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Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation
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We use the multifractal formalism to describe the effects of dissipation on Lagrangian velocity
statistics in turbulent flows. We analyze high Reynolds number experiments and direct numerical
simulation data. We show that this approach reproduces the shape evolution of velocity increment
probability density functions from Gaussian to stretched exponentials as the time lag decreases from
integral to dissipative time scales. A quantitative understanding of the departure from scaling exhibited
by the magnitude cumulants, early in the inertial range, is obtained with a free parameter function D(h)
which plays the role of the singularity spectrum in the asymptotic limit of infinite Reynolds number. We
observe that numerical and experimental data are accurately described by a unique quadratic D(h)
spectrum which is found to extend from h,,;, = 0.18 to h,,, = 1.
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Statistical properties of homogeneous three dimen-
sional turbulence have been studied for a long time in
the Eulerian framework [1]. Recently a growing interest
in studying intermittency from a dynamical point of view
has been motivated by high precision Lagrangian experi-
ments. Essentially two experimental groups have per-
formed particle tracking in highly turbulent flows. The
group at Cornell [2] reports measurements of Lagrangian
acceleration in a turbulent water flow between two
counterrotating disks for Taylor-based Reynolds numbers
200 < R, <900. The experiment carried out at ENS-
Lyon [3], in a similar von Karman flow, is based on
acoustic tracking. It provides Lagrangian velocity records
covering the inertial range of turbulent motion, up to
several integral time scales. In addition to these comple-
mentary experiments, direct numerical simulation (DNS)
of the Navier-Stokes equations [3,4] has produced com-
parative numerical results in the range 75 < R, << 380.
Both experimental and numerical studies have revealed
the existence of a very strong intermittency in the
Lagrangian dynamics: the probability density function
(PDF) of the velocity is Gaussian, while the PDF of the
acceleration exhibits extremely large tails. In between,
the PDFs of velocity increments change continuously
between these two functional forms as the time lag is
decreased from integral times (the Lagrangian autocor-
relation time) to dissipative ones (below the Kolmogorov
time scale). Several stochastic models have been proposed
that reproduce the behavior of the Lagrangian accelera-
tion [5] and of the Lagrangian velocity increments [6].
They rely on different physical assumptions and all in-
clude several ad hoc hypothesis and parameters in order
to fit the experimental observations—a rather compre-
hensive review can be found in [7]. The aim of the present
work is not to add to these models but to provide a
comprehensive description of the Lagrangian intermit-
tency, using a formalism that describes both the inertial
and dissipative range of time scales. It is motivated by the
desire to analyze globally the Lagrangian scales, which
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are likely to be dynamically connected (for example, it is
shown in [3] that the Lagrangian acceleration is influ-
enced by the large scale dynamics, a feature that is also
pointed out by models based on rapid distortion ideas [8]).
In addition we require that the description of intermit-
tency be independent on model assumptions. The multi-
fractal description [9], already widely used in Eulerian
studies of turbulence, is a natural choice. To encom-
pass inertial and dissipative features, we recast the multi-
fractal picture of the intermediate dissipative range,
originally proposed for Eulerian velocity fluctuations
[10,11], into the context of Lagrangian velocity. The
resulting analysis provides a synthetic and comprehensive
description of the experimental and numerical data.

In the present description, a first-order Lagrangian
velocity increment over a time scale 7 is written as

6,v(t) =v(t+ 1) — v(r) = B(r/T)érv, (1)

where all the time scale dependence is contained in
the independent random function B(7/T) (>0 since
Lagrangian velocity increment PDFs are symmetric), T
being the integral (Lagrangian) time scale above which
velocity increments become uncorrelated. The PDF of
integral time scale increments 67v is thus assumed to be
Gaussian (G) — a result of a central limit argument, also
in agreement with Eulerian observations. Once the dis-
tribution of P(B) is known, the PDF of increments at any
time scale 7 is computed as

P = [ % G(Bév>?(ﬁ). @)

In the standard mutifractal formalism [9], 8 is assumed
to have a power law scale dependence in the inertial
range, B~ (7/T)", with a spectrum 2D(h) [meaning
that the PDF of observing an exponent / at scale 7 is
proportional to (7/T)'~P™]. In the inviscid limit, & and
D(h) acquire the mathematical status of Holder exponent
and singularity spectrum, respectively. Note that this
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description based on first-order increments is restricted to
exponents £ <1 [12], a limitation which will be ad-
dressed later. To describe the entire range of scales cov-
ered in experimental measurements and computer
simulations, one must take into account the effects of
viscosity (finite R,). In the dissipative range, velocity
fluctuations are smoothed by viscous damping (or by
measurement filtering) and the velocity increments be-
come proportional to the time scale §,v(f) = Ta(r), where
a(?) is the Lagrangian acceleration. We shall consider that
the crossover between inertial and dissipative statistics
occurs when the local Reynolds number is of order unity,

Re(r/T) = %BZG )Re -1, 3)

where Re is the integral scale Reynolds number. This
defines a local Kolmogorov dissipative time 7,(h) =
TRe™'/@*1) where the local velocity increments change
from inertial scale invariance to dissipative scaling (this
implies h = —1/2, for time scales to be shorter than T).
Changing the integration variable from § to & in Eq. (2),
the PDF of velocity increments at any scale 7/7T can be
written as the sum of two contributions

P(5.) zj‘h*(r/T,Re) h Pi(h, %, D(h)) Q( 5.v )

—1/2 Bi(F, h) Bi(F, h)
+oo P, (h,Re, D(h))
i ./h*(fr/T,Re) ah Ba(%, h,Re)
o,v
% g(ﬁd(l) hr Re) >’ (4)

where the functions S; ; and P; ; have the proper inertial
[B; ~ (7/T)", P; ~ (v/T)'"P"W] and dissipative [B; ~
/T, P,;~ (T,,(h)/T)'_D(h)] scalings. The change occurs
at the critical value h* for which the local Reynolds
number is unity:

LT 1 InRe

h (T,Re> 2<1 + Inz > 5)
For h < h*(7/T, Re), the increments §,v are in the in-
ertial range, while they lie in the dissipative range for
h > h*. Finally, we impose that the function 8(7/T) be
continuous and differentiable at the transition, following
a strategy used in the Eulerian domain [11], and inspired
from an elegant interpolation formula proposed by
Batchelor [13]. In this framework, a single function
B(h; 7/T, Re) covers the entire range of scale

T e @"
(- Re)= i o ©

T\1— D h
| I T —87(D(h)— S5

:P<h;1, Re, D(h))~ 7

T
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The PDFs of Lagrangian velocity increments are then
computed using Egs. (4)—(7) and compared to the ex-
perimental/numerical data. The entire range of time
scales is covered when the four parameters 7, Re, &,
and D(h) are prescribed. T and Re, both global parame-
ters imposed by the flow production, are explicitly in-
corporated. D(h) is a parameter function which must be
derived from the experimental or numerical data. In this
work, and as a posteriori justified, we assume a quadratic
form D(h) =1 — (h — ¢;)*/2c, (a lower order approxi-
mation customary in intermittency studies). The con-
stants ¢, and ¢, are constrained to satisfy ¢, =1/2+ ¢,
in order for Kolmogorov scaling to be observed in the
inertial range ((8,v%) « 7). § is a free parameter that
accounts for the smoothing of the transition from inertial
to dissipative scales. In his modeling of Eulerian velocity
structure function, Batchelor [13] sets 6 = 2, a value used
in other Eulerian studies [11] and supported by theoretical
arguments [14]. In practice 7 and Re are computed using
the experimental data (up to some empirical multiplica-
tive constants), and the free parameters ¢, and & are
estimated using a least square minimization scheme.

In Fig. 1(a) we show the results for the experimental
data from the ENS-Lyon group (R, = 740) [3]. The ve-
locity increment PDFs are well reproduced at all scales
for the set of parameter values § = 1.08, ¢; = 0.575, and
¢, = 0.075. This agreement is emphasized in Fig. 1(c),
where the fourth order moment (8, v)*P(8,v) is shown to
peak at the same values as the experimental curves and
this for all considered time scales. In Figs. 1(a) and 1(c)
we have also included the Cornell acceleration data at
R, = 690 [2]. What is remarkable is that with quite con-
sistent parameter values, namely, 6 = 1.3 and still a
parabolic D(h) curve with ¢; = 0.579 and ¢, = 0.079,
one again reproduces the experimental acceleration PDF
with a great accuracy in the tails; in particular, the flat-
ness F = {a*)/{(a®)*> = 56.1 is very close to the experi-
mental value F=55%8 [2]. For our DNS data at
R), = 140 [Figs. 1(b) and 1(d)], the agreement is even
more pronounced than for the experimental data. In par-
ticular, it is hard to distinguish the fit from the data points
in Fig. 1(d). Note that the parameter values obtained to
get the best fit of the numerical data are not significantly
different from those used in Figs. 1(a) and 1(c): D(h)
corresponds to ¢; = 0.586 and ¢, = 0.086, while 6 =
1.98 is now quite close to the Batchelor value 6 = 2
[13]. The fact that & is smaller in experimental measure-
ments is due to the filtering induced by the finite size of
the tracer particle and signal processing algorithms.

A first finding of our analysis is that almost identi-
cal functions D(h) are obtained for the three sets of
data (Cornell, Lyon, and DNS), although they cover a
wide range of scales and of turbulent Reynolds numbers:
the symbols in Fig. 2 are undistinguishable, certainly
within error bars. This suggests that such a parabolic
D(h) curve should also be relevant in the limit of infinite
Reynolds number. A parabolic singularity spectrum is the
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FIG. 1. Comparison of the experimental (a),(c) and numeri-
cal (b),(d) data for the normalized velocity increment PDF
P(8,v), where 6,v = 8,v/((8,v)%)"/2, with the predictions of
the multifractal description. (@) (a),(c) ENS-Lyon experiment,
for time lags 7/T = 1, 0.35, 0.16, and 0.07, from bottom to top;
solid lines are the model fit with ¢, = 0.075 and 6 = 1.08. (@)
(b),(d) DNS data calculated for /T = 1, 0.25, 0.17, 0.11, and
0.05, from bottom to top; solid lines correspond to parameter
values ¢, = 0.086 and 6 = 1.98. (O) (a),(c) Cornell accelera-
tion data, solid lines are the model predictions for ¢, = 0.079
and 6 = 1.3. The curves are displayed with an arbitrary
vertical shift for clarity, and the original dv axis for the
acceleration PDF (O) has been shrunk by a factor 4.

hallmark of log-normal statistics as originally proposed
by Kolmogorov and Obukhov [15] for Eulerian velocity
statistics. Our findings for Lagrangian velocity statistics
are a parabolic D(h) spectrum centered at ¢; = 0.58 *
0.01, significantly larger than the K41 value 1/2, and of
width ¢, = 0.08 £ 0.01 (commonly called the intermit-
tency exponent). This is significantly larger than the
corresponding value c¢5 = 0.025 = 0.003 derived for
Eulerian velocity data [16]. It corroborates the fact that
Lagrangian velocity statistics are more intermittent
than Eulerian velocity statistics [3]. Note that the ratio
of the Lagrangian to Eulerian intermittency exponents
cy/cy =0.08/0.025 =3.2 £0.2 is very close to the
value (3/2)® = 3.375 which can be predicted using a
Kolmogorov-Richardson argument [3,17].

To emphasize further the quality of the proposed de-
scription of Lagrangian intermittency, we now consider
the evolution across the scales of the moments of the
velocity increments, the so-called structure functions
[11, S(p, 7) = {|6,v|?). As advocated in Ref. [16] for
Eulerian velocity data analysis, the magnitude cumulant
analysis provides a more reliable alternative to the struc-
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FIG. 2. D(h) curves extracted from ((J) ENS-Lyon velocity
data, (V) Cornell acceleration data, and (O) DNS numerical
data. Also represented for comparison are the Eulerian log-
normal (thick solid line) and log-Poisson (thick dashed line)
spectra as well as their Lagrangian counterparts computed
using Eq. (9) (solid and dashed lines, respectively).

ture function method. Indeed, it is straightforward to
derive the relationship between the moments of
P(]18,v|) and the cumulants C,(7) of P(In|5,v|):

8,017) = exp( 3,1 2, ). ®

In the inertial range, where multifractal power law scal-
ing is expected to be observed for the structure func-
tions, the cumulants should behave like C,(7) ~ ¢, In7. In
Fig. 3, we report the results of the computation of the
cumulant C, (7) for both the ENS-Lyon experimental data
[Figs. 3(a)—3(c)] and our DNS numerical data [Figs. 3(d)—
3(f)]. We have explicitly subtracted the cumulant of the
67v Gaussian PDF and the curves are computed using
the same parameter set as in Fig. 1. For both the experi-
mental and numerical cumulants, it is quite convincing
that our multifractal description provides a comprehen-
sive understanding of the observed departure from scal-
ing when going from large 7/T ~ 1 to small 7/T ~ 1072
time scales. In fact, an unambiguous inertial range is
observed for the experimental second-order cumulant
only [Fig. 3(b)]. For the first-order cumulant, both the
experimental [Fig. 3(a)] and numerical [Fig. 3(d)] curves
display some curvature over the entire range of scale, a
feature that is well reproduced by our extended multi-
fractal description. For C,(7/T), the model describes
quite well the crossover behavior observed in the experi-
mental [Fig. 3(b)] and numerical [Fig. 3(e)] data down
to time scales 7/T of the order of the smoothing filter-
ing scale (including the finite size of the tracer particles).
The predicted plateau C,(7/T) — C,(R,) in the limit
7/T — 0 is reached in the numerical but not in the ex-
perimental data. For C3(7/T), we note that the DNS data
in the inertial range are quite well reproduced taking
c3 = 0, at odds with the experiment.
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FIG. 3. Cumulant analysis C,,(7/T) vs In7/T for (a)—(c) ENS-
Lyon experimental data and (d)—(f) DNS data. (O) first-order
velocity increments (N = 1); ([J) second-order velocity incre-
ments (N = 2). The associated multifractal descriptions for
N =1 (solid lines) and N = 2 (dashed lines) correspond to
the same parameter values as in Fig. 1. Curves in (a),(d) are
vertically shifted for clarity.

We now return to the assumption that the scaling ex-
ponent A should remain smaller than 1. It may be seen in
Fig. 2 that the largest measured 4 values reach 1. In this
case, it is known that first-order increments are not adap-
ted to detect singularities with exponents 7 = 1 [12]. We
have thus repeated our analysis using second-order veloc-
ity increments 8Pv() = vt + 7) — 2v(t + 7/2) + v(?).
Equations (4), (6), and (7) must be slightly modified
because (i) the dissipative range should now scale as
(7/T)? and (ii) h* may be larger than 1 and the integrals
must be computed in the order of increasing /4’s. When
using the same parameters as before, we observe in Fig. 3
that the experimental and numerical cumulants are ro-
bustly and even better reproduced. As seen in Figs. 3(b),
3(c), 3(e), and 3(f), because the C,(7/T) for n = 2 are
predicted to reach a plateau C,(R,, N) ~ (1 + 2N)"InR,
in the limit of vanishing 7’s, then the experimental and
numerical cumulants for the second-order increments are
more affected by the smoothing filtering process in the
intermediate dissipative range than previously observed
for the first-order increments.

To conclude, we return to our observation that a unique
D(h) spectrum yields an accurate description of the
Lagrangian velocity statistics at all scales. Such a spec-
trum ¥ (h) has been extensively studied in the Eulerian
domain [1]. Two widely used forms (corresponding to
log-normal and log-Poisson statistics) are shown in
Fig. 2. They can be mapped into the Lagrangian domain

D(h) = —h+ (1 + h)yDE(h/(1 + h)), 9)
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using a Kolmogorv refined similarity argument in the
spirit of the work done by Borgas [17]. The resulting
curves are shown in Fig. 2; the agreement with the
measured Lagrangian D(h) functions is excellent on
the left-hand side of the curves, i.e., for values h < ¢,
corresponding to intense velocity increments. On the
right-hand side (2 > ¢) there is a noticeable difference.
Whether this difference is significant deserves more in-
vestigation. It is of importance since the above relation-
ship shows that the Eulerian and Lagrangian singularity
spectra cannot be both log normal.

Numerical simulations were performed at CINES
(France) using an IBM SP computer. We acknowledge
B. Castaing for his critical comments. We are grateful to
the Cornell team for making their data available.
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