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Abstract

A central question in chemical senses is the way that odorant molecules are represented in the brain. To date, many studies, when

taken together, suggest that structural features of the molecules are represented through a spatio-temporal pattern of activation in the

olfactory bulb (OB), in both glomerular and mitral cell layers. Mitral ⁄ tufted cells interact with a large population of inhibitory

interneurons resulting in a temporal patterning of bulbar local field potential (LFP) activity. We investigated the possibility that

molecular features could determine the temporal pattern of LFP oscillatory activity in the OB. For this purpose, we recorded the LFPs

in the OB of urethane-anesthetized, freely breathing rats in response to series of aliphatic odorants varying subtly in carbon-chain

length or functional group. In concordance with our previous reports, we found that odors evoked oscillatory activity in the LFP signal

in both the beta and gamma frequency bands. Analysis of LFP oscillations revealed that, although molecular features have almost no

influence on the intrinsic characteristics of LFP oscillations, they influence the temporal patterning of bulbar oscillations. Alcohol

family odors rarely evoke gamma oscillations, whereas ester family odors rather induce oscillatory patterns showing beta ⁄ gamma

alternation. Moreover, for molecules with the same functional group, the probability of gamma occurrence is correlated to the vapor

pressure of the odor. The significance of the relation between odorant features and oscillatory regimes along with their functional

relevance are discussed.

Introduction

The olfactory epithelium contains a large panel of olfactory receptors

that can number up to 1000 in some rodent species (Buck & Axel,

1991). At the molecular level, each olfactory receptor is tuned to one

particular structural feature of a molecule (Zhao et al., 1998; Malnic

et al., 1999; Hallem & Carlson, 2006). Olfactory sensory neurons

expressing the same olfactory receptor project their axons onto one or

very few glomeruli in the olfactory bulb (OB) (Vassar et al., 1994;

Mombaerts et al., 1996; Mori et al., 2006). Thus, specific odor

stimulations will elicit specific patterns of glomerular activation. This

has been confirmed by studies based on several techniques, such as

optical imaging (Rubin & Katz, 1999; Uchida et al., 2000; Belluscio

& Katz, 2001) or 2-deoxyglucose uptake (Jourdan et al., 1980;

Johnson et al., 1998).

Many consider the glomerulus to be the entry point into an activity-

dependent functional unit organized in columns (Buonviso & Chaput,

1990; Buonviso et al., 1992; Willhite et al., 2006). One would

therefore expect a reproduction of the glomerular spatial map onto the

mitral ⁄ tufted cell layer. Consistent with this view, Mori’s group

showed that individual mitral ⁄ tufted cells respond to a range of odors

that share a specific combination of molecular features (Imamura

et al., 1992; Mori et al., 1992; Katoh et al., 1993). However, the

secondary dendrites of mitral ⁄ tufted cells extend over long distances

in the external plexiform layer. This extension allows mitral ⁄ tufted

cells from distant glomeruli to communicate via reciprocal synapses

on granular interneurons (Rall et al., 1966; Mori et al., 1983;

Shepherd & Greer, 1998).

This vast network of synaptic connections is thought to result in the

temporal patterning of the local field potential (LFP) signal. This LFP

signal received increasing attention as the potential role of its

underlying mechanisms in information coding was revealed (Wehr

& Laurent, 1996; Friedrich & Laurent, 2001). Indeed, oscillations of

the LFP signal are correlated to the transient synchronization of a

population of neurons, a phenomenon that has been shown to be

functionally relevant for the discrimination of closely related odorants

(Stopfer et al., 1997). Modifications of LFP patterns also seem to

reflect memorization and learning (Martin et al., 2004). In mammals,

bulbar LFPs and breathing are closely related (Buonviso et al., 2003),

suggesting that LFPs are partially driven by the bulbar afferent input.

In such conditions, it can be expected that odor molecular features will
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influence bulbar LFP signals by determining bulbar spatio-temporal

input patterns. To our knowledge, it has not yet been shown that

different molecular features can differentially affect the LFP bulbar

signal in an anesthetized animal.

In this study, we systematically analysed the characteristics of the

LFPs evoked by similar or dissimilar aliphatic, straight-chain chem-

icals with variations in either carbon-chain length (L) or functional

group (F). Our goal was to find out if odor quality could influence the

temporal pattern of LFP oscillatory activity in the OB.

Materials and methods

Preparation and recording apparatus

Experiments were performed on freely breathing, anesthetized male

Wistar rats weighing 200–300 g (Charles River Laboratories,

L’Arbresle, France). Anesthesia was performed through an intraperi-

toneal injection of urethane (1.5 g ⁄ kg). Supplemental doses were

delivered during experimentation when necessary. All surgical

procedures were conducted in strict accordance with the European

Community Council guidelines.2 Animals were immobilized with ear

and teeth bars in a stereotaxic apparatus. The skull was exposed and

a small bone window was drilled above the OB to grant full access

to its dorsal aspect. Neuronal activity was recorded within the mitral

cell layer using a 16-channel silicon neural probe (Neuronxus

Technologies). The 16 recording points were dispatched linearly

along the silicone tip at 50 lm intervals. The electrode was lowered

vertically along the dorso-ventral axis and the bulb entry point was

chosen so that most of the recording points lay near the mitral cell

layer. In an effort to avoid spatial odor-specific glomerular activation

effects, recording sites were dispatched along the entire antero-

posterior axis of the OB and the entire dorso-ventral axis of the

lateral and medial layers. The extracellular signal was acquired in the

full band (0–5000 Hz) and digitalized with a high-speed 16-channel

acquisition device (wavebook 512A and wavebook 10A, IOtech) at a

10 kHz sampling rate. Fourteen channels, along with two channels

dedicated to the continuous recording of respiratory signal and

stimulus onset, were connected to the 14 lowest points on the

electrode tip. Note that the two topmost recording points on the

electrode were not used.

Odors and acquisition protocol

Odors were simple linear aliphatic compounds and either the main L

or the F associated with this chain varied between odors. The odors

used are listed in Table 1. Stimuli were delivered with a custom-made

olfactometer at 1 ⁄ 6 of the saturation vapor pressure (SVp). The

vaporized odors were injected in a constant and stable humidified

airflow so that there were no variations in the overall flow; this was

important, as we wanted to avoid any artifacts due to mechanical

stimulation of the olfactory mucosa at odor onset and offset.

Recording epochs were 15 s long and were sub-divided in three 5 s

epochs corresponding to pre-stimulus basal activity, stimulus-related

activity and post-stimulus activity, respectively.

Once the electrode was satisfactorily placed close to or within the

mitral cell layer, stimulations were delivered in a regular sequence

comprised of 15 s of recording, including 5 s of actual stimulation,

and 90 s of rest. Within a sequence, odors with the exception of D07

were randomized. D07 was always delivered last, because the rinsing

time for this odor is greater than 90 s. Preliminary experiments

showed that the order of presentation had no effect on the recorded

patterns (data not shown).

Respiratory cycle recording and analysis

Respiration was recorded with a home-made monitoring device based

on a fast response time thermodilution airflow sensor (bidirectional

micro bridge mass airflow sensor, AWM 2000 family, Micro Switch

Honeywell). This setup was extensively described by Roux et al.

(2006). Briefly, the time dimension of the respiratory epochs (inspi-

ration and expiration), which can differ from trial to trial, was

converted into a phase dimension defined as [–p,0] and [0,p] for

inspiration and expiration, respectively. The zero point was set to be the

transition between inhalation and expiration. In contrast to time

representation, the phase representation was common to all trials. Phase

representation of the respiratory cycle was used as a normalized time

basis to average olfactory neural events. Thus, the respiratory phase of

any oscillatory event can be accurately evaluated and represents the

time of occurrence of an event relative to the respiratory cycle.

LFP analysis

The LFPs present bursts of oscillations and are highly non-stationary

events. They are not continuous in mammals and may vary in

amplitude or shift in frequency. Additionally, they occur in several

frequency bands and produce recordings that are often quite noisy.

Therefore, we chose a method based on a wavelet transform of the

signal that addresses the aforementioned characteristics of LFPs. As

the method is extensively described by Roux et al. (2007), we give

here only a brief summary.

Wavelet transform

The wavelet transform of a signal (Mallat, 1989) is the result of the

convolution of the signal and a function of variable frequency (in our

case, the Morlet wavelet) (Kronland-Martinet et al., 1988)3 . It yields a

matrix of coefficients, TY, representing the frequency content of the

signal. The TY matrix is then normalized to generate a time-scale

energy density distribution matrix PY that is adjusted so that the

overall sum of all elements in PY equals 1.

For visualization purposes, the PY matrices were converted into a

time–frequency representation in which the energy density distribution

was color coded. Because a high graphic resolution was not necessary,

the PY matrices were computed from a filtered and under-sampled

version of the raw signal (filter, 0–200 Hz; sampling rate, 200 Hz).

Table 1. Panel of odors used in this study

Carbon chain
length (L)

Chemical function (F)

Designation Symbol

Alcohol
5 Pentanol A05
6 Hexanol A06
7 Heptanol A07
10 Decanol A10

Ester
5 Ethyl-valerate E05
6 Ethyl-hexanoate E06
7 Ethyl-heptanoate E07
10 Ethyl-decanoate E10

Ketone
7 2-heptanone K07

Aldehyde
7 Heptanal D07

Indicated for each odorant are the official name in chemical nomenclature and
the symbol used in this report.
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As the duration of respiratory cycles can change over time, time–

frequency representations were resampled to fit the linearized

respiratory cycles. Energy density was no longer represented as a

function of time and frequency but instead as a function of respiratory

phase and frequency. Several phase–frequency representations can be

compared and averaged while preserving the temporal course of LFPs.

However, this requires normalization of the energy in phase–

frequency representations. Phase–frequency representations were

normalized over the pre-stimulus period. Theoretical and practical

aspects of time–frequency representations based on wavelet trans-

forms have been described by Vialatte et al. (2007).

Wavelet ridge extraction: information about the oscillatory epochs

A particular application of wavelet analysis was implemented to

extract the characteristics of the LFP bursts from the PY matrix. The

analysis was performed in two steps. The first step involved a sweep

of the low time-resolution coefficient matrix (i.e. the matrix computed

from the under-sampled signal) for the detection of local maximum

energy points, which correspond to the peaks of oscillatory activity.

A threshold Ts was set for the detection of maxima to segregate signal

from noise. Ts was defined as

Tsðf Þ ¼ Eðf Þ þ SD � b; ð1Þ

where E( f ) is the averaged energy of the pre-stimulus period at

frequency f, SD the SD of the same period and b an arbitrary constant

(set to 6 in our case).

For each local maximum detected above the threshold, a higher

resolution wavelet transform was then computed locally to detect the

path of lowest energy decrease. This path was defined as the wavelet

ridge. For each point (/, f ) of the ridge, we obtained instantaneous

frequency and phase with E( f ) ¼ T. When the algorithm proceeded to

a point at which E(/, f0) < Ts the detection process stopped. All

extracted characteristics were stored in a MySQL engine database

(MySQL AB). Several processing steps are summarized in Fig. 1

(top).

Data computation

After the LFP analysis step, all data were stored in a MySQL engine

database. For each burst of oscillatory activity evoked by odor

stimulation, the following parameters were stored: frequency,

respiratory phase at the point of maximum energy and duration

(expressed in radian, from 0 to 2p). Data with poor signal-to-noise

ratios were eliminated. Wavelet ridge extraction was performed on

the remaining recordings. As each burst was detected from the 14

recording points of the electrode, burst characteristics were averaged

across the 14 points in the gamma or beta bands. Therefore, each

individual odor stimulation was processed into a set of oscillation

features comprising an average frequency, average duration and

average respiratory phase. When the LFP oscillated in both bands,

the set contained separate average values for each band. Data

analysis was performed on 25 repetitions of the set of odors,

recorded in 14 different animals (cf. Fig. 1). Some animals were

Fig. 1. From recording sessions to analysed results. Top: Signal-processing suite. From left to right: each file, which contains 14 signals from the 14 channels of the
electrode plus the respiratory monitoring, undergoes several steps of data processing, including wavelet transform and ridge extraction. The results are stored in a
database and visualized as time–frequency representations (TFRs). After normalization, the respiration is used to construct phase–frequency representations (PFRs)
and measure the respiratory phase parameter. Each file produces a set of intrinsic oscillation features. All files are used both to obtain odds values and to construct a
multinomial logistic regression model. Bottom: Organization of the recording sessions and data nomenclature. Each animal was used to record one or several sets;
each set contains 10 files, each corresponding to one of the 10 odorants. A total of 25 sets were recorded from 14 different animals. From the resulting 250 files, 43
were eliminated because of noise or electrophysiological parasites.
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used to record several sets of signals from different recording sites.

The 25 sets are considered statistically independent. After LFP

analysis and averaging, statistical analysis was performed for 207

sets of oscillation features.

Statistical analysis

Each odorant can be described via its F and L (see Table 1). Each set

of oscillation features contains averaged LFP characteristics describ-

ing respiratory phase, duration and frequency. The variable F was

qualitative, whereas L was quantitative. Therefore, each statistical

unit involves both an odor and a set of oscillation features. All of the

statistical analyses were performed using R (R: A Language &

Environment for Statistical Computing, R Development Core Team,

R Foundation for Statistical Computing, 2006) and SAS (SAS

Institute Inc., SAS 9.1.3 Help and Documentation, Cary, NC, USA,

SAS Institute Inc., 2000–04) statistical software. The aim was to

study the relationship between the odors (F and L) and the

oscillating burst characteristics (respiratory phase, duration and

frequency).

First, we used the R k-means clustering technique (Hartigan &

Wong, 1979) to cluster observations based on their frequencies. We

obtained two burst groups, one with low frequency and one with

high frequency. We have referred to these groups as beta and

gamma bursts. Next, histograms were made with the R hist function

to visualize the differences in the duration distribution between

gamma and beta bursts. The same procedure was completed for the

respiratory phase variable. To investigate if there were significant

mean differences for the frequency, duration and respiratory phase

variables between these two groups, we performed a manova and

anova constructed from the whole data set, using the cluster factor

(which corresponds to the classification of the bursts in the gamma

or beta band or the k-means separation of the two clusters).

A Fisher test was also applied to compare the variability of

duration and respiratory phase for each group. Two other anovas

were conducted on the characteristics (frequency, duration and

respiratory phase) of gamma and beta bursts, using odor identity as

a factor.

Second, we used a multinomial logistic regression to explain the

different observed oscillatory LFP patterns (Long, 1997). We

performed this regression via the SAS CATMOD procedure and the

explanatory variables were L and F. This model enabled us to compute

the probability of obtaining a certain oscillatory pattern, given L and F.

It was also possible to obtain the odds

Xi;jðL; F Þ ¼
Pðpattern ¼ ijL; F Þ

P ðpattern ¼ jjL; F Þ
; i; j ¼ 1; 2; 3;

which gives the probability ratio i pattern : j pattern evoked by a

specific odorant. In this framework, Wald and likelihood ratio tests

were performed to examine effect significance and model validity.

Finally, we calculated the correlation factor between odds values and

SVp with R using the Pearson method.

Results

Twenty-five recording sessions were performed on 14 adult Wistar

male rats. Each set gathered 10 recordings, with one recording per

odor. After wavelet transform processing, files were averaged as

described in Materials and methods. The following results were

obtained through analysis of the 207 recording files.

Molecular features do not determine the intrinsic

characteristics of LFP oscillations

Odor-evoked LFP oscillations are characterized by their oscillatory

frequency, duration and respiratory phase. Based on their oscillatory

frequency, we distinguished two categories of bursts: fast bursts

referred to as gamma oscillations, with frequency ranging from 40 to

80 Hz, and slow bursts referred to as beta oscillations, with

frequency ranging from 10 to 35 Hz. Objective classification into

beta or gamma categories was performed using the k-means

clustering tool. Using this classification as a factor (designated as

‘cluster factor’), an anova was performed on the characteristics of

the bursts. The results shown in Table 2 reveal that bursts classified

as beta or gamma may also be sorted based on their duration and

respiratory phase values. The characteristics of beta and gamma

bursts are illustrated in Fig. 2. Bursts in the gamma band are

characterized by a short duration and a respiratory phase mainly

centred around 0, which indicates that these bursts occur mainly at

the transition between inspiration and expiration. Conversely, bursts

in the beta band are characterized by a long duration and a

significantly variable respiratory phase (Fisher test, P-value

<< 0.001).

We then analysed the effect of the ‘odor identity’ factor on the

characteristics of the bursts (anova, cf. Table 3). Within the gamma

range, odor had no influence on any of the characteristics. However, in

the beta range, the respiratory phase of the bursts appears to vary

significantly with the odor factor. This accounts for the variability in

respiratory phase characterizing beta bursts in Fig. 2. In conclusion,

the only oscillation intrinsic feature varying with odor is the

respiratory phase of beta oscillations.

Odor quality determines the temporal patterning

of bulbar oscillations

We showed that different odors evoke LFP bursts with very little

variation in their intrinsic characteristics. However, it appeared that

different odors induced oscillations in the beta and ⁄ or gamma ranges

with different probabilities. Earlier studies (Buonviso et al., 2003,

2006) reported that the two oscillatory regimes were related to the

breathing cycle in an alternating fashion (Fig. 3a and b). Gamma

oscillations occur around the transition between inspiration and

expiration, whereas beta oscillations occur primarily during expira-

tion and its subsequent plateau. The use of a large set of odorants in

this study allowed us to observe a temporal pattern of LFP

oscillations that we did not describe in our previous studies. An

example of such a pattern is presented in Fig. 3b. Surprisingly, the

Table 2. anova summary: oscillation feature comparison between the two

frequency bands

Comparisons and
variables Factor F ratio P-values

manova Cluster F2,533 ¼ 95.206 P << 0.001***

anova

Fr Cluster F2,533 ¼ 600.82 P << 0.001***
Ph Cluster F2,533 ¼ 4.999 P ¼ 0.0071**
Du Cluster F2,533 ¼ 178 P << 0.001***

7 Influence of the cluster factor on the frequency (Fr), duration (Du) and respi-
ratory phase (Ph) characteristics of the odor-evoked LFP oscillations. Signifi-
cance levels are indicated with standard annotations (ns > 5% >
* > 1% > ** > 0.1% > ***). The cluster factor corresponds to the clusters
defined by the k-means tool.
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pattern is mainly characterized by a lack of activity in the gamma

band and an occasional shift in the respiratory phase of the beta

bursts.

Although both patterns could be observed in response to stimu-

lation by any given odor from our set, we observed a strong

predominance of this latter pattern in response to odors containing the

alcohol chemical group. Faced with this observation, we formulated

the hypothesis that the chemical features of odors may influence the

temporal pattern of LFP oscillatory activity. To test this hypothesis,

we used our data as a basis to construct a statistically valid model of

the odor-related patterning of bulbar oscillations. This model was

then used to predict the probability that an odor would elicit any one

of the following three oscillatory patterns: (i) alternating bursts of

gamma and beta oscillations (standard pattern); (ii) beta oscillatory

bursts with no activity in the gamma band (gammaless pattern); or

(iii) gamma oscillatory bursts with no activity in the beta band

(betaless pattern). Figure 4 shows the model’s predictions for the

probability of each available combination of L and chemical F

eliciting the three LFP patterns. It appears that the probability for

each pattern (standard, betaless and gammaless) varies with F and L.

A Wald test was used to evaluate the significance of the model. It

yielded a P-value of 0.05 for the L factor and a P-value less than

0.001 for the F factor. The two leftmost columns in Fig. 4 show the

variations in pattern probabilities related to the L for alcohol and ester

molecules. As the L increases (from 5 to 10), so does the probability

of eliciting a gammaless pattern. Conversely, the probability of

eliciting a standard pattern decreases along this same interval. Hence,

the results obtained from this model suggest that LFP patterns, if not

precisely odor-specific, are still influenced by the chemical charac-

teristics of odors. In a preliminary experiment, we compared the LFP

patterns elicited in four distinct regions of the OB (antero-medial,

antero-lateral, postero-medial and postero-lateral quadrants) by sev-

eral odors. Data analysis revealed no significant difference in LFP

activity between quadrants. We are therefore confident that the

differences in patterns that we see here are related to odor features

and not to recording site.

Odor vapor pressure determines the probability of gamma

occurrence within the limits of a chemical family

The multinomial logistic regression revealed that odor identity, i.e.

L ⁄ F pair, determines the probability of oscillation temporal patterning.

However, a recent study has demonstrated that odor vapor pressure

determines the range of oscillatory frequency (Lowry & Kay, 2007).

Therefore, in a last step, we wanted to verify that the variations in

temporal pattern that we observed were not simply due to differences

in vapor pressure within our odor set. We proceeded as follows. We

had to quantify the variation in oscillation temporal patterning induced

by each odor. This was achieved by calculating an ‘odds value’

representing the ratio of the probability of eliciting the standard pattern

over the probability of eliciting the gammaless pattern (beta and

gamma ⁄ beta). Each odor is characterized by one and only one odds

value reported in Fig. 4. An odds value less than 1 indicates that an

odor displays a higher probability of eliciting a gammaless pattern

than a standard pattern. As all odors were delivered at the same

fraction of their SVp, we were able to test the correlation between the

probability of an odor inducing gamma oscillations (odds values) and

SVp of the odor. The correlation between odds values and SVp was

determined with the inbuilt R function and evaluated with the Pearson

test. If SVp were the only parameter determining the pattern, SVp and

odds values should correlate perfectly. As illustrated in Fig. 5a, a good

correlation (r ¼ 0.5, Pearson P-value << 0.0001) was found between

the two parameters. However, when odors are sorted into sub-groups

(alcohol and ester groups), we found that SVp and odds values were

more strongly correlated (r ¼ 0.9 for each group, Pearson

Fig. 2. Intrinsic oscillation feature comparison between the two frequency
bands. (a) Distribution of oscillatory burst durations in the gamma (left) and beta
(right) bands. This analysis is based on non-averaged LFP characteristics,
regardless of the odorant used for the stimulation. Oscillations in the gamma band
are highly reproducible and characterized by a short duration. (b) Distribution of
respiratory phase of the gamma (left) and beta (right) bursts. Phase 0 corresponds
to the transition between inspiration and expiration. The respiratory phase of beta
oscillations is spread out over the entire respiratory cycle.

Table 3. anova summary: molecular features do not determine the intrinsic

characteristics of LFP oscillations

anova variable Factor F ratio P-value

Gamma band
Fr Odor F9,115 ¼ 1.032 n.s.
Ph Odor F9,115 ¼ 1.136 n.s.
Du Odor F9,115 ¼ 1.179 n.s.

Beta band
Fr Odor F9,181 ¼ 1.659 n.s.
Ph Odor F9,181 ¼ 2.186 0.025*
Du Odor F9,181 ¼ 1.212 n.s.

Influence of the odor identity factor on the intrinsic characteristics of odor-
evoked bursts elicited in the gamma and beta ranges. Gamma bursts appear not
to vary with the odor. The odor identity factor does have a significant effect on
the respiratory phase (Ph) of odor-evoked bursts in the beta range. Significance
levels are indicated with standard annotations (ns > 5% > * > 1%). Du,
duration; Fr, frequency.
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P-value << 0.0001; Fig. 5b and c). Furthermore, a major difference

appears between the two families: odds values for alcohols are always

£ 1, whereas odds values for esters are always ‡ 1 (Fig. 5b and c). This

means that alcohols have a high probability of evoking the gammaless

pattern, whereas esters have a high probability of triggering the

standard pattern. Taken together these results indicate that, for the

same F, SVp determines the probability of gamma occurrence. This

relation is no longer true for molecules with different Fs.

To illustrate the discontinuities between odds values and SVp

values when odors belong to different families, we chose two

examples. In Fig. 6a, odors (E07 vs. A06) elicit patterns of oscillations

far more different than would be predicted from their close SVp values

(124 and 91 Pa, respectively). The odds values for these two odors

indicate that patterns would be quite dissimilar (odds values,

A06 ¼ 0.83, E07 ¼ 1.78). The opposite case is illustrated in

Fig. 6b. Despite having very dissimilar SVps (6 and 293 Pa), these

two odors (E10 and A05, respectively) elicit very similar LFP patterns

that are confirmed by their close odds values (E10 ¼ 0.90;

A05 ¼ 1.04).

In conclusion, it seems that odor quality determines a range of

possible odds values and that the SVp of the odor sets the definitive

odds value of the odor.

Discussion

As previously described (Buonviso et al., 2003), we observed that

odors elicit oscillations in the LFPs that can be strictly separated in

two categories based on several characteristics. The designation of

these oscillations is based on their frequency, and thus we defined two

bands designated as beta and gamma. We show here that bursts of

oscillations could be separated effectively on the basis of their

duration or respiratory phase. Statistical analysis revealed that odor

has little influence over the intrinsic characteristics of the oscillations.

With the exception of the respiratory phase of beta oscillations,

oscillations remain constant regardless of odor identity. Conversely,

odor identity has a strong influence on the temporal patterning of LFP

oscillatory activity. Moreover, for molecules of the same chemical

family, the probability of gamma occurrence is greatly correlated to

Fig. 3. Time–frequency representations (TFRs) of the standard and gammaless patterns. TFRs of bulbar LFP signals. Here, we presented only 2.5 s periods
containing a short part of the pre-stimulus period and three or four respiratory cycles during stimulation. (a) Example of a standard pattern. Top: TFR obtained by
wavelet transformation of the signal in response to stimulation with ester E05 (ethyl pentanoate). The vertical red bar indicates the onset of the stimulation and
corresponds to time zero. The y-axis runs from 5 to 100 Hz. The standard pattern shows alternating epochs of oscillations in the beta and gamma bands. Energy is
color coded: blue, low energy; red, high energy. Bottom: upper trace, raw signal. A diamond background indicates a gamma oscillation, whereas a striped
background indicates a beta oscillation. Lower trace: respiration. Shaded and white areas correspond to inspiration and expiration phases, respectively.
(b) Example of a gammaless pattern. TFR obtained by wavelet transformation of the signal in response to stimulation with alcohol A06 (hexanol). Note that the
gammaless pattern shows strong bursts of oscillations in the beta band only. Same codes as in (a). Bottom: same legend as in (a).
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odor vapor pressure. This correlation is not so strong for odors with

different Fs.

Determination of temporal patterning by odorant features

Each molecule has the ability to elicit both standard patterns, which

are characterized by alternating bursts in the gamma and beta bands,

and gammaless patterns, which are characterized by beta oscillations

alone, with different probabilities. The ratio between these two

probabilities has been defined as an odor’s odds value. For odors with

a similar F (homologous series of alcohols or esters), odds values are

correlated with the L of the molecule. For the same F, the longer the

odor’s carbon chain, the lower its SVp (volatility) and the lower its

probability to evoke oscillations in the gamma range. As suggested by

the recent work of Lowry & Kay (2007), SVp is a good estimator of

the airborne concentration of the odor. In such conditions, we may

assume that odds values within a chemical family are determined by

the airborne concentration of the molecules. However, our data show

that the correlation between odds values and SVp is greatly enhanced

when odors belong to the same chemical family (see Fig. 5). Within

Fig. 5. Correlation between SVp and odds values. The SVp values were estimated with the EPI v3.11 (Estimation Programs Interface) software suite developed by
the US Environmental Protection Agency’s Office of Pollution Prevention Toxics and Syracuse Research Corporation. (a) Correlation for all odors used in the
stimulation protocol, with first-degree best polynomial fit of equation f (x) ¼ 0.01436x + 0.46561. Correlations within alcohol (b) and ester (c) chemical families,
with first-degree best polynomial fit of equations f (x) ¼ 0.001998x + 0.501441 and f (x) ¼ 0.002516x + 1.314804, respectively.

Fig. 4. Odor quality determines the temporal patterning of bulbar oscillations. Probability histograms for three patterns of oscillations: standard (beta and gamma,
unfilled bars), gammaless (beta, grey bars) and betaless (gamma, black bars. The vertical scale indicates the probability of a pattern occurrence. All results presented
here come from the model constructed from our experimental data. Histograms are ordered as a function of both L of the odor molecules (rows: from bottom to top
10, 7, 6 and 5 carbons) and molecular F (columns: A, E, K and D). The odds value associated with each molecule is indicated at the upper right corners.
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two chemical families (alcohol and ester), the relationship between

SVp and odds value is nearly linear and thus very comparable. A

notable difference in these relationships lies in the fact that the overall

odds value for alcohols is below 1, whereas the overall odds value for

esters is above 1. This suggests that the chemical family determines a

range of possible odds values and that the vapor pressure of the odor

will set the definitive odds value of the odor in particular conditions.

By setting the range in which the odds value will vary, the chemical

family categorizes the odor at a very early stage of olfactory

information processing.

Significance of different oscillatory frequency ranges

We observed that gamma oscillations, when they exist, occur with the

same respiratory phase around the transition between inspiration and

expiration. This phase corresponds to the moment of maximal

amplitude on an electro-olfactogram (Chaput, 2000), which is

probably also the time of maximal neuroreceptor activation. This

observation led us to the hypothesis that gamma occurrence could be

related to the time of maximal concentration in the olfactory

epithelium, implying therefore that gamma oscillations would reflect

a high afferent input excitation. The observation that beta waves occur

mainly during expiratory epochs when the concentration of the

odorant molecule is lower in the olfactory epithelium supports this

assumption. This interpretation is in agreement with the report of

Neville & Haberly (2003) that odors at high concentrations induced

prominent gamma frequency oscillations, whereas those at lower

concentrations elicited beta oscillations. However, in waking animals,

high power in the beta spectrum is obtained in response to highly

volatile odors (Lowry & Kay, 2007). This discrepancy might be

explained by the sniffing behavior of the animal, which could produce

a different influx of molecules into the nasal cavity.

We observed in our study that aliphatic alcohols mostly elicited

LFP patterns characterized by a lack of gamma oscillations.

According to the preceding discussion, the assumption can be made

that odors inducing gammaless patterns are composed of molecules

that poorly activate the olfactory epithelium. Such a poor activation

may originate from different circumstances, e.g. (i) low airborne

concentration of the odor in the nasal cavity (possibly linked to a

low SVp); (ii) low number of receptor neurons tuned to the odor;

(iii) difficult access to the receptor site; or (iv) low solubility and ⁄ or

high hydrophobicity. This hypothesis finds support in a recent report

showing that electro-olfactogram response modulation by sniff rate

and decay time varies with molecular odorant features (Scott et al.,

2006).

Functional relevance

Our results can be compared with those from the optical imaging of

intrinsic signals obtained by Uchida et al. (2000). Indeed, these

authors report that odor receptors possessing a common molecular-

feature receptive site are grouped together and represented by

glomeruli that are localized in topographically fixed domains in the

OB. Various structural features differentially influence the spatial map

of activated glomeruli. The F has been designated as the ‘primary

feature’ of the molecule and the L has been designated as a ‘secondary

feature.’ The former characterizes a domain of activated glomeruli in

the spatial map and the latter represents the local arrangement of

activated glomeruli within the domain. Moreover, a domain exhibits a

polarity such that a systematic and gradual shift of the positions of

Fig. 6. Patterns of oscillations evoked by two pairs of odors. Phase–frequency representations of odor-evoked LFP patterns. All respiratory cycles from the
stimulation epoch are averaged. Energy is color-coded: blue, low energy; red, high energy. Odds values are indicated at upper right corners. SVp values are as
follows: E07, 91 Pa; A06, 124 Pa; E10, 6 Pa; A05, 293 Pa. (a) Two odors with dissimilar odds values induce dissimilar LFP patterns. E07 (left) evokes high energy
in the gamma band with a negative beta respiratory phase. In contrast, A06 (right) evokes mainly beta oscillations with a positive respiratory phase. (b) Two odors
with close odds values induce very similar LFP patterns, with little energy in the gamma band and a positive respiratory phase for beta oscillations.
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activated glomeruli occurs with an increase in the L of odors. Thus, a

parallel can be drawn as follows: the ‘primary feature’, or F,

determines both the domain in glomerular maps and the odds value

range in our data. The ‘secondary feature’, or L, determines the local

position in the glomerular map and the evolution of odds values within

the range determined by the chemical family. This last statement is in

agreement with our observation that a relationship exists between odds

value and SVp within a chemical family. The concept could be refined

by introducing supplemental features, each of which describes a

molecular property. It is the sum of all features that will ultimately

determine the elicited pattern of oscillations.

From a functional point of view, it is plausible that the molecular

features of the odors (steric size, solubility, number of double bonds,

etc.) define the pattern of neuroreceptor activation. Peripheral

activation can be assumed to evoke an odor-specific glomerular

spatial map that is converted into an odor-specific spatio-temporal

map of oscillatory LFP activity. The exact role that the LFP may

play in information coding is as yet unknown but several studies

suggest that the LFP reflects synaptic, rather than spiking, activity.

Thus, LFPs could provide a temporal frame, underlying and pacing

the spiking activity, that would vary with olfactory stimulus

characteristics. The importance of LFPs lies in the possibility that

4 they may structure the time dimension of bulbar output. Therefore,

temporal structuring of bulbar output might reflect the molecular

features of an odor, including both its chemical family and its more

precise identity within the family. This view is supported by the

report from Friedrich et al. (2004), which reveals a simultaneous

conveyance of both odor category and identity by the same

population of zebrafish bulbar neurons, a multiplexing strategy

based on a double time-scale reading. The temporal frame provided

by LFP oscillations may be involved in a similar strategy in the

rat OB.
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