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Stéphane G. Roux a, Tristan Cenier b,c, Samuel Garcia b,c, Philippe Litaudon b,c,
Nathalie Buonviso b,c,∗

a Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR 5672, 46 allée d’Italie, 69364 Lyon Cedex 07, France
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Abstract

One of the challenges in analyzing neuronal activity is to correlate discrete signal, such as action potentials with a signal having a continuous
waveform such as oscillating local field potentials (LFPs). Studies in several systems have shown that some aspects of information coding involve
characteristics that intertwine both signals. An action potential is a fast transitory phenomenon that occurs at high frequencies whereas a LFP
is a low frequency phenomenon. The study of correlations between these signals requires a good estimation of both instantaneous phase and
instantaneous frequency. To extract the instantaneous phase, common techniques rely on the Hilbert transform performed on a filtered signal,
which discards temporal information. Therefore, time–frequency methods are best fitted for non-stationary signals, since they preserve both time
and frequency information. We propose a new algorithmic procedure that uses wavelet transform and ridge extraction for signals that contain one
or more oscillatory frequencies and whose oscillatory frequencies may shift as a function of time. This procedure provides estimates of phase,
frequency and temporal features. It can be automated, produces manageable amounts of data and allows human supervision. Because of such
advantages, this method is particularly suitable for analyzing synchronization between LFPs and unitary events.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For about 10 years, the study of local field potentials (LFPs)
has received an increasing interest, particularly because such
signals appear to be relevant indicators of information process-
ing. LFPs, which are considered as the summation of excita-
tory and inhibitory dendritic potentials (Mitzdorf, 1987), are
often oscillatory. Oscillatory synchrony of LFPs between dif-
ferent cortical areas probably has a true functional role. Indeed,
it has been shown in human intra-cranial recordings that the

Abbreviations: LFP, local field potential; CWT, continuous wavelet trans-
form; WFT, windowed Fourier transform; LTRS, low time-resolution scalogram;
HTRS, high time-resolution scalogram; SPIPH, spike preferential instantaneous
phase histogram; SNR, signal to noise ratio
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holding of visual information in short-term memory is accom-
panied by oscillatory synchrony in the ! band (15–20 Hz) across
distinct visual areas (Tallon-Baudry et al., 2001). In a similar
experiment in monkeys, two sites located over the posterior
infero-temporal cortex are synchronized in the ! band during
a memory maintenance task in correct trials, while the syn-
chrony fails to develop in incorrect trials (Tallon-Baudry et al.,
2004). On the other hand, as LFP oscillations are supposed to
originate in the rhythmical synchronization of groups of neu-
rons (Mitzdorf, 1987), several teams have studied the temporal
relationship existing between oscillations and neuronal spike
discharges. It has thus, been reported that both activities can
become phase-locked under certain behavioral or perceptual
conditions (Murthy and Fetz, 1996; Fries et al., 2001; Siegel and
König, 2003). Hence, when studying the coherence between LFP
oscillations from different brain regions, or the synchronization
between spikes and LFP oscillations, the quantification of oscil-
lation phase becomes crucial and the results will depend on its
accuracy.
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The traditional Hilbert transform method for phase extraction
can only be applied after the signal has been Fourier-filtered
around the frequency band of interest if the signal contains
oscillations at different frequencies. Although this method is
very efficient, it has a major drawback as it suppresses all tem-
poral information. Indeed, the Fourier representation describes
the signal as a sum of infinite oscillations and mixes time and
frequency information. For non-stationary signal studies, many
time–frequency methods exist that analyze the local frequency
composition of the signal while preserving temporal information
(see Boashash, 1992a,b for review). Among these methods, para-
metric methods require the operator to have an insight into the
data: specifically, the operator needs to determine the frequency
range of the oscillatory phenomenon and/or the time boundaries
of the oscillatory epochs. Conversely, non-parametric methods
such as time–frequency representations (Flandrin, 1993) offer a
convenient setup, in which the problem of local amplitude esti-
mation is well understood and addressed, but only in the case
of single component signals (Boashash, 1992a,b; Delprat et al.,
1992). Further refinements of this setup, described by Carmona
et al. (1997), can be used to address multi-component or noisy
signal (Carmona et al., 1999). However, an important issue is the
computational cost of such methods. The time–frequency map
computation multiplies the original amount of data several folds,
which could rapidly saturate the computational capabilities of
any computer, rendering any further processing or human visual
check virtually impossible. This is particularly true in a situation
where a high sampling rate leads to a huge number of samples
and where, for each sample, precise phase and frequency infor-
mation is to be extracted.

Here, we propose a new algorithmic procedure, based on
wavelet ridge extraction (Delprat et al., 1992), to extract instan-
taneous frequency and instantaneous phase information from
signals sampled at high rate. This method is very robust even
when multiple oscillatory regimes are simultaneously present.
Moreover, it produces a computationally manageable amount of
data. Consequently, it is well suited for the study of synchroniza-
tion between spike activity and LFP oscillations in the olfactory
system of the freely breathing rat, where LFPs oscillate in at
least two frequency bands, ! and ", both regimes alternating
within each respiratory cycle (Buonviso et al., 2003).

2. Methods

2.1. Continuous wavelet transform and wavelet ridge

2.1.1. Continuous wavelet transform
In order to preserve time and frequency information, one

commonly uses time–frequency representation based on a win-
dowed Fourier transform (WFT) or a continuous wavelet trans-
form (CWT). We chose to use CWT instead of WFT because
the window size depends on the screened frequency, in case
of CWT, as opposed to WFT fixed window size. This repre-
sents an asset of the method since the duration of oscillations
often shortens as the frequency increases. CWT provides a better
compromise between time and frequency resolution. The CWT
yields a series of coefficients in time representing the evolution

of the frequency content (Mallat, 1998) of the signal x by:

TΨ [x](t, a) =
∫

x(s)Ψ∗
t,a(s) ds a > 0, t ∈ R

where t stands for time, a for the scale and * for the complex
conjugate. The functions Ψ t,a are obtained by dilation and trans-
lation of a unique waveform Ψ : Ψ (t, a) = (1/

√
a)Ψ ((s − t)/a).

The function Ψ , called mother wavelet, is a function with mean
value equal to zero, and is characterized by its center fre-
quency (f0), its spread in time σt =

∫
|Ψ (s)|2 ds and its spread

in frequency σf =
∫

|Ψ̂ (ω)|2 dω (where Ψ̂ indicates the Fourier
transform). By decreasing or increasing a, the basis function
Ψ t,a is fitted to a segment of x(t); hence, a indirectly represents
the frequency of the signal. Squaring the results and divid-
ing by the scale Px(t, a) = |Tx(t, a)|2/a generates a time–scale
energy density distribution called normalized scalogram. Px(t,
a) represents the energy of the signal in a time–frequency
box whose center and size are defined by (t, (f0/a)) and (aσt,
(σf/a)), respectively: when f(=(f0/a)) increases (a decreases),
the time resolution improves and the frequency resolution wors-
ens. Different families of mother wavelets can be applied. The
choice is influenced by the nature of the information to be
extracted. For the determination of instantaneous frequency, the
most commonly used wavelet is the so-called Morlet wavelet
(Kronland-Martinet et al., 1987), defined in the time domain by
Ψ (t) = (1/2π) e−i2πf0te−t2/2 and in the frequency domain by
Ψ̂ (f ) = (1/2π) e−2π2(f−f0)2

. A wavelet family is characterized
by the constant ω0 = 2#f0. For large ω0, frequency resolution
improves at the expense of time resolution. To obtain a wavelet
with mean value equal to zero, we need to set ω0 > 5 (Grossman
et al., 1989).

2.1.2. Wavelet ridge extraction
The method determining instantaneous frequency from

wavelet ridges was first proposed by Delprat et al. (1992) where
the phase coherence of the wavelet transform was used to obtain
a numerical estimate of the ridge. For noisy, and/or multi-
component signals, Carmona et al. (1997, 1999) proposed to use
the localization of the scalogram maxima instead. Note that the
detection algorithm is only a particular post-processing method
of a time–frequency transform. It can thus, be used with other
time–frequency energy representations such as WFT or more
generally the family of smoothed Wigner distributions (Auger
and Flandrin, 1995; Carmona et al., 1999).

Considering a sinusoidal signal given by the complex expo-
nential function: x(t) = e−i2πfTt where fT denotes the fre-
quency, the wavelet transform of the signal is: TΨ [x](t, a) =√

aΨ̂ (afT) e−i2πfTt

Substituting the Fourier transform of the Morlet wavelet
into this equation, we obtain for the normalized scalo-
gram Px(a, b) = (1/4π2) e−2π2(afT−f0)2

. Deriving this scalo-
gram with respect to a, we obtain (δPx/δa)(a, b) = fT(afT −
f0) e−2π2(afT−f0)2

. In such conditions, the point (t, aR) where
$Px/$a = 0 verifies aRfT − f0 = 0 and corresponds to the maxi-
mum energy of the scalogram. The scalogram is then essentially
maximum in the neighborhood of a curve aR(t), which is the

http://dx.doi.org/10.1016/j.jneumeth.2006.09.001
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ridge of the wavelet transform, related to the instantaneous fre-
quency of the signal by the simple expression f0/aR = fT. If the
scalogram is defined in terms of frequency instead of scale, i.e.
Px(f, b) where f = f0/a, the instantaneous frequency can be read
directly from the spectral location of the ridge.

In this paper, we use the localization of scalogram maxima
to collect both instantaneous frequency and instantaneous phase
information. Indeed, using a complex wavelet allows for the def-
inition of the instantaneous phase of the oscillation mode simply
by the angle of wavelet transform, arg(Tx(aR, b)) along the corre-
sponding ridges. This method has proven efficient even on noisy
signals, but it is not suitable for long sets of data since it can prove
too time consuming, and produces exceedingly large data files.
Here, we propose a new implementation based on two layers of
processing, optimized for data with high sampling frequency.

2.2. Implementation for high-sampled signals

Our goal was to create tools that would allow for the com-
parison of temporal aspects of two components in a signal,
where the components are different in nature and characteris-
tics. One component is a fast transitory signal (i.e., neuronal
spikes), occurring at high frequencies thus, demanding a high
sampling frequency (fs). The other component (i.e., LFPs) is
slow and intermittent and exists in mid-range frequencies (we
set the range as [fmin, fmax]) therefore, a low sampling rate
(2fmax) is enough for this component. From the low frequency
events, we wanted to extract precise temporal position, instan-
taneous frequency and instantaneous phase. Furthermore, we
wanted our method to be as automated as possible. Since, we
needed to correlate this instantaneous phase with the high fre-
quency events, we designed a bilayered processing. First, we
computed a low time-resolution scalogram (LTRS) from the fil-
tered and under-sampled raw signal (from fs to 2fmax) to obtain a
coarse estimation of the oscillation’s position. Second, we com-
puted scalograms from the raw signal, around the coordinates
of the LTRS maxima. These high time-resolution scalograms
(HTRS) can be used to extract accurate phase and frequency
information from each recorded sample. This method preserves
high-resolution information wherever needed, which is crucial
here, and reduces the overall amount of data thus making human
supervision easier.

2.2.1. Low time-resolution wavelet transform for mode
localization (Fig. 1A)

When looking for oscillations in a 0–fmax range, we filtered
the signal between 0 and 2fmax, and then sampled it at 2fmax.
Then the wavelet transform was performed on this smoothed
under-sampled signal to obtain a LTRS from which the coordi-
nates in time and frequency of all local maxima above a given
threshold were extracted (Fig. 1A, circle). The positions of the
maxima were a coarse estimate of the position of the amplitude
maxima of oscillatory episodes present in the signal. One asset
of this method is that, when under-sampled, the signal is dramat-
ically smoothed thus, enhancing the signal-to-noise ratio. This
when combined with the use of a threshold, safely removes the
maverick maxima.

Fig. 1. (A) Low temporal resolution scalogram (fmax = 100 Hz). The maximum
intensity is represented by the circle. In the neighborhood of this maximum
(dashed square), we compute the high temporal resolution (fs = 10 kHz) scalo-
gram, (B) to obtain a more precise location of the maximum (*). From this
precise location, the wavelet ridge is recursively extracted in the left and right
direction by computing only the neighboring frequency at the next sample time
represented by the grey coded pixels.

2.2.2. Ridge extraction from high-resolution scalogram
(Fig. 1B)

From the coarse estimation of the position of the maxima
obtained from the LTRS, (t ± (1/2fmax)), we computed the HTRS
from the raw signal in the neighborhood of this position (i.e.,
for each time sample around the coarse maximum) in order to
find the exact location of the maxima (t ± (1/fs)). From this pre-
cise location, the wavelet ridge was computed recursively: from
each ridge point, the next one was defined as the maximum of the
wavelet transform computed at the next sample time in neigh-
boring frequencies. The ridge stopped when a maximum with
energy below a threshold was detected. The ridge computation
was performed both forwards and backwards from each maxi-
mum. For each maximum detected on the LTRS we obtained a
wavelet ridge and its starting and ending times. Then, for each
point of that ridge we obtained the local oscillating regime char-
acteristics: instantaneous frequency and instantaneous phase.
All computed ridges were then pasted on the LTRS in order
to visually check the data computed both on high and low time-
resolution.

All programs and routines were written and implemented in
C language and Matlab (Math works).

2.3. Example of application on a biological signal:
odor-evoked activity in the mammalian olfactory system

Experiments and procedures have been previously explained
in detail (Buonviso et al., 2003; Litaudon et al., 2003). Briefly,
preparation and recordings were carried out in naturally breath-
ing, anesthetized Wistar rats. Anesthesia (urethane 1.5 g/kg) was

http://dx.doi.org/10.1016/j.jneumeth.2006.09.001
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maintained by supplemental doses when necessary. All surgi-
cal procedures were conducted in strict accordance with the
European Council Guidelines. Electrophysiological activity was
collected from the olfactory bulb and piriform cortex using glass
micropipettes. Extracellular activity was recorded as a broad-
band signal (0.1 Hz–5 kHz), amplified and sampled at 10 kHz
(fs) in order to obtain a temporal resolution well suited for both
spikes and LFPs analysis. The signal was then acquired on a
personal computer using the IOTech acquisition system (Wave-
Book). A recording session lasted 15 s, distributed as follows:
5 s of spontaneous activity (or pre-stimulus period), 5 s of odor-
evoked activity and 5 s of activity after stimulation. The signal
being sampled at 10 kHz, each file contained 150,000 samples.
The single unit activity was extracted from the broadband sig-
nal by band-passing from 300 to 3000 Hz (FFT Blackman filter,
Matlab software). The spikes were extracted from the signal
and individually time stamped. Instantaneous phase and fre-
quency of oscillatory events were measured with the wavelet
ridge extraction method described above. In the olfactory sys-
tem, oscillatory components range from 10 to 80 Hz (Buonviso
et al., 2003) and more specifically in two frequency bands
defined as ! (10–35 Hz) and " (35–80 Hz). Therefore, the low-
resolution wavelet transform was calculated using fmax = 100 Hz
and ω0 = 7. Since, the data of biological significance were the
difference in oscillatory activity between spontaneous and odor-
evoked activity, a fixed threshold was defined as mean ± 5 stan-
dard deviations of the time–frequency energy contained in the
pre-stimulus period. Extracted ridges were sorted as belonging
to the ! or " band according to the frequency of their maxi-
mum. Doing this, we characterized onset and duration of each

oscillatory epoch, in both bands, and instantaneous phase and
frequency along the ridge. Then, for each time-stamped spike
that occurred during an oscillatory epoch, we spotted the instan-
taneous phase of the LFPs signal at that time stamp and then built
two spike preferential instantaneous phase histograms (SPIPH),
one for each band (! or ").

3. Results

3.1. Testing of the method on a synthetic signal

The reliability of the method for instantaneous frequency
extraction is well documented (Delprat et al., 1992; Carmona
et al., 1997). In this study, we tested this method for instan-
taneous phase estimation in a synthetic signal and compared
the results with those obtained with the commonly used Hilbert
method (Fig. 2). The test signal contains two oscillatory compo-
nents: Ai exp(−(t−ti)2/2σi

2)sin(2#φ(t)) with for i = 1, A1 = 1.5,
σ1 = 1, t1 = 2.5 for 2 < t < 3 and for i = 2, A2 = 1, σ2 = 1.5, t2 = 2
for 0.5 < t < 4.5.

The local frequencies are defined by fi(t) = dφ/dt with
ftheo1(t) = f1 + 40(t − t1) with f1 = 30 and ftheo2(t) = f2−4cos(4t)
with f2 = 20. Both modes presented a frequency shift and are not
permanent (Fig. 2A). The signal was sampled at 10 kHz and a
Gaussian white noise was added. Scalogram in Fig. 2B shows
both the wavelet transform of this signal and the extracted ridges.
It is clear that both frequency modes are well distinguished and
the positions of the ridges are accurately detected. Thus, their
respective phase is very well estimated at any time. Indeed, the-
oretical and calculated phases are perfectly superimposed for

Fig. 2. (A) Signal composed of two sinusoidal modes: a slow one (around 20 Hz), and a faster one (around 35 Hz) each of them non constant in frequency; (B)
rescaled scalogram obtained with Morlet wavelet (ω0 = 12) and coded with 64 gray levels from black (min(P(x, a)) to white (max(P(x, a)). The black lines correspond
to the location of the ridges obtained; (C, D) phases extracted (solid line) from low frequency and high frequency signals respectively, using the wavelet ridge method
(theoretical phase is indicated by the dashed line); (E, F) same as (C) and (D) but obtained with Hilbert transform of the signal filtered between 10–28 Hz and
28–50 Hz.

http://dx.doi.org/10.1016/j.jneumeth.2006.09.001
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both components (Fig. 2C and D). It is noteworthy that both
onset and offset of each oscillating event have been automati-
cally detected. In contrast, the extraction of the phase using the
angle of Hilbert transform requires that the signal be filtered a
priori and the filter be carefully chosen. In this example, the
signal has been filtered between 10–28 Hz and 28–50 Hz. The
graphs in Fig. 2E and F reveal that, for t > 2.3, the components
were not well separated and gave an unsatisfactory estimation of
the phase. Notice that if we had chosen an optimal filter to sepa-
rate both modes, the phase estimate would have been quite good;
nevertheless, it would still have been at the expense of temporal
and frequency information. This is illustrated in Fig. 2F where
the method finds a phase for t < 2 even when the signal is not
oscillating. Therefore, in this case, the phase extracted from the
Hilbert transform should only be used on portions of the signal
(oscillatory periods), after manually setting the limits. In con-
trast, our method is frequency shift tolerant, and the use of a
time–frequency representation enables us to keep both precise
temporal and frequency information.

The automation makes possible the analysis of frequency
and phase estimation versus signal-to-noise ratio. In order to
test to what extent our method is noise-resistant, we performed
100 realizations of the signal for different signal-to-noise ratios.
Signal-to-noise ratio is defined as SNR = (As/An)2 where As
and An are, respectively the root mean square amplitude of
the signal and the noise. For each realization we obtained a
set of wavelet ridges. The correct ridges were easily identified
as the two longest or most energetic ones. Both ridges gave
us an estimation of the frequency f̂ (t) and phase φ̂(t). Then

we computed, for the frequency, the normalized bias and stan-
dard deviation:

〈
f̂ (t) − ftheo

〉
/ftheo and

〈
f̂ (t)2〉 −

〈
f̂ (t)

〉2
for

the phase, the bias and standard deviation
〈
φ̂(t) − φtheo

〉
and

〈
φ̂(t)2〉 −

〈
φ̂(t)

〉2
. The results are shown in Fig. 3. The normal-

ized bias for the frequency and the bias for the phase are very
small and stay constant below 10−2 even with very low SNR.
Note that this SNR is computed at the frequency sampling. As we
apply the filtering/under-sampling process, the SNR increases
as the square root of the under-sampling rate. The standard devi-
ation behaves 1/

√
SNR.

3.2. Limitations of the method

There are a few limitations to the extent to which this method
can be applied. One is intrinsic to the wavelet ridge extraction
method and is encountered when some components of the signal
cross each other in frequency domain. Indeed, if two instanta-
neous frequencies cross each other in the time–frequency plane,
their separation is not unique in general cases (Boashash, 1992a).
Fig. 4A shows a signal holding two oscillatory components. As
evidenced in Fig. 4B, the ridges extracted from this signal merge:
it is then impossible to decide which ridge after the crossing point
is the continuation of which ridge before that point.

Another limit depends on the choice of the parameter ω0 of
the wavelet. This choice will depend on the frequency compo-
sition of the signal. This factor sets the shape of the wavelet.
When ω0 is set too low (Fig. 5B), the scalogram looses fre-
quency resolution, and it is impossible to distinguish between

Fig. 3. Bias and variance of the method as a function of SNR: (A) normalized bias of the estimated frequency; (B) standard deviation of the estimated frequency;
(C) bias for the estimated phase; (D) standard deviation for the estimated phase. Bias and variance are computed on signals used in Fig. 2 in two different frequency
bands: (*) for high frequency, (◦) for low frequency.

http://dx.doi.org/10.1016/j.jneumeth.2006.09.001
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Fig. 4. Limit of the wavelet ridges method: (A) raw signal composed of two
sinusoidal modes crossing each other in frequency (t = 2 s); (B) scalogram with
superimposed wavelet ridge (solid line).

the two components of the signal, especially if they exist in close
frequency ranges. When ω0 is set too high (Fig. 5D), the time-
resolution of the scalogram is too poor. To address this problem,
a simple visual check of the LTRS allows us to judge the validity
of the chosen ω0 value (Fig. 5C). Once the correct value is set,
full-scale automation becomes possible.

Finally, although the method is very noise resistant, too much
noise could increase the number of detected maxima thus, a ridge
might falsely be detected several times. In our case, the filtering
and under-sampling smoothed the signal enough to avoid mav-
erick maxima. In other cases, an additional data sorting routine
must be implemented to remove redundant ridges. The visual
information given by the LTRS and the pasting of the ridges
allow us to visually check the validity of the sorting step.

3.3. Example of application on a biological signal:
odor-evoked activity in the mammalian olfactory system

As mentioned above, it is an emerging concept in neuro-
science that the temporal aspects of brain signals, such as rela-
tions between oscillatory LFPs and single neuron activity, could
play a major part in the representation of complex information.
The custom wavelet ridge extraction method presented here was
originally designed to study such temporal aspects, but can be
extended to any other subject fields.

As previously described (Buonviso et al., 2003; Neville and
Haberly, 2003), odor-evoked activity in the mammalian olfac-
tory system presents oscillatory bursts in both bulbar and cortical
LFPs (Figs. 6 and 7). Such activity exhibits two frequency bands
(! and " activities, respectively 15–35 Hz and 35–80 Hz) that
alternate along a single respiratory cycle. The spiking activity
in these structures is not linear: cells tend to fire preferentially

Fig. 5. Preliminary tests setting the right wavelet shape for wavelet ridge extrac-
tion: (A) raw signal composed of two closed sinusoidal modes non constant in
frequency; (B, C, D) scalograms computed with increasing wavelet coefficient
(ω0 = 6, 12, 24). This parameter should be set carefully to allow accurate extrac-
tion of the wavelet ridge (C).

during oscillatory periods. Here, the qualitative and quantita-
tive study of spike phase locking requires phase measurements
to be conducted with the same accuracy in every frequency
band, while preserving temporal information. The wavelet ridge
extraction method meets all these requirements. It was per-
formed as described in the methods section; on average, analysis
of a 15 s recording (sampling rate: 10 kHz) took about 21 s. It
successfully extracted the temporal information and instanta-
neous frequency and phase of the oscillatory bursts, even when
two oscillatory modes were present, from both bulbar and corti-
cal structures (Figs. 6A–E and 7A and B). The extracted phases
are linear for all ridges, as can be seen in Figs. 6E and 7B.

http://dx.doi.org/10.1016/j.jneumeth.2006.09.001
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Fig. 6. Analysis of an olfactory bulb activity: (A) single trial, whole raw signal, duration 15 s; (B) corresponding low time-resolution scalogram. The white thick line
at bottom indicates the 5 s long odor stimulation. Total number of spikes: n = 71; (C) enlargement of inset in (A) showing both LFP oscillations and spiking activity
for a 1 s duration; (D) corresponding low time-resolution scalogram. The thick black lines represent the wavelet ridges obtained from the high resolution scalogram;
(E) linear phase extracted from each wavelet ridge; (F, G) SPIPHs constructed from ! (F) and " (G) episodes. Solid line: LFPs phase. Histograms were computed
from the 5 s odor evoked response (SPIPH for ! (F) n = 18 spikes; SPIPH for " (G): n = 48 spikes).

Then, knowing (i) the onset and duration of each oscillatory
period; (ii) the instantaneous phase and frequency of the sig-
nal at every time-stamp (or phases if more than one oscillatory
events exist at a given time-stamp); and (iii) the time-stamp of
every spike, we were able to construct spike preferential instan-
taneous phase histograms (SPIPHs) for each frequency band.
Examples of typical SPIPH are presented in Figs. 6 and 7. In the
olfactory bulb (Fig. 6F and G), the histograms for a particular
neuron reveal the tendency of that neuron to spike preferentially
during the falling phase of the LFP " oscillations. In the piriform
cortex, the single-trial SPIPH (Fig. 7C) suggests the same ten-
dency: spikes occur at a preferential phase during " epochs. To
verify this tendency we constructed an average SPIPH with data
collected from six cells (Fig. 7D). The phase locking between
spikes and LFPs thus, appeared very clearly and was quantified
(mean phase = −3.00 ± 1.13 rad). Its significance was estimated
using the Rayleigh circular directionality test (p < 0.001).

4. Discussion

Study of local field potentials could be a valuable tool toward
understanding brain functions. Many studies focus on trying
to elucidate the role and mechanisms of LFPs. Depending on
the experimental conditions, the recorded signals may possess
different characteristics: (i) stationary or non-stationary; (ii)

containing one or more oscillatory frequencies; (iii) oscillatory
frequencies may shift as a function of time. From such signals,
the important information to be accurately extracted is local
frequency and phase of each oscillatory epoch as well as its
temporal characteristics (onset and duration). In this paper, we
described a method using ridge extraction on CWT that answers
all these requirements.

The first stage of the method consists of extracting the spec-
tral components of the signal. CWT method has been chosen
because of its lesser susceptibility to non-stationary (versus
Hilbert method) and because of its better time–frequency resolu-
tion (versus FWT method). Indeed, traditional signal processing
methods that rely on the Hilbert transform of a filtered signal are
well adapted for signals that exhibit permanent oscillation. But
in the case, where the oscillations appear intermittently, these
methods fail to give information either on time or on frequency
characteristics of the oscillations. As shown in Fig. 2, Hilbert
transform failed to detect boundaries of oscillatory events and
erroneously found a phase where the signal did not appear
to oscillate. For such non-stationary signals, non-parametric
time–frequency methods (Flandrin, 1993) offer a more conve-
nient setup for conducting research, without requiring any a
priori knowledge of the recorded data. In this type of represen-
tation, a correct estimate of the signal frequency composition
depends on the choice of the window size. The CWT has been
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Fig. 7. Analysis of a piriform cortex activity: (A) low resolution scalogram (top) and corresponding raw signal (bottom) showing both LFP oscillations in the "
range and a spiking unitary activity (total number of spikes: n = 73); (B) enlargement of the inset in A. From top to bottom: low resolution scalogram displaying local
maxima (*) and wavelet ridge (white solid line); raw signal; phase extracted along the ridge with superimposed location of spikes (open circle); (C) SPIPH during
odor stimulation (5 s) computed from the single cell shown in A, B (n = 21 spikes); (D) SPIPH during odor stimulation (5 s) computed from a repetition of six trials
(n = 314; mean phase = −3.00 ± 1.13 rad).

preferred to the widely spread WFT due to CWT’s ability to
detect oscillations with very different frequencies and durations.
This ability comes from the fact that in CWT the window size
varies with the inverse of the frequency in opposition to the
WFT where the window size is constant. As the duration of
the window becomes shorter for higher-frequency bands, CWT
provides a better compromise between time and frequency reso-
lutions. CWT is characterized by the parameter ω0 which should
be set to optimize temporal and frequency resolution. For fre-
quencies of interest ranging from 15 to 100 Hz, a value around
seven was commonly used (Tallon-Baudry et al., 1997; Ravel et
al., 2003).

From this time–frequency representation, instantaneous
phase and frequency information was obtained using the ridge
extraction method, which presents several advantages. First, the
two-layer algorithm reduces computation time as it only focuses
on self-defined areas of interest. It considerably reduces the
amount of stored data without impairing the ability to check the
validity of the results. Second, this method is very noise resis-
tant as shown in Fig. 3. Moreover, the use of both a smoothing
filter and a threshold for detecting maxima prevents multiple
detections of the same ridge. As mentioned above, this method
proved unable to follow the frequencies of multiple oscillatory
components when these components’ frequencies crossed each
other (see Fig. 4). Nevertheless, this limitation, which is inherent
to time–frequency representation, is not troublesome for analyz-

ing neuronal activity where oscillatory events are generally well
separated both in time and frequency. One more asset of the
proposed method is that it can be fully automated after a few
preliminary tests.

As previously underlined, accurate estimation of instanta-
neous phase and frequency of oscillatory activity is a prerequisite
to the analysis of temporal relationship between neuronal spike
discharges and oscillations. In the olfactory system, the tempo-
ral relationship between spikes and LFPs have been approached
in several studies conducted on insect (Laurent et al., 1996), fish
(Friedrich et al., 2004), and rabbit (Kashiwadani et al., 1999).
All of them used an a priori signal filtering in a precise frequency
band, and then extracted peaks, troughs and zero-crossings of
the LFPs signal to use as phase reference points. These meth-
ods are convenient and valid on data collected in those cases
because LFPs oscillate within a single frequency band and the
signal is stationary. Such methods cannot be applied to ana-
lyze recordings from the freely breathing rat olfactory system
however, where signals are largely non-stationary and exhibit
frequency shifts. Indeed, odor-evoked LFPs exhibit periods of
! and " oscillatory activity that alternate during a respiratory
cycle (Buonviso et al., 2003; Neville and Haberly, 2003), but
seldom overlap during very short periods, and the frequency
often changes during ! episodes. Our wavelet ridge extraction
method overcomes the extra-complexity of LFPs from freely
breathing rat olfactory system. Furthermore, for ! and " oscil-
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lations occurring at the same time, time-stamped spikes would
yield two phases, one for each ridge or frequency band. The
results obtained regarding phase relationship between spikes and
LFPs are very promising.
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