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Abstract—Photographic paper texture characterization con-
stitutes a challenging image processing task and an important
stake both for manufacturers and art museums. The present
contribution shows how the Hyperbolic Wavelet Transform,
thanks to its joint multiscale and anisotropic nature, permits
to achieve an accurate photographic paper texture analysis and
characterization. A cepstral-type distance, constructed on the
coefficients of the Hyperbolic Wavelet Transform, is then used
to measure similarity between pairs of paper textures. Spectral
clustering followed by Ascendant Hierarchical Clustering applied
to the similarity matrix enables an unsupervised classification of
photographic paper sheets. This methodology is applied to a test
dataset made available in the framework of the Historic Pho-
tographic Paper Classification Challenge. The relevance of the
proposed texture characterization and classification procedure
is assessed by comparisons against the database documentation
provided by experts.

I. INTRODUCTION

Historic Photographic Paper Classification. There has
recently been a growing interest for technical art history and
investigations of the potential benefits of signal and image
processing tools for addressing issues of interest to art experts.
The study of historical photographic paper constitutes one
prominent example where image processing tools aiming at
texture characterization might prove able to permit performing
tasks such as photographic paper and photography classifi-
cation automatically. Paper surface texture is indeed a major
property for printed art photography, revealing the aesthetic
intentions of the artist and impacting the public perception.
Photographic paper texture characterization has thus received
significant research efforts, as it is crucial for both art experts
in museums and manufacturers. Indeed, texture characteriza-
tion may potentially enable art experts to identify fake prints
or to detect systematic preferences or atypical choices within
an artist’s body of work [17], [18]. Texture analysis also starts
to be applied to inkjet photographic materials [19].

To date, art experts mostly assess unknown textures by
visually or manually comparing it with known reference
textures, which turns into a time consuming and tedious task
for datasets of large size. There is thus an obvious need
for automated and systematic texture analysis procedures
assisting experts in art photo paper classification. In that
context, at the initiative of Paul Messier, a world-renowned
paper conservator (http://paulmessier.com/) and of the
Museum of Modern Art (NYC), a Historic Photographic

Paper Classification (HPPC) Challenge has been organized,
with a test dataset made publicly available for analysis
(http://www.papertextureid.org/). This dataset will be used in
the present contribution.
Texture Analysis. Texture analysis is a classical task in
image processing that received a considerable amount of
research efforts over the past 20 years, cf. e.g., [6], [9], [10],
[23], [24]. Texture analysis has also, much more recently,
been used for art investigations, though only to a much
lesser extent than for other applications (cf. e.g., [1]–[5],
[20] and references therein). Amongst the many paradigms
that have been used to characterize textures, the fractal - or
scale invariance - paradigm is receiving increasing attention,
notably in biomedical contexts [14], [15], in physics of
surfaces and fractures [16], and in geophysics [21]. The
fractal paradigm has also been extended to multidimensional
multifractal analysis of textures (notably, for images), cf. e.g.,
[3], [12], [26]. However, most of these attempts do not take
into account the potential anisotropy of the texture. Recently,
it has been proposed to specifically include anisotropy in
scaling analysis of textures [22] by making use of the
Hyperbolic Wavelet Transform (HWT) [7].
Goals, contributions and outline. Elaborating on [13],
the present contribution applies the anisotropic multiscale
texture analysis tools developed in [22] (cf. Section III-A)
to the characterization of the art photography paper dataset,
made available in the context of the HPPC Challenge, and
described in Section II. From the HWT coefficients, features
are extracted and cepstral distances between features from
different textures are computed (cf. Section III-B). The
classification approach applied to these distances consists of
a standard Spectral Clustering procedure (cf. e.g., [8], [11],
[25]), briefly sketched in Section III-C. Results in terms
of distances computed from the HWT representation and
of the achieved clustering are discussed and interpreted in
Section IV.

II. DATA SET

The art photography paper reference dataset, made pub-
licly available in the framework of the HPPC Challenge
at papertextureid.org, has been constructed for pedagogical
purposes and is organized in 12 subsets (of 10 samples



each), representing a variety of typical photographic papers
of different types and produced by different manufacturers.
Within these subsets, there are three levels of similarity:
Subset1 to 3 consist of samples from one same sheet; Subset4
to 6 consist of samples from different sheets yet taken from
the same manufacturer package of sheets; Subset7 to 9 consist
of samples from papers made to the same manufacturer
specifications over a period of time. Furthermore, Subset10
to 12 consists of 30 additional sheets of interest to art experts.
This reference dataset has been carefully documented by an
art expert, P. Messier, providing metadata such as texture,
reflectance, manufacturer, brand and date for each sheet in
the database, cf., [13] for further details.

Samples are obtained from a raking light imaging technique,
designed by P. Messier, and described in [13]. They consist
of 1.00⇥1.35 cm2 of photographic paper surface, digitized at
153.6 pixel/mm, resulting in 1536 ⇥ 2080 images, with each
pixel thus corresponding to 6.51

2
= 42.4 µm2. Examples are

plotted in Fig. 1.
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Figure 1. Art photographic paper textures. Examples of raking light
photographic paper samples.

III. METHODOLOGY

A. Features: Hyperbolic Wavelet Transform

Hyperbolic Wavelet Transform. The Hyperbolic Wavelet
Transform (HWT) [7] consists of one of the numerous decli-
nation of image multiscale (or multiresolution) analysis. Let
 be a mother wavelet, characterized by its uniform regularity
index and by its number of vanishing moments N . The
latter is a positive integer, defined as 8n = 0, . . . , N � 1,

R
R t

k
 (t)dt ⌘ 0 and

R
R t

N 
 (t)dt 6= 0. From  , a basis of

L

2
(R2

) is constructed as the following tensor products:
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· (2
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x1 � k1) (2

�j2
x2 � k2),

 0,j2,k1,k2(x1, x2) = 2

�j2
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�j2
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 (2
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x1 � k1)'(x2 � k2),

 0,0,k1,k2(x1, x2 ) = '(x1 � k1)'(x2 � k2),

The coefficients of the HWT are obtained by scalar product
of the texture X(x1, x2) with the collection of functions  (·)
defined above, for different dilation and translation factors:

TX((j1, j2), (k1, k2)) = hX(x1, x2), j1,j2,k1,k2(x1, x2)i,
8j1 � 0, j2 � 0. (1)

HWT is thus practically computed by repeating iteratively a
two-step procedure, consisting first of performing a 2D-DWT
and second to refine the scale decomposition (cf. Fig. 2).
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Figure 2. HWT algorithm. The HWT algorithm consists of first performing a
2D-DWT transform (left) followed by further refining the scale decomposition
(middle) and iterating the procedure (right).

Features: multiscale representations. The proposed mul-
tiscale representation is obtained by computing space averages
of the qth power of TX((j1, j2), (k1, k2)) at fixed scales:

SX((j1, j2), q) =

1

na

X

k

|TX((j1, j2), (k1, k2))|q, q > 0.

(2)
An example of such an anisotropic multiscale representation
is plotted in Fig. 3. The use of the classical 2D discrete
wavelet transform (2D-DWT), which relies on a single and
same dilation factor for both horizontal and vertical axes
2

j1 ⌘ 2

j2 , would correspond to compute only SX((j, j), q)

(marked as the black dashed diagonal in Fig. 3, right plot).
In contradistinction, the HWT makes use of different dilation
factors along each direction (corresponding to varying the
direction of the black solid line in Fig. 3, right plot), yielding a
richer information than SX((j, j), q) only and thus permitting
to capture potential anisotropies in textures, be they associated
to scaling properties or not [22]. The function SX((j1, j2), q)

computed for q = 2 and a collection of analysis scales ranging
from 13µm  2

j1
, 2

j2  830µm ⌘ 0.83mm (i.e. 7 octaves)
will constitute the 7⇥7 = 49 features that will be used below
for textures characterization and classification.

B. Distances

Proximity between textures X and Y is measured via a
cepstral-type distance between the multiscale representations
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Figure 3. HWT analysis example. Sample photographic paper texture with
its HWT-based anisotropic multiscale representation.

SX((j1, j2), q) and SY ((j1, j2), q). It consists of a classical
L

p norm computed on SX((j1, j2), q) after log-transformation
and normalization (with p > 0):
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The normalization of ˜

SX ensures robustness against change
of light intensity. The log-transformation (cepstral measure)
ensures that all scales contribute to the distance as it is exper-
imentally observed that the multiscale representation varies
across scales roughly as a power law: SX(↵j, (2� ↵)j, 2) '
C↵2

jH↵ .
In the present work, q = 2 and p = 1 are used, and

no specific attempt for optimal tuning of these parameters to
improve classification performance has been undertaken.

C. Spectral clustering

Spectral clustering is used as a non-supervised classification
procedure aiming to reduce the dimensionality of the space
in which samples are represented to ensure robustness of the
classification, cf. e.g., [8], [11]. Starting from the N ⇥ N

cepstral distance matrix d, where N is the number of pho-
tographic paper samples, it consists in: (1) transforming the
cepstral-type distances d(X,Y ) into a (dis)similarity matrix
D = exp(�d/✏), where ✏ is a constant assessing the typical
closeness between images; (2) computing the eigenvalues and
eigenvectors of the Laplacian operator associated to D, L =

I�D

�1/2DD

�1/2, where D = diag(

P
j Dij) is the diagonal

matrix of the strengths
P

j Dij); (3) sorting the eigenvalues of
L by decreasing order and truncating the expansion at order
K; (4) performing Ascending Hierarchical Clustering of the
K ⇥ N matrix consisting of the K first eigenvectors as the
set of coordinates (of reduced dimensionality K ⌧ N ) for the
N photo paper samples, and thresholding distances so as to
obtain K clusters.

IV. RESULTS AND DISCUSSION

A. Distances

As a preliminary investigation, let us start by comparing two
different sub-pieces of one same sample of photographic paper.

Fig. 4 compares the multiscale representation SX((j1, j2), 2)

computed on the entire samples and those obtained from two
sub-pieces. It clearly shows that the two sub-pieces have quasi-
identical representations thus showing the spatial homogene-
ity of the samples and hence the relevance of computing
SX((j1, j2), 2) across the entire sample.
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Figure 4. Multiscale representation within sample. Top row: Sample pho-
tographic paper and multiscale representation SX((j1, j2), 2). Middle row:
multiscale representations computed from the two sub-pieces of the sample
marked with black rectangles. Bottom row: superposition and difference of
these two multiscale representations, respectively.

As a second preliminary investigation, the experts in charge
of the HPPC Challenge questioned whether the direction of the
raking light may impact analysis or not. Fig. 4 compares the
multiscale representations SX((j1, j2), 2) computed for one
same sample using raking light along two different directions
(North and North-East). Despite the visual diagonal roughness
structure visible on the image receiving light from North-
east, the multiscale representations are quasi-identical, which
demonstrates the independence of the representation from the
light direction.

To illustrate the relevance and effectiveness of the proposed
multiscale representation and cepstral distance for texture
characterization, let us compute the median intra- and inter-
distances for the 10 a priori known clusters (3⇥3 of 10 samples
each, and 1 cluster for the 30 last samples). Fig. 6 (left)
plots the distances between each cluster and clearly shows a
black diagonal (for the 9 first clusters) indicating, as expected,
much lower intra-cluster distances than inter-cluster distances.
It also shows elementary results, such as the fact that Subset2
(samples from same sheet) and Subset4 (samples from same
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Figure 5. Raking light directions. Top row: one same sample receiving lights
along two different directions (North and North-east). Bottom row: Super-
imposition and difference of the multiscale representation SX((j1, j2), 2)
computed from the sample illuminated along two directions.

packet) have a low inter-cluster distance, indicating that the
sheet from Subset2 likely belong to the packet in Subset4,
or is very closely related to it. The same holds for Subsets5
and 7, suggesting that the packet in Subset5 has likely been
produced by the Manufacturer of Subset7. More interestingly,
since not expected by art experts, Fig. 6 (right) displays the
intra-cluster distances (diagonal of right plot) and shows that
median distances (as well as maximum absolute deviations)
between samples from different sheets from one same packet
(Subsets4-6) are not larger than median distances between
samples from one same sheet (Subsets1-3) . This indicates a
perfect reproducibility in the manufacturing process for all the
sheets of a single packet. These intra-subset median distances
increase for samples from same manufacturers but different
sheet and packet, Subset7-9.
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Figure 6. Distances for a priori known Subsets. Left: matrix of intra
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cluster median distance for samples from the same sheet (1-3), samples from
different sheets from the same packet (4-6), samples from same manufacturers
but sheets from different packets, Subset7-9.

B. Clustering

In the spectral clustering procedure described in Sec-
tion III-C above, the choice of the relevant number of clusters
K remains to be set empirically. A practical rule of thumb
consists in plotting the eigenvalues in ascending order together
with their successive differences: the local maxima of the
differences correspond to values of K where the clusters are
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Figure 7. Spectral Clustering. Left: eigenvalues in ascending orders and
successive differences (magnified by a factor 10). Right, Inter- and Intra-
cluster distances.

the most significant (cf. Fig. 7, left). For our test datasets of
120 images, Fig. 7 (left) indicates local maxima for K = 3, 6

and 8. Fig. 7 (right) shows the inter- and intra-cluster median
distances obtained for K = 6 clusters. Satisfactorily, it shows
low intra-cluster median distances. It also shows that Clusters1
and 4, Clusters2 and 5, Clusters3 and 6, respectively, have
low inter-cluster median distances. Interestingly, these pair-
wise groups of clusters quasi-exactly correspond to the clusters
obtained at level K = 3.

Making use of the documentation available for each sheet
of paper enables us to establish the following constitution of
the clusters:

Cluster 1 (26 samples, Half-Matte & Chamois) gathers
samples from one same paper sheet with chamois reflectance
and 10 samples from the same packet with Half-Matte re-
flectance, respectively corresponding to Leonar (Manuf.) Rano
Kraftig (Brand) & Ilford (Manuf.) Plastika (Brand).

Cluster 4 (28 samples, Fine-Grained Luster) gathers
samples from one same paper sheet and samples from the
same packet, all with Lustre reflectance, and Fine-Grained
texture, nicely gathering most of Kodak (Manuf.) Kodabromide
(Brand) sheets, thus revealing the proximity between Kodabro-
mide Sheet and Kodabromide packet.

Cluster 3 (24 samples, Smooth Glossy) gathers samples
from one same paper sheet and samples from the same
manufacturer, all with Glossy reflectance, and Smooth texture,
nicely gathering most of Ilford & Kodak (Manuf.) and Contact
(Brand).

Cluster 6 (26 samples, Smooth Matte & Semi-Matte))
gathers samples from one same paper sheet and samples
from the same manufacturer, all with Matte or Semi-Matte
reflectance, and Smooth or non-documented texture, gathering
Kodack & Dupond-defender Manufacturers.

Clusters 2 & 5 (16 samples, Luster, Agfa)) gather samples
from one same manufacturer Agfa, with Lustre reflectance.
Though paper sheets in these clusters share the same re-
flectance as those in Cluster4, their texture appears different
since being fine-grained in Cluster4 and non-documented for
Clusters 2 & 5. Interestingly, all paper sheets documented as
manufacturer Agfa fall systematically in this cluster.
This study of the compositions of the clusters yields a number
of interesting conclusions: i) samples from the same sheet are
systematically in the same cluster; ii) samples from the same
packet are systematically in the same cluster; iii) samples from
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Figure 8. Classification summary as a dendrogram from Ascendant Hierarchical Clustering.

the same manufacturer essentially fall in the same cluster;
iv) some paper sheets can obviously be associated to packet
or manufacturer; v) Reflectance is the feature of the expert
documentation that leads the clustering, with sub-clustering
driven by texture; vi) it can be checked that for most of the
30 miscellaneous last samples, their reflectance match that of
the cluster they fall in, a very encouraging result, showing
the relevance of the automated classification procedure. These
findings are summarized in the dendrogram reported in Fig. 8.
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