψ(x, a) in the case of a uniform partition or
sup(x,a′)∈L,a′≤aMψ(x, a′) in the case of a scale-
adaptative partition. The multifractal description thus
consists in characterizing how the moments of the
probability density function (pdf) Pa(M) of M behave
as a function of the scale parameter a. The power-law
exponents τ(q) in equation (60), therefore quantify the
evolution of the shape of the M pdf across scales. At
this point, let us remark that one of the main advantage
of using the wavelet transform skeleton is the fact that,
by definition, M is different from zero and consequently
that Pa(M) generally decreases exponentially fast to zero
at zero. This observation is at the heart of the WTMM
method since, for this reason, one can not only compute
the τ(q) spectrum for q > 0 but also for q < 0 [44–47].
From the Legendre transform of τ(q) (Eq. (61)), one
is thus able to compute the whole D(h) singularity
spectrum, i.e., its increasing left part (q > 0) as well as
its decreasing right part (q < 0).

But, although we have decided to mainly use isotropic
analyzing wavelets, we have seen in Section 3.3 that from
the analysis of the wavelet transform skeleton, one is able
to also extract directional informations via the computa-
tion of Aψ[f ](x, a). It is thus very instructive to extend
our statistical analysis to the investigation of the joint
probability density function Pa(M,A) [102]. Two main
situations have to be distinguished:

(i) M and A are independent. This means that, whatever
the scale a, the joint pdf factorizes:

Pa(M,A) = Pa(M)Pa(A). (71)

In other words, the Hölder exponent h is statistically
independent of the direction θ = A + π to which it
is associated. This implies that the D(h) singularity
spectrum is decoupled from the angular information
contained in Pa(A). If this angle pdf is flat, this
means that the rough surface under study displays
isotropic scale invariance properties. If, on the con-
trary, this pdf is a non uniform distribution on [0, 2π],
this suggests that some anisotropy is present in the
analyzed image. The possible existence of privileged
directions can then be revealed by investigating the
correlations between the values of A for different
maxima lines. Furthermore, Pa(A) may evolve when
varying the scale parameter a. The way its shape
changes indicates whether (and how) anisotropy is
enhanced (or weakened) when going from large scales
to small scales. Even though we are mainly interested
in the scaling properties in the limit a → 0+, the

evolution of the shape of Pa(A) across scales is likely
to enlighten possible deep structural changes.

(ii) M and A are dependent. If equation (71) definitely
does not apply, this means that the rough surface un-
der consideration is likely to display anisotropic scale
invariance properties. By conditioning the statistical
analysis of M to a given value of A, one can then
investigate the scaling properties of the conditioned
partition function:

ZA(q, a) = ZA(0, a)
∫

dMMqPa(M,A) ,

∼ aτA(q).
(72)

Then by Legendre transforming τA(q), one gets the
singularity spectrum DA(h) conditioned to the value
of the angle A (= θ − π). The investigation of the A-
dependence of the singularity spectrum DA(h) can be
rich of information concerning anisotropic multifractal
scaling properties.

Remark

There have been previous attempts in the literature to
carry out anisotropic multifractal analysis. In the con-
text of geophysical (fracture and faulting) data analysis,
Ouillon et al. [131–133] have used an optimized anisotropic
wavelet coefficient method to detect and characterize the
different levels of mineral organization via the changes of
statistical anisotropic scale invariance. From a mathemat-
ical point of view, Ben Slimane [118] has recently pro-
posed a way to generalize the multifractal formalism to
anisotropic self-similar functions. His strategy consists in
modifying the definition of the 2D wavelet transform so
that anisotropic zooming is operationally integrated in the
optics of this mathematical microscope.

4.3 Numerical implementation

In this section, we briefly review the main steps of the
numerical implementation of the 2D WTMM method. Let
us consider a n× n digitized image of a rough surface.

- Step 1: Computation of the 2D wavelet transform. In
the spirit of equation (4), we compute the two compo-
nents Tψ1 and Tψ2 of the wavelet transform (Eq. (20))
in the Fourier domain, using 2D Fast Fourier Trans-
form (FFT) [134] and inverse FFT. We start our anal-
ysis by choosing the analyzing wavelet among the class
of radially isotropic wavelets defined in Section 2.3
(Fig. 1). To master edge effects we focus only on the
n/2×n/2 central part of the image where our wavelet
coefficients can be shown to be not affected by the
boundary of the original image. This means that we
will be careful not to increase the scale parameter a
above a critical value amax so that the n/2×n/2 central
wavelet coefficients remain safe of finite-size effects. In
the opposite limit, we will define a lower bound amin

to the accessible range of scales so that the analyzing
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wavelet be still well resolved at that scale. (We refer
the reader to section 1.3.3 of Decoster’s PhD thesis
manuscript [135] for a detailed practical definition of
the accessible [amin, amax] range of scales.) Under those
precautions, one can be confident to our wavelet trans-
form microscope as far as the investigation of the scale
invariance properties in the range a ∈ [amin, amax] is
concerned.

- Step 2: Computation of the wavelet transform skele-
ton. As explained in Section 3.3, at a given scale a, we
identify the wavelet transform modulus maxima as the
points where Mψ[f ](b, a) (Eq. (25)) is locally maxi-
mum along the gradient direction given by Aψ[f ](b, a)
(Eq. (26)). Then we chain the points which are near-
est neighbours (which actually have compatible argu-
ments). Along each of these maxima chains, we locate
the local maxima previously called WTMMM. Note
that the two ends of an open maxima chain are not
allowed positions for the WTMMM. Once computed
the set of WTMMM for a finite number of scales rang-
ing from amin to amax, one proceeds to the connection
of these WTMMM from scale to scale. One starts at
the smallest scale amin and we link each WTMMM
to its nearest neighbour found at the next scale just
above. We proceed iteratively from scale to scale up
to amax. All the WTMMM which then remain iso-
lated are suppressed. All the WTMMM which are con-
nected on a curve across scales which does not origi-
nate from the smallest scale amin are also suppressed.
We then store the modulusMψ and the argument Aψ
of the WTMMM that belong to the so-called max-
ima lines. Those lines are supposed to converge, in the
limit a→ 0+, to the points where are located the sin-
gularities of the image under study. As explained in
Section 3.3, to define the wavelet transform skeleton,
one has to select these maxima lines which satisfy
equation (51) from those which satisfy equation (53)
and which are wavelet dependent. This is done by in-
creasing the order of the analyzing wavelet; for nψ
large enough, the spurious maxima lines are suppressed
by a simple thresholding onMψ at the smallest scale
amin. Their roots are definitely rejected as forbidden
singularity locations.

- Step 3: Computation of the multifractal spectrum.
According to equation (59), one uses the wavelet
transform skeleton to compute the partition function
Z(q, a) on the discrete set of considered scales amin ≤
a ≤ amax. Then, for a given value of q ∈ [qmin, qmax],
one extracts the exponent τ(q) (Eq. (60)) from a lin-
ear regression fit of lnZ(q, a) vs. ln a. As a test of
the robustness of our measurement, we examine the
stability of our estimate of τ(q) with respect to the
range of scales [a∗min, a

∗
max] ⊂ [amin, amax] over which

the linear regression fit is performed. After estimat-
ing the exponent τ(q) for a discrete set of q-values,
we smooth the τ(q) curve using standard procedure.
Then, one determines the D(h) singularity spectrum
by Legendre transforming the τ(q) curve according
to equation (61). As a check of the reliability of our

results, we use the alternative strategy defined in equa-
tions (65) to (69), to estimate the D(h) singularity
spectrum without performing explicitly the Legendre
transform. When dealing specifically with stochastic
process, we generally have several images at our dis-
posal somehow corresponding to different realizations
of this process. In this case, we will mainly proceed to
two different averagings corresponding to:

- Quenched averaging: We extract the τ(q) curve
from averaging 〈lnZ(q, a)〉 over the number of im-
ages:

e〈lnZ(q,a)〉 ∼ aτ(q) , a→ 0+ . (73)

In other words, the τ(q) spectrum is obtained by
averaging over the τ(q) curves extracted from each
individual image.

- Annealed averaging: One can alternatively compute
the τ(q) spectrum after averaging the partition
functions obtained for each image:

〈Z(q, a)〉 ∼ aτ(q) , a→ 0+ . (74)

Note that in most of the examples discussed in this
work, we have not observed any significant discrepancy
between the τ(q) spectra obtained using either one of
these averagings. Consequently, we will mainly show in
the following, the results obtained when estimating the
τ(q) and D(h) multifractal spectra using the annealed
averaging.

- Step 4: Computation of the probability density func-
tions. From the computation of the joint probability
density function Pa(M,A), we first proceed to a test
of the validity of equation (71), i.e., to a test of the
possible independence ofM and A. If it is so, we then
investigate separately the scale dependence of Pa(M)
and Pa(A). In particular, by representing MqPa(M)
as a function of M, one can objectively defined the
range of q-values (q ∈ [qmin, qmax] with qmin < 0 and
qmax > 0) for which the integral in the r.h.s. of equa-
tion (70) makes sense [105]. Indeed, for a given statis-
tical sample of n × n images, when considering exag-
gerated large values of |q|, thenMqPa(M) is no longer
a well defined distribution and the estimate of its inte-
gral Z(q, a)/Z(0, a) is dramatically affected by a lack
of statistical convergence. From the investigation of
the shape of Pa(A), and of its possible evolution when
varying a, one can then quantify some possible depar-
ture from isotropic scaling as well as the existence of
possible privileged directions. When Pa(M,A) does
not factorize, thenM and A are intimately related. In
this case, one can try to compute the τA(q) (Eq. (72))
and DA(h) multifractal spectra by conditioning the
statistics of the modulus fluctuations to a given value
of the argument. The A-dependence of these spectra
quantifies what one could call anisotropic multifractal
scaling properties.
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Fig. 14. FBm surfaces (128× 128) generated with the Fourier transform filtering synthesis method. (a) H = 1/3; (b) H = 1/2;
(c) H = 2/3. In the top panels, BH(x) is coded using 32 grey levels from white (minBH) to black (maxBH).

5 Application of the WTMM method
to isotropic fractional Brownian surfaces

Since its introduction by Mandelbrot and Van Ness [136],
the fractional Brownian motion (fBm) has become
a very popular model in signal and image process-
ing [1–17,25–27]. In one dimension, fBm has proved
useful for modeling various physical phenomena with
long-range dependence, e.g., “1/f” noises. The fBm
exhibits a power spectral density S(ω) ∼ 1/ωβ, where
the spectral exponent β = 2H + 1 is related to the
Hurst exponent H. 1D fBm has been extensively used
as test stochastic signals for Hurst exponent measure-
ments. The performances of classical methods [30–33,
36–39,137–139] (e.g., height-height correlation func-
tion, variance and power spectral methods, first return
and multireturn probability distributions, maximum
likelihood techniques) have been recently competed by
wavelet-based techniques [140–144]. Several approaches
relying upon the discrete wavelet transform [143–151],
the continuous wavelet transform [152] and also the
wavelet packet decomposition [153] have been shown
to provide accurate estimates of the fBm Hurst expo-
nent. Comparative analysis of different wavelet-based
estimators for the self-similarity parameter H of fBm
can be found in references [147–149]. As far as fBm
synthesis is concerned, many efforts have been devoted to
the possibility of generating numerically such a process.
Among the well-known synthesis methods, let us men-
tion the random midpoint displacement, the successive
random additions, the Fourier transform filtering (of a

“white noise”) and the so-called Weierstrass-Mandelbrot
random fractal function [1,25,26,154]. But none of these
methods is able to produce a process that possesses all
the properties of fBm. Very recently, Sellan [155] has
developed a very powerful wavelet-based analysis which
extends previous wavelet approaches [140,141,149,156]
of fBm and provides a general scheme to synthesize it.
The multiresolution framework underlying this analysis
permits an easy and efficient implementation of this
synthesis technique in 1D [157]. It can be naturally gen-
eralized for 2D synthesis purpose as a very competitive
alternative to existing wavelet-based methods [158].

FBm’s are homogeneous random self-affine functions
that have been specifically used to calibrate the 1D
WTMM methodology [44–46,75]. This method was shown
to be a very efficient tool to diagnostic the monofractal
scaling properties of fBm. Moreover, it provides very ac-
curate new estimators of the Hurst exponent with remark-
able performances [159]. The purpose of this section is to
carry out a test application of the 2D WTMM methodol-
ogy described in Section 4, on several realizations of 2D
fBm.

5.1 Fractional Brownian surfaces

The generalization of Brownian motion to more than one
dimension was first considered by Levy [160]. The gen-
eralization of fBm follows along similar lines. A 2D fBm
BH(x) indexed by H ∈ ]0, 1[, is a process with station-
ary zero-mean Gaussian increments and whose correlation
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function is given by [1,25,154,160]:

〈BH(x)BH(y)〉 =
σ2

2
(
|x|2H + |y|2H − |x− y|2H

)
,

(75)

where 〈. . . 〉 represents the ensemble mean value. The vari-
ance of such a process is

var
(
BH(x)

)
= σ2|x|2H , (76)

from which one recovers the classical behavior
var(B1/2(x)) = σ2|x| for uncorrelated Brownian motion
with H = 1/2. Indeed, the demonstration that the
increments of a fBm, i.e., δBH,l(x) = BH(x + l)−BH(x)
with l = (δx, δy), are stationary is rather straightforward.
The correlation function actually depends on x− y and l
only:

〈δBH,l(x)δBH,l(y)〉 =

σ2

2
(
|x− y + l|2H + |x− y− l|2H − 2|x− y|2H

)
. (77)

For H = 1/2, the r.h.s. of equation (77) is zero in the
limit |x − y|/|l| → +∞, which implies that the incre-
ments of the classical Brownian motion are independent.
For any other value of H, the increments are either pos-
itively correlated (H > 1/2: persistent random walk) or
anti-correlated (H < 1/2: antipersistent random walk).
Moreover, from the definition of fBm (Eq. (76)), one gets:

BH(x0 + λu)−BH(x0) w λH [BH(x0 + u)−BH(x0)] ,
(78)

where u is a unitary vector and w stands for the equal-
ity in law. This means that 2D fBm’s are self-affine pro-
cesses that are statistically invariant under isotropic di-
lations (Eq. (35)). Moreover, the index H corresponds to
the Hurst exponent; the higher the exponent H, the more
regular the fBm surface. But since equation (78) holds
for any x0 and any direction u, this means that almost
all realizations of the fBm process are continuous, every-
where non-differentiable, isotropically scale-invariant as
characterized by a unique Hölder exponent h(x) = H, ∀x
[1,25,159]. Thus fBm surfaces are the representation of ho-
mogeneous stochastic fractal functions characterized by a
singularity spectrum which reduces to a single point

D(h) = 2 if h = H ,

= −∞ if h 6= H .
(79)

By Legendre transforming D(h) according to equa-
tion (61), one gets the following expression for the par-
tition function exponent (Eq. (60)):

τ(q) = qH − 2 . (80)

τ(q) is a linear function of q, the signature of monofractal
scaling, with a slope given by the index H of the fBm.

In Figure 14, are shown the fBm surfaces gener-
ated by the so-called Fourier transform filtering method

Fig. 15. Power spectrum analysis of a (1024 × 1024) im-

age of a fBm surface B1/3(x). (a) ln |B̂1/3(k)| (Eq. (5)) as

coded using 32 grey levels from white (min ln |B̂1/3|) to black

(max ln |B̂1/3|). (b) The spectral density S(|k|) vs. |k| in a log-
arithmic representation. The solid line corresponds to the the-
oretical power-law prediction with exponent β = 2H+2 = 8/3
(Eq. (82)).

[25,26,154]. We have used this particular synthesis
method because of its implementation simplicity. Indeed
it amounts to a fractional integration of a 2D “white
noise” and therefore it is expected to reproduce quite
faithfully the expected isotropic scaling invariance proper-
ties (Eqs. (78–80)). From a visual inspection of Figures 14a
(H = 1/3), 14b (H = 1/2) and 14c (H = 2/3), one can
convince oneself that the fBm surfaces become less and
less irregular when increasing the index H. This is noth-
ing but the traduction that the fractal dimension of fBm
surfaces increases from 2 to 3 when H covers [0, 1]:

dF(fBm S) = 1− τ(1) = 3−H . (81)

When increasing H, a fBm surface becomes more and
more similar to a smooth Euclidean 2D surface.

In Figure 15 are reported the results of a power-
spectral analysis of a (1024× 1024) image of a fBm rough
surface with Hurst exponent H = 1/3. In Figure 15a, the
Fourier transform of B1/3(x) does not display any signifi-
cant departure from radial symmetry. Isotropic scaling is
actually confirmed when averaging B̂1/3(k) over several
of such images. In Figure 15b, the power spectral den-
sity is shown to behave as a power-law as a function of
the wavevector modulus |k|, with an exponent which is in
perfect agreement with the theoretical prediction for the
spectral exponent:

β = 4− τ(2) = 2 + 2H. (82)

5.2 Numerical computation of the τ(q) and D(h)
spectra

We have tested the 2D WTMM method described in
Section 4, on 32 realizations of a 2D fBm process with
H = 1/3. Along the lines of the numerical implementa-
tion procedure described in Section 4.3, we have wavelet
transformed 32 (1024 × 1024) images of BH=1/3 with
an isotropic first-order analyzing wavelet. To master edge
effects, we then restrain our analysis to the 512 × 512
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Fig. 16. 2D wavelet transform analysis of BH=1/3(x).  is a first-order radially symmetric analyzing function (see Fig. 1). (a)
32 grey-scale coding of the central 512× 512 portion of the original image. In (b) a = 2σW, (c) a = 20.1σW and (d) a = 21.9σW,
are shown the maxima chains; the local maxima of M along these chains are indicated by (•) from which originate an arrow
whose length is proportional to M and its direction (with respect to the x-axis) is given by A . In (b), the smoothed image
φb,a ∗B1/3 (Eq. (22)) is shown as a grey-scale coded background from white (min) to black (max).

central part of the wavelet transform of each image. In
Figure 16 is illustrated the computation of the max-
ima chains and the WTMMM for an individual image
at three different scales. In Figure 16b is shown the
convolution of the original image (Fig. 16a) with the
isotropic Gaussian smoothing filter φ (Eq. (22)). Accord-
ing to the definition of the wavelet transform modulus
maxima, the maxima chains correspond to well defined
edge curves of the smoothed image. The local maxima of
Mψ along these curves are located at the points where
the sharpest intensity variation is observed. The corre-
sponding arrows clearly indicate that locally, the gra-
dient vector points in the direction (as given by Aψ)
of maximum change of the intensity surface. When go-
ing from large scale (Fig. 16d) to small scale (Fig. 16c),
the characteristic average distance between two near-
est neighbour WTMMM decreases like a. This means
that the number of WTMMM and in turns, the num-
ber of maxima lines, proliferates across scales like a−2.
The corresponding wavelet transform skeleton is shown in
Figure 17. As confirmed just below, when extrapolat-
ing the arborescent structure of this skeleton to the
limit a → 0+, one recovers the theoretical result
that the support of the singularities of a 2D fBm
has a dimension dF = 2, i.e., BH=1/3(x) is nowhere
differentiable [1,25,26,160].

Fig. 17. Wavelet transform skeleton of the 2D fBm image
shown in Figure 16a. This skeleton is defined by the set of
maxima lines obtained after linking the WTMMM detected at
different scales. Same analyzing wavelet as in Figure 16.
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Fig. 18. Characterizing the local Hölder regularity of
BH=1/3(x) from the behavior of the WTMMM along the max-
ima lines. Three maxima lines are investigated. (a) log2M 

vs. log2 a; (b) A vs. log2 a. Same analyzing wavelet as in Fig-
ure 16. The solid line in (a) corresponds to the theoretical slope
h = H = 1/3. a is expressed in σW units.

Fig. 19. Evolution of the WTMMM along some maxima lines
that belong to the wavelet transform skeleton, as seen in the
(Tψ1 , Tψ2) plane. (a) BH=1/3(x); (b) BH=2/3(x). Same analyz-
ing wavelet as in Figure 16.

The local scale invariance properties of a fBm rough
surface are investigated in Figure 18. When looking at the
behavior ofMψ along some maxima lines belonging to the
wavelet transform skeleton, despite some superimposed
fluctuations, one observes a rather convincing power-law
decrease with an exponent h(x0) which does not seem to
depend upon the spatial location x0. Moreover, the the-
oretical value for the Hölder exponent h(x0) = H = 1/3
provides a rather good fit of the slopes obtained at
small scale in a logarithmic representation of Mψ vs. a
(Eq. (51)). When looking at the simultaneous evolution
of Aψ along the same maxima lines, one observes random
fluctuations. Unfortunately, because of the rather limited
range of scales accessible to our mathematical microscope,
a ∈ [σW, 24σW], there is no hope to bring the numerical
demonstration that Aψ actually performs a random walk
over [0, 2π]. In Figure 19a, we have tried to illustrate
this random walk behavior of the WTMMM along the
maxima lines by plotting the corresponding trajectories in
the (Tψ1 , Tψ2) plane. Even though one would like to have
longer trajectories, when representing several trajectories
it is clear that statistical isotropy is likely to apply locally.
A comparative analysis of the maxima lines obtained for
B2/3(x) in Figure 19b seems to confirm this statement.

Fig. 20. Determination of the τ (q) and D(h) spectra of 2D
fBm with the 2D WTMM method. (a) log2Z(q, a) vs. log2 a;
the solid lines correspond to the theoretical predictions τ (q) =
qH − 2 (Eq. (80)) with H = 1/3. (b) h(q, a) vs. log2 a; the
solid lines correspond to the theoretical slope H = 1/3. (c)
τ (q) vs. q for H = 1/3 (•), 1/2 (�) and 2/3 (N); the solid lines
correspond to linear regression fit estimates of H. (d) D(h) vs.
h as obtained from the scaling behavior of D(q, a) vs. log2 a
(Eq. (67)); the symbols have the same meaning as in (c). Same
analyzing wavelet as in Figure 16. These results correspond
to annealed averaging over 32 (1024 × 1024) fBm images. a is
expressed in σW units.

From a simple visual inspection of the trajectories, one
can even guess the existence of long-range correlations
in the fBm rough surfaces; larger H, less tortured the
trajectories.

In Figure 20 are reported the results of the computa-
tion of the τ(q) and D(h) spectra using the 2D WTMM
method described in Section 4. As shown in Figure 20a,
the annealed average partition function Z(q, a) (over 32
images of B1/3(x)) displays a remarkable scaling behavior
over more than 3 octaves when plotted versus a in a loga-
rithmic representation (Eqs. (59) and (60)). Moreover, for
a wide range of values of q ∈ [−4, 6], the data are in good
agreement with the theoretical τ(q) spectrum (Eq. (80)).
When proceeding to a linear regression fit of the data over
the first two octaves, one gets the τ(q) spectra shown
in 20c for three values of the fBm index H = 1/3, 1/2
and 2/3. Whatever H, the data systematically fall on a
straight line, the signature of homogeneous (monofractal)
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Fig. 21. Determination of the exponent h(q) (Eq. (68)) from
a linear regression fit of h(q, a) (Eq. (66)) over a range of scale
1 ≤ a ≤ amax. When shrinking the range of scales by decreasing
amax (in σW units), h(q) converges to the limit value h(q) =
H = 1/3, for q = −2 (�), 0 (◦) and 2 (4). Same 2D WTMM
computations for B1/3 as in Figure 20.

scaling properties. However, the slope of this straight line
provides a slight underestimate of the corresponding Hurst
exponent H. Let us point out that a few percent under-
estimate has been also reported when performing similar
analysis of 1D fBm [44–46,159]. Theoretical arguments
have been recently raised to explain this experimental ob-
servation [159]. One of the main issue when proceeding
to linear regression fit estimate is to define the range of
scales over which scaling is likely to operate. As demon-
strated by Audit et al. [159], when applying the WTMM
method to 1D fBm, the best estimate of the τ(q) (Eq. (60))
and h(q) (Eq. (68)) exponents is obtained when restrict-
ing the linear regression procedure at very small scale,
e.g., on the first available octave. As seen in Figure 20b,
when plotting h(q, a) vs. log2 a (Eq. (66)) for B1/3(x), one
recovers quite the same phenomenon with 2D fBm. The
theoretical Hurst exponent H = 1/3 provides an excel-
lent fit of the limiting slope of the data at the smallest
available scales (1 ≤ a ≤ 2 in σW units) and this in-
dependently of the value of q ∈ [−4, 6]. At large scales,
the data for h(q, a) display some slight downward curva-
ture which explains that, when increasing the scale range
for linear regression fitting, one paradoxically deteriorates
the estimate of H. This results in a systematic underes-
timation of the Hurst exponent as shown if Figure 21 for
some values of q. In Figure 20d are reported the corre-
sponding estimates of D(h), from a linear regression fit of
D(q, a) vs. log2 a (Eq. (67)) over the first octave at small
scale. Independently of the value of q ∈ [−4, 6], one gets
quantitatively comparable values for B1/3, B1/2 and B2/3,
namely D(h = H) = 2.00± 0.02. The results obtained for
both the τ(q) and D(h) spectra are thus in remarkable
agreement with the theoretical predictions given by equa-
tions (80) and (79) respectively. The 2D WTMM method
can thus be considered as having successfully passed the
test of homogeneous fBm rough surfaces.

To conclude this sub-section, let us comment on finite-
size effects and statistical convergence. In Figure 22 are
shown the estimate of the exponent h(q) for q = −2, 0
and 2, as obtained when averaging over 32 images of in-
creasing size. Since, as just explained, this exponent is ac-

Fig. 22. Determination of the exponent h(q) (Eq. (68)) from
a linear regression fit of h(q, a) (Eq. (66)) over a range of scale
1 ≤ a ≤ 2 (in σW units), when averaging over 32 images of
(n×n) central part size. When increasing n, h(q) converges to
the limit value h(q) = H = 1/3, for q = −2 (�), 0 (◦) and 2
(4). Same 2D WTMM computations for B1/3 as in Figure 20.

Fig. 23. Determination of the exponent h(q) (Eq. (68)) from
a linear regression fit of h(q, a) (Eq. (66)) over a range of scale
1 ≤ a ≤ 2 (in σW units), when averaging over NI (1024×1024)
images ofB1/3. When increasing NI , h(q) converges to the limit
value h(q) = H = 1/3, for q = −2 (�), 0 (◦) and 2 (4). Same
2D WTMM computations for B1/3 as in Figure 20.

curately measured when performing the linear regression
fit over the first available octave at small scale, it is not
surprising to observe that for (128× 128) and (256× 256)
central part sizes, one already gets quite good estimate
of the Hurst exponent. As far as statistical convergence is
concerned, we report in Figure 23, the estimate of h(q) for
the same values of q, when averaging over an increasing
number of (1024×1024)B1/3 images. As soon as the num-
ber of images exceeds, let say 30, the exponent h(q) has
apparently converged to its limit value H = 1/3. How-
ever, it is obvious that more images are required if one
intends to consider larger values of |q|. For the range of
q values considered in Figure 20, namely −4 ≤ q ≤ 6, 32
(1024×1024) images seems to be a large enough statistical
sample for our estimates of the τ(q) and D(h) spectra to
be considered as very close to their respective asymptotic
limits.

5.3 Probability density functions

This section is mainly devoted to the analysis of the joint
probability distribution function Pa(M,A) (Sect. 4.2)
as computed from the wavelet transform skeleton of 32
(1024 × 1024) images of B1/3(x). Note that the results
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Fig. 24. Pdf’s of the WTMMM coefficients of B1/3(x) as com-
puted at different scales a = 1, 2, 4 and 8 (in σW units). (a)
Pa(M) vs. M. (b) Pa(A) vs. A.  is the first-order analyzing
wavelet shown in Figure 1. These results correspond to aver-
aging over 32 (1024× 1024) fBm images.

reported below are quite characteristic features of 2D
fBm rough surfaces, whatever the value of the index H. In
Figure 24 are shown the pdfs Pa(M) =

∫
dA Pa(M,A)

and Pa(A) =
∫

dM Pa(M,A), for four different values of
the scale parameter. As seen in Figure 24a, Pa(M) is not
a Gaussian (in contrast to the pdf of the continuous 2D
wavelet coefficients when using Eq. (4)), but decreases
fast to zero at zero. This explains that when concen-
trating on the wavelet transform skeleton, the integral
in the r.h.s. of equation (70) no longer diverges when
considering negative q values. This remark is at the heart
of the 2D WTMM method; by allowing us to compute the
τ(q) spectrum for negative as well as positive q values,
the 2D WTMM method is a definite step beyond the 2D
structure function method which is intrinsically restricted
to positive q values. The corresponding pdf’s Pa(A) are
represented in Figure 24b. Pa(A) clearly does not evolve
across scales. Moreover, except some small amplitude
fluctuations observed at the largest scale, Pa(A) = 1/2π
is a flat distribution as expected for statistically isotropic
scale-invariant rough surfaces.

The results reported in Figures 25 and 26, not only cor-
roborate statistical isotropy but they bring unambiguous
evidence for the independence of M and A (Eq. (71)).
A way to illustrate the possible factorization of the
joint probability distribution Pa(M,A) is to plot all the
WTMMM computed at a given scale a in the (Tψ1 , Tψ2)
plane. As seen in Figure 25 for four different values of a,
the distributions so obtained are clearly radially symmet-
ric. This is specially evident at small scale where the num-
ber of WTMMM is huge (NWTMMM ∼ a−2); this is still
convincing at larger scales despite the progressive rarefac-
tion of the WTMMM. A quantitative demonstration of the
independence ofM and A is reported in Figure 26 where,
for two different scales, the pdf ofM, when conditionned
by the argument A, is shown to be shape invariant.

In Figure 27a are reproduced the M pdfs shown at
different scales in Figure 24a but when using a semi-log
representation. As shown in Figure 27b, when rescaling
M by aH , all the data collapse on a same curve, which is
the confirmation that the scaling properties ofM can be
quantified by a single exponentH, i.e., the Hurst exponent

Fig. 25. Distribution of the WTMMM in the plane (Tψ1 , Tψ2)
for the following values of the scale parameter: a = 1 (a), 2 (b),
4 (c) and 8 (d) in σW units. Same 2D WTMM computations
for B1/3 as in Figure 24.

Fig. 26. Pdf ofM as conditionned by A. The different curves
correspond to fixingA (mod π) to 0±π/8, π/4±π/8, π/2±π/8
and 3π/4± π/8. (a) a = 1; (b) a = 2 (in σW units). Same 2D
WTMM computations for B1/3 as in Figure 24.

Fig. 27. Pdf’s of the WTMMM coefficients of B1/3(x) as com-
puted at different scales a = 1, 2, 4, 8 (in σW units). (a)
ln(Pa(M)) vs. M; (b) ln(Pa(M)) vs. M/aH with H = 1/3.
Same 2D WTMM computations for B1/3 as in Figure 24.
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Fig. 28. Pdf’s of the WTMMM coefficients of B1/3(x) as
computed at different scales a = 1, 2, 4, 8 (in σW units).
(a) ln(Pa(Tψ1)) vs. Tψ1/a

H ; (b) ln(Pa(Tψ2)) vs. Tψ2/a
H with

H = 1/3. Same 2D WTMM computations for B1/3 as in
Figure 24.

of the fBm. Besides this rescaling, the shape of Pa(A)
does not evolve when one explores the wavelet transform
skeleton from large to small scales:

P
(
Mψ[BH ](L(a))

)
= P

(
Mψ[BH ](L(a))/aH

)
, (83)

where P is a universal function independent of the scale
parameter a. As an additional test of the isotropic homo-
geneous scale-invariance of 2D fBm, we have represented
separately Pa(Tψ1) and Pa(Tψ2) in Figures 28a and
28b respectively (see Eq. (20)). Again, when rescaling
either one of the wavelet transform component by aH ,
the different distributions computed for different scales
a collapse on a single curve which is exactly the same
universal function for both Tψ1 and Tψ2 .

To conclude this section, let us come back to the prob-
lem of statistical convergence of the τ(q) and D(h) spec-
tra, i.e. the statistical convergence of the partition func-
tion Z(q, a). According to equation (70), Z(q, a) is the
integral of MqPa(M). From the monofractal self-
similarity relationship (83), one expects the following
rescaling properties:

a−qHMqPa(M) = Fq(M/aH) , (84)

where Fq are q-dependent functions that do not depend
upon the scale parameter a. The validity of the above
equation is addressed in Figure 29 for q ∈ [−4, 8]. The
data collected at different scales actually collapse on a
single distribution whose shape clearly depends upon q in
good agreement with equation (84). Because of the pro-
gressive lack of statistics when one increases a, the distri-
butions obtained at the largest scales become more and
more noisy (especially for large values of |q|). This means
that the integral of these distributions, i.e. Z(q, a), is less
and less accurately estimated at large scales. This is, a
posteriori, the explanation of the theoretical requirement
of estimating the Hurst exponent of 2D fBm over a rather
narrow range of scales at small scales [159].

Fig. 29. Pdf’s of the WTMMM coefficients of B1/3(x) as
computed at different scales a = 1, 2, 4, 8 (in σW units).
a−qHMqPa(M) vs. M/aH for q = −4 (a), −2 (b), 2 (c), 4
(d), 6 (e) and 8 (f). Same 2D WTMM computations for B1/3

as in Figure 24.

6 Application of the WTMM method
to anisotropic self-affine rough surfaces

As defined in Section 5, 2D fBm models are not always
sufficient in fully characterizing real world surfaces
[1–16,25,26]. One of their limitations is the isotropy,
which is rather idealistic in the case of real textures [1,
3,4,6,25–27,33,101,112–114,161]. Another limitation
is the low degree of flexibility of these models which
depend on a single parameter (the Hurst exponent H)
and therefore which cannot account for possible spatial
fluctuations in the local Hölder regularity of the consid-
ered rough surface. This latter class of multifractal rough
surfaces [98,101,102,105] will be the object of a specific
study in paper II [99] of this series. In this section we
mainly address the issue of anisotropic self-affine rough
surfaces [25–27,33,101,112–114].

A rather natural way of introducing some anisotropy
in the fast Fourier transform filtering surface synthesis
method is to use different fractional integration orders in
two orthogonal directions of space [162]. In Figure 30a is
shown a (1024× 1024) image of such a rough surface con-
structed using the following trick. Along the x-direction
(Fig. 30b), we have generated realizations of a 1D fBm
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Fig. 30. Anisotropic self-affine rough surface constructed by piling (in the y-direction) independent realizations of 1D BH=1/3(x).
(a) A (1024× 1024) image of this random anisotropic rough surface. (b) A typical 1D-profile obtained along the x-direction. (c)
A typical 1D-profile obtained along the y-direction.

Fig. 31. Power spectrum analysis of the (1024×1024) image of
the anisotropic rough surface shown in Figure 30a. (a) S(kx, ky)
coded using 32 grey levels as in Figure 15a. (b) lnS(kx, ky) vs.
kx for a fixed ky. (c) lnS(kx, ky) vs. ky for a fixed kx.

with index Hx = H = 1/3, and of length 1024. By piling
up 1024 independent realizations of B1/3(x), we model
a “white noise” component along the y-direction, i.e., a
random noise of Hurst exponent Hy = −1/2 (Fig. (30c)).
In Figure 31 are reported the results of the power spec-
tral analysis of the rough surface shown in Figure 30.
The power spectral density displays anisotropic scaling
behavior:

S(kx, ky) ∼
{
k
−(2Hx+1)
x , ∀ky
k
−(2Hy+1)
y , ∀kx

(85)

i.e., with a spectral exponent βx = 2Hx + 1 = 5/3 in the
x-direction which is different from the spectral exponent
βy = 2Hy + 1 = 0 in the y-direction.

6.1 Numerical computation of the τ(q) and D(h)
spectra.

Along the lines of the numerical implementation proce-
dure described in Section 4.3, we have wavelet transformed
32 (1024 × 1024) images of the same type as the one
generated in Figure 30a. For this particular image, the

maxima chains and the WTMMM computed with a first-
order radially symmetric analyzing wavelet, at four differ-
ent scales, are shown in Figure 32.

It is quite clear on this figure that the maxima chains
are almost all horizontal and that this tendency becomes
more and more pronounced when one keeps decreasing
the scale parameter a. In the meantime, the WTMMM
proliferate like a−2, with a characteristic evolution of the
corresponding arrows towards a general alignment to the
y-direction, i.e., Aψ systematically converges to ±π/2.
When investigating more quantitatively the local scaling
properties of these anisotropic self-affine surfaces via the
behavior ofMψ and Aψ along the maxima lines that be-
long to the wavelet transform skeleton, one observes in
Figure 33, the following generic evolution. When going
from large to small scales,Mψ no longer decreases as pre-
viously observed for fBm surfaces (Fig. 18), but system-
atically increases towards a rather well defined power-law
divergence at small scales (Fig. 33a):

Mψ[f ]
(
Lx0(a)

)
∼ aHy ∼ a−1/2 , ∀x0. (86)

As guessed when looking at the collective rotation of all ar-
rows towards the vertical direction in Figure 32, whatever
its initial value at the large scale end of the considered
maxima line, when slipping down the maxima line, Aψ
converges towards ±π/2 in a rather universal way:

tanAψ[f ]
(
Lx0(a)

)
∼ a−Hx ∼ a−1/3,∀x0. (87)

From the scaling behavior ofMψ and Aψ, one thus have
access to the two exponents Hy < Hx that character-
ize the anisotropic scaling behavior of the rough sur-
faces under study. Mψ tells us that the local Hölder
exponent (Eq. (51)) is h = min(Hx,Hy) = Hy. Aψ
contains information about the second scaling exponent
H = max(Hx,Hy) = Hx (= h/α in the notations used in
Eqs. (36) and (37)). This remarkable behavior will become
clear in Section 6.2.

In Figure 34 are reported the results of the computa-
tion of the τ(q) and D(h) spectra using the 2D WTMM
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Fig. 32. 2D wavelet transform analysis of the anisotropic self-affine rough surface shown in Figure 30a.  is a first-order radially
symmetric analyzing function (see Fig. 1). Maxima chains and WTMMM as computed on the central 512 × 512 part of the
original image at the scales a = 1 (a), 2 (b), 4 (c) and 8 (d) in σW units.

Fig. 33. Characterizing the local Hölder regularity of
anisotropic self-affine random surfaces from the behavior of
the WTMMM along the maxima lines. Four maxima lines are
investigated. (a) log2M vs. log2 a; (b) A vs. log2 a. Same ana-
lyzing wavelet as in Figure 32. The solid line in (a) corresponds
to a straight line of slope h = min(Hx,Hy) = Hy = −1/2. a is
expressed in σW units.

method described in Section 4. As shown in Figure 34a,
the annealed average partition function Z(q, a) over 32
(1024× 1024) images, displays a well defined scaling be-
havior over the range of scales 21/2 ≤ a ≤ 23 (in σW

units). A linear regression fit of the data for −2 ≤ q ≤ 8
yields the numerical τ(q) spectrum shown in Figure 34c.
For −2 ≤ q ≤ 2, all the data points fall on a straight line
of slope Hy = −1/2. The solid line in Figure 34c, cor-

responds to the theoretical spectrum for a homogeneous
(anisotropic) rough surface with unique Hölder exponent
h = min(Hx,Hy) = Hy = −1/2, i.e., τ(q) = −q/2−2. For
q > 2, the numerical data slightly depart from this the-
oretical spectrum. Let us remark that a linear regression
fit of the overall data set for −2 ≤ q ≤ 8 is quite rea-
sonable. It yields to some underestimate of the expected
asymptotic slope, namely h = −0.48± 0.02. As shown in
Figure 34b, this observation is confirmed when estimating
h(q) from linear regression fit of h(q, a) (Eq. (66)). For
−2 ≤ q ≤ 8, one does not record any significant difference
in the estimate of h(q) = −0.48 ± 0.02. Moreover, when
completing this analysis by computing in the same way
D(q) from the scaling behavior of D(q, a) (Eq. (67)), one
gets to the conclusion that the D(h) singularity spectrum
reduces to a single point D(h = −0.48± 0.02) = 2± 0.02
(D(h) = −∞ elsewhere). These results demonstrate that,
up to finite-size effects, the 2D WTMM method is power-
ful enough to account quantitatively for the homogeneous
(monofractal) anisotropic scaling properties of self-affine
rough surfaces.

6.2 Probability density functions

In Figure 35 are reported the results of the compu-
tation of the pdf’s Pa(M) and Pa(A), from the same
set of 32 (1024 × 1024) images of anisotropic self-affine
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Fig. 34. Determination of the τ (q) and D(h) spectra of
anisotropic self-affine rough surfaces with the 2D WTMM
method. (a) log2 Z(q, a) vs. log2 a. (b) h(q, a) vs. log2 a. (c)
τ (q) vs. q as obtained from the linear regression fits shown in
(a). (d) D(h) vs. h as obtained from the scaling behavior of
h(q, a) (see (b)) and D(q, a) (Eq. (67)) vs. log2 a. Same an-
alyzing wavelet as in Figure 32. These results correspond to
annealed averaging over 32 (1024 × 1024) images like the one
in Figure 30a. a is expressed in σW units. The solid line in (c)
corresponds to τ (q) = qHy − 2 = −q/2− 2.

Fig. 35. Pdf’s of the WTMMM coefficients of anisotropic self-
affine rough surfaces as computed at different scales a = 1, 2, 4
and 8 (in σW units). (a) Pa(M) vs.M. (b) Pa(A) vs. A. Same
2D WTMM computations as in Figure 34.

rough surfaces previously used in Figure 34. Instead of
shrinking towards small values when decreasing a, as usu-
ally observed for positive Hölder exponent h > 0 (see
Fig. 24 for 2D fBm), Pa(M) displays the opposite be-
havior, namely some clear widening towards large values
(Fig. 35a). Meanwhile Pa(A) becomes more and more
sharply peaked at two values A = ±π/2, which cor-
respond to the y-direction associated with the small-

Fig. 36. Distribution of the WTMMM in the plane (Tψ1 , Tψ2)
for the following values of the scale parameter a = 1 (a), 2 (b),
4 (c) and 8 (d) in σW units. Same 2D WTMM computations
as in Figure 34.

est scaling exponent h = min(Hx,Hy) = Hy = −1/2.
This scale invariance with respect to anisotropic dila-
tions is patent when representing the WTMMM, com-
puted at a given scale a, in the (Tψ1 , Tψ2) plane as
shown in Figure 36. When one keeps zooming with
our mathematical microscope, it turns out that what
is happening in the y-direction of the rough surfaces
under study, ultimately governs their scale invariance
properties. From the construction rule of these self-affine
rough surfaces, taking advantage of the fact that for dif-
ferent horizontal cuts one gets two independent BH(x)
profiles, one can easily prove that the two components of
the 2D continuous wavelet transform (Eq. (20)) behave as:

Tψ1 [f ](b, a) ∼ aH−1/2 ∼ aHx+Hy ,

and
Tψ2 [f ](b, a) ∼ a−1/2 ∼ aHy ,

(88)

and this independently of the specific spatial location b.
As shown in Figure 37, one recovers these anisotropic
scaling behavior on the WTMMM. When restricting the
computation of the pdf’s of Tψ1 and Tψ2 to the wavelet
transform skeleton, one obtains the following remarkable
self-similarity properties:

P
(
Tψ1 [f ]

(
L(a)

))
= P1

(
Tψ1 [f ]

(
L(a)

)
/aH−1/2

)
,

and

P
(
Tψ2 [f ]

(
L(a)

))
= P2

(
Tψ2 [f ]

(
L(a)

)
/a−1/2

)
,

(89)

where P1 and P2 are two universal functions that do not
depend upon the scale parameter a. When going back to
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Fig. 37. Pdf’s of the WTMMM coefficients of anisotropic self-
affine rough surfaces as computed at different scales a = 1,
2, 4, 8 (in σW units). (a) ln(Pa(Tψ1)) vs. Tψ1/a

Hx+Hy ; (b)
ln(Pa(Tψ2)) vs. Tψ2/a

Hy with Hx = H = 1/3 and Hy = −1/2.
Same 2D WTMM computations as in Figure 34.

the (modulus, angle) representation, one gets

Mψ[f ]
(
L(a)

)
∼ (Aψa2H−1 +Bψa

−1)1/2,

∼ a−1/2

(
1 +

Aψ
Bψ

a2H

)1/2

,

∼ aHy
(

1 +
Aψ
Bψ

a2Hx

)1/2

,

(90)

where Aψ and Bψ are wavelet dependent prefactor. In
the limit a → 0+, one thus finds that the local Hölder
regularity is governed by Hy = −1/2 = min(1/3,−1/2) =
min(Hx,Hy). Moreover, from equation (90), one can ex-
press the first-order correcting term to this leading scaling
behavior:

Mψ[f ]
(
L(a)

)
∼ a−1/2 +

Aψ
2Bψ

a2H−1/2, a→ 0+. (91)

As far as the argument is concerned, one gets

tanAψ[f ]
(
L(a)

)
= Tψ1 [f ]

(
L(a)

)
/Tψ2 [f ]

(
L(a)

)
,

∼ a−H ∼ a−Hx , a→ 0+, (92)

which explains, a posteriori, the power-law behavior ob-
served locally along each individual maxima line (Eq. (87))
and the evolution of Pa(A) in Figure 35b. These results
corroborate the conclusions derived from the computation
of the τ(q) and D(h) spectra in Figure 34. The anisotropic
random self-affine surface generated in Figure 30a, is a ho-
mogeneous (monofractal) rough surface which is invariant
with respect to anisotropic self-affine dilations. Its local
Hölder regularity is the same at each spatial point and is
governed by the scaling behavior properties in the direc-
tion of minimal regularity. To conclude, let us emphasize
that, beyond its ability to characterize statistically the
Hölder regularity properties, the 2D WTMM method also
accounts for possible departure from isotropic scaling. In
the case under study in this section, both self-affine scal-
ing exponents Hx = H = 1/3 and Hy = −1/2 have been
numerically estimated with very high accuracy.

7 Discussion

In this first article, we have mainly described the gener-
alization in 2D of the 1D WTMM methodology [44–47,
70] previously applied with some success to various exper-
imental situations such as fully-developed turbulence [44–
46,75–81], DNA sequences [85–87] and financial time se-
ries [88,89]. Besides the theoretical background that un-
derlies the technical developments reported in Section 4,
we have mainly focus on the statistical characterization of
local pointwise Hölder regularity. The test examples de-
scribed in Sections 5 and 6 are homogeneous (monofractal)
rough surfaces that are nowhere differentiable and which
display either isotropic or self-affine (anisotropic) scale in-
variance properties. In paper II [99], we will show that the
2D WTMM method, as originally designed for, actually
resolves multifractal scaling properties via the determina-
tion of the entire “multifractal” τ(q) andD(h) spectra. We
will mainly apply our method to synthetic random multi-
fractal rough surfaces generated by multiplicative cascade
processes. As a conclusion, we want to comment about
the possibilities of using the 2D WTMM method for spe-
cific purposes in image processing such as edge detection
and image denoising. We refer the reader to the work of
Levy-Vehel [163] for previous attempts to use multifractal
concepts for image analysis.

7.1 Edge detection with the 2D WTMM method

In Figures 38 to 40, we illustrate how the WTMM method
can be particularly useful to detect discontinuities in
image, for instance the contour of an object. Indeed,
for a large class of images, the border of important
structures are rather regular curves. Along these curves,
the image intensity is singular in one direction but varies
smoothly in the perpendicular direction. For example,
the contours of the square in Figure 38a, are smooth
linear edges that correspond to a step discontinuity in
the respective orthogonal directions. In the presence of a
small amplitude “white noise”, as one can expect in any
numerical image, the 2D WTMM method provides a very
efficient tool to discriminate the singularities inherent
to the noisy background from those which originate
from the edges of the square. The maxima chains and
the WTMMM computed with the first-order isotropic
analyzing wavelet (Fig. 1) for increasing values of the
scale-parameter a, are shown in Figures 38b, 38c and 38d.
When going from large to small scales, there is at each
scale a maxima chain that approximates better and better
the contour of the original square. Because of its spatial
coherence, this maxima chain can be easily distinguished
from the other chains that are associated to the noise
component. There is, however, a quantitative way to
perform edge detection which consists in computing the
wavelet transform skeleton. As reported in Figure 39,
when calculating the wavelet transform modulus pdf
Pa(M) on this skeleton, this distribution turns out to
have a characteristic bimodal shape, with two humps
that do not evolve in the same way across scales. As seen
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Fig. 38. Edge detection with the 2D WTMM method. (a) The original image: a square (of height 256) with a small amplitude
(1) superimposed “white noise” background. In (b), (c) and (d) are shown the maxima chains and the WTMMM computed at
the scales a = 2, 4 and 8 (in σW units) respectively.  is the first-order isotropic analyzing wavelet shown in Figure 1.

Fig. 39. Pdf’s of the WTMMM coefficients of the image shown
in Figure 38a, as computed at different scales a = 2, 4, 8 and
16 (in σW units). (a) lnPa(M) vs. M/a−1, when taking into
account the WTMMM that belong to the “noise” sub-skeleton
only (see text). (b) lnPa(M) vs. M/a0, when taking into ac-
count the WTMMM that belong to the “edge” sub-skeleton
only (see text). Same analyzing wavelet as in Figure 38.

in Figure 39a, the small WTMMM values that define
the first hump increase like Mψ ∼ a−1 when decreasing
a, as the signature of the existence of singularities of
Hölder exponent h = −1 induced by the noise. The
complementary WTMMM do not display any dependence
in the scale parameter, Mψ ∼ Const, and thus can be
associated to singularities of Hölder exponent h = 0, i.e.,
to singularities that correspond to discontinuities in the

image. In the limit a → 0+, these singularities are likely
to define the contour of the original square. As shown in
Figure 39b, the corresponding second hump in Pa(M) is
actually a very narrow delta like distribution. This means
that the WTMMM that belong to the closed maxima
chain that converges to the square contour have all the
same modulus, independently of the scale parameter a.

This distinction between two classes of WTMMM, can
be pushed a little bit further since it actually amounts to
discriminate in the wavelet transform skeleton, the set of
maxima lines such that Mψ ∼ a−1 from the set of max-
ima lines such thatMψ ∼ a0. Now if one proceeds to the
computation of the partition function Z(q, a) (Eq. (59))
separately on each of these two sub-skeletons, one gets
the τ(q) and D(h) spectra reported in Figure 40. For
the sub-skeleton of interest for edge detection, the num-
ber of maxima lines is found to proliferate like a−1. This
is confirmed in Figure 40a where τ(0) = −DF = −1;
indeed, up to the numerical uncertainty, our computa-
tions yield τ(q) = −1, independently of q ∈ [−6, 10].
The Legendre transform (Eq. (61)) of a constant τ(q)
is straightforward: the corresponding D(h) singularity
spectrum reduces to a single point D(h = −1) = 1
(D(h) = −∞, elsewhere). The D(h) spectrum shown in
Figure 40b therefore tells us that the contour of the square
in Figure 38a has a dimension DF = 1 (the dimension
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Fig. 40. Determination of the τ (q) and D(h) spectra of the
image shown in Figure 38a with the 2D WTMM method after
discriminating the wavelet transform skeleton into two sub-
skeletons (see text). “Edge” sub-skeleton: (a) τ (q) vs. q; (b)
D(h) vs. h. “Noise” sub-skeleton: (c) τ (q) vs. q; (d) D(h) vs.
h. Same computations as in Figures 38 and 39.

of an Euclidian line) and corresponds to a linear contin-
uum of singularities of Hölder exponent h = 0. As far
as the other sub-skeleton is concerned, the corresponding
τ(q) spectrum is shown in Figure 40c. Again the numer-
ical data fall remarkably on a straight line which is very
well fitted by the theoretical spectrum τ(q) = qH−2, with
H = −1 for 2D “white noise”. In comparison to the “edge”
sub-skeleton, this “noise” sub-skeleton has a high rate of
maxima line proliferation since their number increases like
aτ(0) = a−2, when a→ 0+. The corresponding D(h) spec-
trum in Figure 40d confirms that the noisy background
is likely to be singular everywhere (DF = 2) with a simi-
lar Hölder regularity h = −1, at each point of the image
under study. Through this rather trivial example of a sim-
ple square in Figure 38, we have illustrated how the use
of the D(h) spectrum can help us in detecting edges and
contours. By selecting at each scale, the WTMMM that
belong to the so-called “edge” sub-skeleton, i.e., such that
Mψ ∼ ah with h = 0, and by checking that their num-
ber actually proliferates like a−D(h) with D(h = 0) = 1,
one is able to identify the corresponding maxima chains
from which one can apply Mallat et al. [68,69] algorithm
to reconstruct the edges of the original image.

7.2 Image denoising with the 2D WTMM method

The use of wavelet thresholding methods to recover signals
from noisy data has been shown to work well in various
problems ranging from photographic image restoration to

medical imaging [53,55,57,61]. Among the more or less so-
phisticated denoising methods proposed so far [164–167],
let us point out that the 2D WTMM method described
in Section 4 offers a very attractive alternative to existing
methods. In Figure 41a is reproduced the same noisy im-
age of a square like in Figure 38a, except that now the am-
plitude of the noise (1024) is much larger that the height
(256) of the square.

The signal/noise ratio is so small that one cannot dis-
tinguish anymore the square as well as its contour in Fig-
ure 41a. However, when computing the maxima chains
and the WTMMM as before, one recovers at large scales
(Fig. 41d), the same discrimination between the WT-
MMM that belong to the closed maxima chain that ap-
proximates (at these scales), the edges of the original
square from those which correspond to the noise. As shown
in Figure 42b, Pa(M) can still be decomposed into two
components, an “edge” component for largeM and a noise
component for small M. When decreasing a, the hump
aboutM∼ 75 remains unchanged while the one at small
M, widens and progressively shifts towards larger values
(M ∼ a−1) until it ultimately overlaps the previous one
(Fig. 42a). As seen in Figure 41c, for a = 4σW, one can still
distinguish between the two sets of WTMMM since those
which belong to the “edge” maxima line have not only a
constant modulusM∼ 75, but their corresponding argu-
ments A still remain persistently orthogonal to the square
edges without being too much affected by the noise. Hence,
by retaining at each scale those WTMMM which belong to
the “edge”maxima lines only, one can follow these maxima
lines down to the smallest accessible scale. When proceed-
ing this way, it is clear that when further decreasing a, the
noise ultimately starts perturbating significantly the WT-
MMM behavior along the “edge”maxima lines (Fig. 41b).
Let us point out that, as illustrated in Figure 43, when tak-
ing into account the informations given by both the mod-
ulusM and the argument A behavior, the distinction be-
tween “edge”maxima lines and “noise”maxima lines still
remains tractable down to rather small scales. Then one
can use the reconstruction algorithm of Mallat et al. [68,
69] to reconstruct a close approximation of the edges of
the original image either from the overall set of “edge”
maxima chains computed on the whole range of acces-
sible scales or simply from the subset of closed maxima
chains clearly identified as “edge” maxima chains at scales
a > a?, where a? is the critical scale below which the
“edge” maxima line starts to be affected by the noise. Let
us emphasize that on a more fundamental ground, some
accuracy in edge detection could be gained if one was able
to generalize the Mallat et al. reconstruction algorithm
[69,70] from the maxima chains to an algorithm that
requires the computation of the WTMMM only. Work in
this direction is currently under progress.

To summarize, let us emphasize that our goal in this
concluding section is simply to draw attention to further
possible applications of the 2D WTMM method to im-
age processing. This method can be seen as combining
the advantages of the multifractal approach [163] (via the
computation of the D(h) singularity spectrum) and of
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Fig. 41. Image denoising with the 2D WTMM method. (a) The original image: a square (of height 256) with a large amplitude
(1024) superimposed “white noise”. In (b), (c) and (d) are shown the maxima chains and the WTMMM computed at the scales
a = 1, 4 and 8 (in σW units) respectively. Note that (b) and (c) correspond to some enlargement of the region delimited by the
dashed square in (a).  is the first-order isotropic analyzing wavelet shown in Figure 1.

Fig. 42. Pdf’s of the WTMMM coefficients of the image shown
in Figure 41a, as computed at the scales a = 2 (a) and 8 (b)
in σW units. Same analyzing wavelet as in Figure 41.

the various wavelet thresholding methods [164–167].
Strongly inspired from the wavelet modulus maxima
method developed by Mallat and co-workers [68,69], it
does not presuppose the noise to be uncorrelated Gaus-
sian. The fact that the noise might be correlated would
naturally come out in the power-law divergence of M
along the “noise”maxima lines in the limit a→ 0+. More-
over, as far as denoising is concerned, the 2D WTMM
method does not require adapting the wavelet coefficient
thresholding across scales. The WTMM thresholding is
defined once over all at the critical scale a?. Finally, ex-
tending the 2D WTMM method from analysis to synthe-
sis purposes (from the knowledge of the WTMMM only),

Fig. 43. Image denoising with the 2D WTMM method. Max-
ima chains selected because they contain WTMMM that are
identified (at large scales) as belonging to the “edge” sub-
skeleton (see text). Four scales are represented: a = 20.1 (a),
21.1 (b), 22.1 (c) and 23.1 (d) in σW units. At scales smaller
or equal to the scale shown in (c), the two humps in Pa(M)
start overlaping which makes rather tricky their discrimina-
tion. Same analyzing wavelet as in Figure 41.
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looks very promising for compact image coding perspec-
tives.

We are very grateful to E. Bacry, S. Jaffard and J.F. Muzy for
stimulating discussions. This work was supported by NATO
(Grant No CRG 960176) and was performed while S.G. Roux
held a National Research Council–NASA/GSFC Research As-
sociateship.

References

1. B.B. Mandelbrot, Fractals: Form, Chance and Dimen-
sions (Freeman, San Francisco, 1977); The Fractal Ge-
ometry of Nature (Freeman, San Francisco, 1982).

2. Random Fluctuations and Pattern Growth, edited by H.E.
Stanley, N. Ostrowski (Kluwer Academic, Dordrecht,
1988).

3. J. Feder, Fractals (Pergamon, New York, 1988).
4. T. Vicsek, Fractal Growth Phenomena (World Scientific,

Singapore, 1989).
5. The Fractal Approach to Heterogeneous Chemistry: Sur-

faces, Colloids, Polymers, edited by D. Avnir (John Wiley
and Sons, New York, 1989).

6. F. Family, T. Vicsek, Dynamics of Fractal Surfaces
(World Scientific, Singapore, 1991).

7. Fractals and Disordered Systems, edited by A. Bunde, S.
Havlin (Springer Verlag, Berlin, 1991).

8. Fractals in Natural Science, edited by T. Vicsek, M.
Schlesinger, M. Matsushita (World Scientific, Singapore,
1994).

9. Fractals in Geoscience and Remote Sensing, Image Un-
derstanding Research Series, Vol. 1, ECSC-EC-EAEC,
edited by G.G. Wilkinson, J. Kanellopoulos, J. Megier
(Brussels, Luxemburg, 1995).

10. A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface
Growth (Cambridge Univ. Press, Cambridge, 1995).

11. Fractal Aspects of Materials, Material Research Society
Symposium Proceeding, Vol. 367, edited by F. Family, P.
Meakin, B. Sapoval, R. Wool (Pittsburg, 1995).

12. B. Sapoval, Les Fractales (Aditech, Paris, 1988).
13. On Growth and Form: Fractal and Non-Fractal Patterns

in Physics, edited by H.E. Stanley, N. Ostrowski (Marti-
nus Nijhof, Dordrecht, 1986).

14. Fractals in Physics, edited by L. Pietronero, E. Tosatti
(North-Holland, Amsterdam, 1986).

15. Fractals in Physics, Essays in honour of B.B. Mandel-
brot, Physica D, Vol. 38, edited by A. Aharony, J. Feder
(North-Holland, Amsterdam, 1989).

16. B.J. West, Fractal Physiology and Chaos in Medecine
(World Scientific, Singapore, 1990).

17. U. Frisch, Turbulence (Cambridge Univ. Press, Cam-
bridge, 1995).

18. J.D. Farmer, E. Ott, J.A. Yorke, Physica D 7, 153 (1983).
19. P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346

(1983); Physica D 9, 189 (1983).
20. R. Badii, A. Politi, Phys. Rev. Lett. 52, 1661 (1984); J.

Stat. Phys. 40, 725 (1985).
21. P. Grassberger, R. Badii, A. Politi, J. Stat. Phys. 51, 135

(1988).
22. G. Grasseau, Ph.D. thesis, University of Bordeaux I,

1989.
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46. A. Arnéodo, E. Bacry, J.F. Muzy, Physica A 213, 232

(1995).
47. J.F. Muzy, E. Bacry, A. Arnéodo, Phys. Rev. E 47, 875
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A. Arnéodo et al.: A wavelet-based method for multifractal image analysis. I 599

56. C.K. Chui, An Introduction to Wavelets (Academic Press,
Boston, 1992).

57. Progress in Wavelets Analysis and Applications, edited by
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Lett. 64, 745 (1990).
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139. R.F. Peltier, J. Levy Véhel, INRIA report n◦ 2396 (1994).
140. P. Flandrin, IEEE Trans. on Info. Theory 35, 197 (1989);

38, 910 (1992).
141. P. Flandrin, Temps-Fréquence (Hermès, Paris, 1993).
142. E. Masry, IEEE Trans. on Info. Theory 39, 260 (1993).
143. P. Abry, P. Goncalvès, P. Flandrin, Lectures Note in

Statistics 105, 15 (1995).
144. P. Abry, Ondelettes et Turbulence - Multirésolution, Al-
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