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Abstract. Swirling turbulent flows display intermittent pressure drops associated with intense vorticity
filaments. Using the wavelet transform modulus maxima representation of pressure fluctuations, we propose
a method of characterizing these pressure drop events from their time-scale properties. This method allows
us to discriminate fluctuations induced by just formed (young) as well as by burst (old) filaments from
background pressure fluctuations. The statistical characteristics of these filaments (core size, waiting time)
are analyzed in details and compared with previously reported experimental and numerical findings. Their
intermittent occurrence is found to be governed by a pure Poisson’s law, the hallmark of independent
events. Then we apply the wavelet transform modulus maxima (WTMM) method to the background
pressure fluctuations. This study reveals that, once removed all the filaments, the “multifractal” nature of
pressure fluctuations still persists. This is a clear indication that the statistical contribution of the filaments
is not important enough to account for the intermittency phenomenon in turbulents flows.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.+j Fluctuation phenomena,
random processes, and Brownian motion – 47.27.Gs Isotropic turbulence; homogeneous turbulence –
47.32.-y Rotational flow and vorticity

1 Introduction

Most experiments reported so far in three-dimensional
fully developed turbulence attempted to characterize the
statistical properties of either the velocity [1–8] or the dis-
sipation [9–12] fields. The fluctuations of these two quanti-
ties are supposedly related by the so-called Kolmogorov’s
refined self-similarity hypothesis [13]. Experimental data
were thus used to test the validity of this hypothesis as
well as the relevance of various statistical cascade models
[2–7,12]. But these works only brought very limited infor-
mation about the origin of turbulence. In particular, still a
little is known about the existence, the dynamics and the
specific role of coherent structures in three-dimensional
turbulent flows [14–18]. Recently, the observation and the
characterization of well organized structures have received
some renewed interest from both a numerical [19–29] and
an experimental [30–42] point of view.

Since the original numerical work of Siggia [19], several
simulations have shown the existence of high vorticity re-
gions structured in cylindrical shapes, vorticity filaments
or vortex sheets [20–29]. When processing images of these
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regions of high vorticity concentration, one observes that
low pressure regions correspond to vorticity filaments [22–
26]. Moreover, when using conditional visualization tech-
nique involving vorticity (ω = ∇ ∧ v) and strain rate

(σ2 = 1
2

∑
ij(

∂vi
∂xj

+
∂vj
∂xi

)2), one shows that the regions of

both large vorticity and weak strain rate have the shape
of elongated filaments [28]. In contrast, the regions with
both large vorticity and large strain rate are flat layers
with a shape of pancakes. Indeed the vorticity and the
strain rate are connected by the relation [43]:∫

V

ω2dV =

∫
V

σ2dV =
1

ρν

∫
V

εdV , (1)

where ν is the kinematic viscosity, ρ the density and ε the
dissipation rate.

Equation (1) suggests that the intermittent spatial dis-
tribution of ε should be mirrored in some way in the in-
termittent spatial distribution of ω. But the dissipation
field, likewise the vorticity field, requires the simultane-
ous recording of the three components of the velocity
which is at the moment feasible for numerical simulations
but hardly accessible experimentally. A very attractive al-
ternative strategy consists in studying vorticity filaments
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via direct measurement of pressure fluctuations [33–37].
Actually, in an incompressible fluid, it is well known that
the pressure obeys a Poisson’s equation derived by taking
the divergence of the Navier-Stokes equations [30]:

2

ρ
∆p = ω2 − σ2 . (2)

One can thus develop an analogy with electrostatics where
the pressure corresponds to the potential resulting from
negative and positive charges distributed in proportion
to the square of vorticity and to the energy dissipation
respectively. The regions of intense vorticity thus act as
sources of low pressure and when vorticity predominates
over dissipation they cause strong depressions.

Along the line of the above argument, Douady
et al. [30] devised a direct visualization method of the low
pressure regions which consists in seeding a medium (a wa-
ter layer confined in a gap between coaxial contra-rotating
disks) with small air bubbles which migrate through the
pressure gradient towards the depression cores. Using this
technique, they clearly evidenced the intermittent for-
mation of bubble filaments in these turbulent Von Kar-
man swirling flows which confirms that vorticity has a
strong tendency to concentrate in tube-like structures. Ex-
periments in similar closed rotating flow configurations
were performed with fluids of various viscosities (diluted
glycerol [33–37], water [30–37], helium [41,44–47]) in or-
der to scan a wide range of Reynolds numbers. This bub-
ble visualization technique has been further used in differ-
ent experimental set-ups; let us mention that Villermaux
et al. [40] have observed intense bulk vortical structures in
a mean shear free, homogeneous, isotropic, stationary tur-
bulence generated by oscillating grids. These rather qual-
itative visual observations were supplemented by pressure
[33–37] and velocity [34,35,41,46,47] fluctuation measure-
ments and also by the investigation of pressure-velocity
correlations [34,35]. Most of the pressure measurements
in the Von Karman swirl geometry were performed at the
flow boundaries using piezoelectric transducers mounted
through the wall of the cylindrical cell [34–37]. More re-
cently, Dernoncourt et al. [42] have used ultrasound scat-
tering technique to proceed to direct measurement of the
vorticity in the bulk of the turbulent flow. By assisting
pressure measurements with bubble visualization tech-
nique, Cadot et al. [34,35] have checked the direct cor-
respondence between the recorded deepest pressure drops
and the simultaneous observation of a filament passing by
the point of measurement. In particular, these vorticity
filaments were shown to be responsible for the deviation
from a Gaussian distribution (observed on the high pres-
sure side) of the (negative) low pressure tail of the pressure
fluctuation histogram which displays a clear exponential
dependence.

The role of vorticity filaments in fully developed turbu-
lent flows is without any doubt, one of the very challenging
issues that has received considerable interest during the
past few years in the turbulence community [22–
42]. As reported in references [34], these intense vortical

structures are likely to play an important role in the dy-
namical structuration of the flow. The way they form, as
well as the way they disappear via some vortex breakdown
instability into smaller and thinner braided vortices (that
are likely to correspond to the “worms” observed numeri-
cally by Jimenez et al. [27]), may be crucial mechanisms to
account for the intermittency phenomenon [1–4]. Vortic-
ity filaments are localized structures which clearly violate
Kolmogorov 1941 (K41) hypothesis that assumes homo-
geneity and isotropy [48]. One may thus wonder whether
they are at the origin of the experimental departure from
K41 scaling observed when studying velocity fluctuation
statistics [8]. In other words, one would be pleased to know
up to which extend these vorticity filaments can be associ-
ated with intermittency. In previous experimental studies,
vortex filaments were detected using standard threshold-
ing technique on either pressure [34,35] or velocity deriva-
tive [41] measurements. This amounts to associate these
filaments with the low pressure tail of the pressure fluctu-
ation histogram or with the tails of the velocity derivative
fluctuation histogram. The need of using a more reliable
technique was raised by Abry et al. [37,38] who proposed
to detect, characterize and remove the low pressure drops
from the orthogonal wavelet decomposition of the experi-
mental pressure signals. This more sophisticated method
relies on the remark that large depressions have a charac-
teristic pulse-like shape which involves a rather wide range
of scales, a property which can be easily identified by the
discrete wavelet transform; it just consists in looking at
the time coincidence of large detail-coefficients on many
different scales. In rather good agreement with the results
of numerical simulations [27–29], it seems well established
experimentally [34–39,42] that the length of the vortic-
ity filaments corresponds to the largest scale of the flow
namely the integral scale L, while their average core size
is of the order of the Taylor microscale λ. Another very in-
teresting experimental observation [34–37] is the fact that
pressure drops scale like U2, the square of the injection
velocity, which indicates that the characteristic velocity
increment on the core of the vortex is of the order of the
integral velocity of the turbulent flow. As far as their sta-
tistical temporal distribution is concerned, the investiga-
tion of the probability density function (PDF) of the wait-
ing time ∆t between two successive vorticity filaments,
reveals an exponential tail for large time intervals char-
acteristic of a Poisson statistics [34,35,37,38]. For wait-
ing times smaller than the turn-over time (e.g. the period
of rotation of the disks in the Von Karman swirling flow
experiments), the waiting time PDF decays algebraically
which indicates that the depressions are no longer inde-
pendent. Actually, as reported by Cadot et al. [34,35], the
visualization shows that for short waiting times, the de-
pressions are strongly correlated due mainly to two differ-
ent reasons: (i) a filament can pass back and forth several
times on the transducer; (ii) during vortex breakdown, the
main filaments burst into several twisted and sometimes
braided thinner (i.e. with a core size of the order of the
Kolmogorov dissipation scale η) and shorter (i.e. with a
characteristic length of the order of the Taylor microscale
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λ) filaments that are likely to correspond to the “worms”
observed numerically by Jimenez et al. [27]. Some prelim-
inary attempts to investigate the statistical contribution
of the vorticity filaments [37–39,41,49] have confirmed the
numerical observation [27] that the effect of the elimina-
tion (from the statistics) of the filaments on the energy
spectrum is somewhat negligible. But to our knowledge,
there is no currently available quantitative estimation of
the contribution of the vorticity filaments to intermittency
[38,39], i.e. to the observed experimental departure from
K41 scaling [8].

The aim of the present work is to revisit previ-
ous analysis of pressure measurements in swirling turbu-
lent flows [34–37] using the continuous wavelet transform
(CWT) [50–63]. As compared to the orthogonal wavelet
based approach developed by Abry et al. in reference [37],
the CWT presents the crucial advantages of providing a
continuous investigation of the range of scales available to
the analysis and of being a representation that is invariant
under time translation. As emphasized in early works [64–
72], the CWT can be seen as a mathematical microscope
which is well adapted for characterizing the scaling prop-
erties of fractal objects. In particular, the skeleton of the
CWT defined by the wavelet transform modulus maxima
(WTMM) [73,74] was shown to contain all the informa-
tion concerning the hierarchical distribution of the sin-
gularities of these objects. The so-called WTMM method
introduced in references [75–81], provides a technical way
of quantifying the relative statistical contributions of the
singularities present in the data via the computation of
the D(h) singularity spectrum. This revisited multifractal
formalism consists in investigating the scaling behavior of
some partition functions defined on the WT skeleton. The
key-point of the present study is that when focusing the
CWT microscope on a strong depression, this pulse-like
structure appears as a very strong singularity (i.e. a Dirac
peak) when one continuously increases magnification from
the integral scale down to the scale of the filament core
below which the pressure signal is smooth [60,82]. The
maxima lines corresponding to these very strong “quasi”
singularities are thus a priori easily distinguishable from
the other maxima lines associated with weaker singulari-
ties characteristic of the background pressure fluctuations.
Our goal is to define a protocol in order to identify in
the WT skeleton, the set of maxima lines corresponding
to the vorticity filaments. Then, by investigating system-
atically these maxima lines, one will be able to extract
quantitative information on the structural characteristics
of these filaments as well as on the way they are chronolog-
ically distributed. Furthermore, by applying the WTMM
method on both the whole pressure WT skeleton and the
“sub-skeleton” defined after removing the maxima lines
corresponding to the filaments, one will be able to carry
out a comparative multifractal analysis which will allow
us to quantify the statistical contribution of the vorticity
filaments to the so-called intermittency phenomenon.

The paper is organized as follows. In Section 2, we re-
view some background material on the CWT [50–63]. We
present the CWT as a mathematical microscope which

is well suited for scanning the singularities of fractal
functions [64–74]. We describe the WTMM method [75–
81] as a natural generalization of box-counting algorithms
[66,83–85] and structure-function techniques [1–3] pre-
viously used for multifractal analysis of singular mea-
sures and multi-affine functions respectively. In Section
3, we apply the CWT to detect the presence of vortic-
ity filaments in pressure measurements [60]. We calibrate
the CWT based technique on stretched Burger vortex, a
well accepted model for filaments [34,35,39,41]. We define
some criteria to select the WT maxima lines that corre-
spond to vorticity filaments. We show also how to get in-
formation on the characteristic features of these localized
structures from the behavior of the WT modulus along
these maxima lines. We then apply our technique to exper-
imental pressure data recorded by Couder and collabora-
tors [33–35] in a Von Karman swirling flow experiment. We
show that our methodology allows us to detect not only
the deepest pressure drops associated with just formed
rather straight filaments passing over the transducer but
also some wider and more complex pressure drop patterns
that are likely to be the signature of older filaments just
after their breakdown. Section 4 is devoted to a quantita-
tive analysis of the filament structural characteristics via
a systematic investigation of the WT sub-skeleton defined
by the maxima lines identified as corresponding to vortic-
ity filaments. This sub-skeleton is further used to study
the statistics of the waiting times between successive vor-
ticity filaments. We comment on our results comparatively
to the results obtained with different techniques in previ-
ously published works. In Section 5, we address the issue
of the statistical contribution of the vorticity filaments
to intermittency. We apply the WTMM method succes-
sively to the whole WT skeleton of the pressure data and
to the sub-skeleton obtained once discarded the maxima
lines corresponding to the filaments. On a more general
ground, we discuss the actual relevance of the multifrac-
tal description of pressure fluctuations. We conclude in
Section 6.

2 Singularity detection and processing
with the wavelet transform modulus maxima

The continuous wavelet transform (CWT) is a mathemat-
ical technique introduced in signal analysis in the early
eighties [50,51]. Since then, it has been the subject of
considerable theoretical developments and practical ap-
plications in a wide variety of fields [52–63]. The CWT
has been early recognized as a mathematical microscope
that is well adapted to reveal the hierarchy that governs
the spatial distribution of the singularities of multifractal
measures [62–72]. What makes the CWT of fundamental
use in the present study is that its singularity scanning
ability equally applies to singular functions than to singu-
lar measures [78–82].
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2.1 The continuous wavelet transform

The CWT is a space-scale analysis which consists in ex-
panding signals in terms of wavelets which are constructed
from a single function, the analyzing wavelet ψ, by means
of translations and dilations. The CWT of a real-valued
function f is defined as [50,51]:

Tψ[f ](x0, a) =
1

a

∫ +∞

−∞
f(x)ψ(

x− x0

a
)dx , (3)

where x0 is the space parameter and a (> 0) the scale pa-
rameter. The analyzing wavelet ψ is generally chosen to
be well localized in both space and frequency. Usually ψ
is required to be of zero mean for the CWT to be invert-
ible. But for the particular purpose of singularity tracking
that is of interest here, we will further require ψ to be
orthogonal to some low-order polynomials [64–69,78,79]:∫ +∞

−∞
xmψ(x)dx , ∀m , 0 ≤ m < nψ . (4)

As originally pointed out by Mallat and collaborators [73,
74], for the specific purpose of analyzing the regularity
of a function, one can get rid of the redundancy of the
CWT by concentrating on the WT skeleton defined by its
modulus maxima only. These maxima are defined, at each
scale a, as the local maxima of |Tψ[f ](x, a)| considered as
a function of x. As illustrated in Figure 5b, these WTMM
are disposed on connected curves in the space-scale (or
time-scale) half-plane, called maxima lines. Let us define
L(a0) as the set of all the maxima lines that exist at the
scale a0 and which contain maxima at any scale a ≤ a0.
An important feature of these maxima lines is that, wher-
ever the analyzed signal displays scale invariance, there
is at least one maxima line pointing towards the cor-
responding singularity from which one can estimate its
strength [73–81].

2.2 Scanning singularities with the wavelet transform
modulus maxima

The strength of a singularity of a function is usually de-
fined by an exponent called Hölder exponent. The Hölder
exponent h(x0) of a function f at the point x0 is defined as
the largest exponent such that there exists a polynomial
Pn(x) of order n satisfying [60–63]

|f(x)− Pn(x− x0)| ≤ C|x− x0|
h , (5)

for x in a neighborhood of x0. If h(x0) ∈]n, n+1[, one can
easily prove that f is n times but not n+1 times differen-
tiable at the point x0. The polynomial Pn(x) corresponds
to the Taylor series of f around x = x0, up to the order
n. Thus h(x0) measures how irregular the function f is
at the point x0. The higher the exponent h(x0), the more
regular the function.

This definition of the singularity strength naturally
leads to a generalization of the so-called f(α) singular-
ity spectrum introduced for fractal measures in references

[86–88]. As originally defined by Parisi and Frisch [89], we
will denote D(h) the Hausdorff dimension of the set where
the Hölder exponent is equal to h [78,79]:

D(h) = dH{x , h(x) = h} , (6)

where h can take, a priori, positive as well as negative
real values (e.g., the Dirac distribution δ(x) corresponds
to the Hölder exponent h(0) = −1).

Remark

The results reported in this work only apply to (fractal)
functions whose singularities are not oscillating, i.e. satis-
fying f ′ = df/dx is Hölder h(x0)− 1 if f is Hölder h(x0).
We refer the reader to references [90–92] for more details
concerning oscillating singularities (chirps).

The main interest in using the CWT for analyzing the
regularity of a function lies in its ability to be blind to
polynomial behavior by an appropriate choice of the an-
alyzing wavelet ψ. Indeed, let us assume that according
to equation (5), f has, at the point x0, a local scaling
(Hölder) exponent h(x0); then one can easily prove that
the local behavior of f is mirrored by the CWT which
locally behaves like [74,93,94]:

Tψ[f ](x0, a) ∼ ah(x0) , a→ 0+ , (7)

provided nψ > h(x0), where nψ is the number of vanish-
ing moments of ψ (Eq. (4)). Therefore one can extract
the exponent h(x0) as the slope of a log-log plot of the
WT amplitude versus the scale a. On the contrary, if one
chooses nψ < h(x0), then one can still prove that the WT
behaves as a power-law but with a scaling exponent which
is nψ:

Tψ[f ](x0, a) ∼ anψ , a→ 0+ . (8)

Thus, around a given point x0, the faster the WT de-
creases when the scale goes to zero, the more regular f
is around that point. In particular, if f ∈ C∞ at x0

(h(x0) = +∞), then the WT scaling exponent is given
by nψ, i.e. a value which is dependent on the shape of the
analyzing wavelet. According to this observation, one can
hope to detect the points where f ∈ C∞ by just checking
the scaling behavior of the WT when increasing the order
nψ of the analyzing wavelet [76–79]. Let us also remark
that if h(x0) is negative then the WT no longer decreases
but instead increases when the scale a goes to zero; this
remark will be of fundamental use in the next section for
detecting vorticity filaments in pressure signals.

A very important (at least for practical purpose) point
raised by Mallat and Hwang [74] is that the local scaling
exponent h(x0) can be equally estimated by looking at the
value of the WT modulus along a maxima line converg-
ing towards the point x0. Indeed one can prove that both
equations (7) and (8) still hold when following a maxima
line from large scale down to small scale [74,77]. Thus the
WTMM will be our key tool to study isolated singularities.
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In Section 3, they will be at the heart of our strategy to
recognize pressure drops associated to vorticity filaments
from background pressure fluctuations.

The situation is somewhat more intricate when inves-
tigating fractal functions. Indeed the characteristic fea-
ture of these singular functions is the existence of a hi-
erarchical distribution of singularities [64,75–81]. Locally,
the Hölder exponent h(x0) is governed by the singularities
which accumulate at x0. This result in unavoidable oscilla-
tions around the expected power-law behavior of the WT
amplitude [78–81,95]. Therefore the exact determination
of h from log-log plots on a finite range of scales is some-
what uncertain [97,98]. Of course, there have been many
attempts to circumvent these difficulties [81,98]. Never-
theless there exist fundamental limitations (which are not
intrinsic to the WT technique) to the estimate of Hölder
exponents of fractal functions. Consequently the determi-
nation of statistical quantities like the D(h) singularity
spectrum, requires a method which is more feasible and
more appropriate than a systematic investigation of local
scaling behavior of the WT. This is the purpose of the
recently developed waveled-based multifractal formalism
[75–81] that we will explicitly use in Section 5 to analyze
the statistical scaling properties of the background pres-
sure fluctuations.

2.3 A wavelet-based multifractal formalism:
the wavelet transform modulus maxima method

A natural way of performing a multifractal analysis of
fractal functions consists in generalizing the “classical”
multifractal formalism [85–88] using wavelets instead of
boxes. By taking advantage of the freedom in the choice of
the “generalized oscillating boxes” that are the wavelets,
one can hope to get rid of possible smooth behavior that
could mask singularities or perturb the estimation of their
strength h. But the major difficulty with respect to box-
counting techniques [66,83–85] for singular measures, con-
sists in defining a covering of the support of the singular
part of the function with our set of wavelets of different
sizes. A simple method would thus rely on the definition of
the following partition function in terms of wavelet trans-
form coefficients [64,78,79]:

Z(q, a) =

∫
|Tψ[f ](x, a)|qdx , (9)

where q ∈ IR. This method based on a continuous covering
of the real line would be a rather naive generalization of
box-counting algorithms since nothing prevents the WT
coefficients from vanishing at some point (x0, a) of the
space-scale half-plane. The partition function would then
diverge for q ≤ −1.

The wavelet transform modulus maxima (WTMM)
method [75–81] implies that one changes the continuous
sum over space in equation (9) into a discrete sum over
the local maxima of |Tψ[f ](x, a)| considered as a function

of x:

Z(q, a) =
∑
l∈L(a)

|Tψ[f ](x, a)|q . (10)

As emphasized in references [75,78,79], the branching
structure of the WT skeleton in the (x, a) half-plane en-
lightens the hierarchical organization of the singularities.
Thus the WT skeleton indicates how to position the oscil-
lating boxes in order to obtain a partition of the singular
behavior of f , at the considered scale a. Now from the deep
analogy that links the multifractal formalism to thermo-
dynamics [79,88], one can define the exponent τ(q) from
the power-law behavior of the partition function:

Z(q, a) ∼ aτ(q) , a→ 0+ , (11)

where q and τ(q) play respectively the role of the inverse
temperature and the free energy. The main result of this
wavelet-based multifractal formalism is that in place of
the energy and the entropy (i.e. the variables conjugated
to q and τ), one has h, the Hölder exponent, and D(h),
the singularity spectrum. This means that the singular-
ity spectrum of f can be determined from the Legendre
transform of the partition function scaling exponent τ(q)
[77,99]:

D(h) = min
q

(qh− τ(q)) . (12)

From the properties of the Legendre transform, it is easy
to see that homogeneous fractal functions that involve sin-
gularities of unique Hölder exponent h = ∂τ/∂q, are char-
acterized by a τ(q) spectrum which is a linear function of
q. On the contrary, a nonlinear τ(q) curve is the signa-
ture of nonhomogeneous functions that display multifrac-
tal properties, in the sense that the Hölder exponent h(x)
is a fluctuating quantity that depends upon the spatial
position x.

As pointed out in references [78,79], one can avoid
some practical difficulties that occur when directly per-
forming the Legendre transform of τ(q), by first comput-
ing the following Boltzmann weights from the WT skele-
ton:

T̂ψ[f ](q, l, a) =
|Tψ[f ](xl, a)|q

Z(q, a)
, (13)

where Z(q, a) is the partition function defined in equation
(10). Then one computes the following expectation values:

h(q, a) =
∑
l∈L(a)

ln(|Tψ[f ](xl, a)|)T̂ψ[f ](q, l, a) , (14)

and

D(q, a) =
∑
l∈L(a)

T̂ψ[f ](q, l, a) ln(T̂ψ[f ](q, l, a)) , (15)

whose slopes (vs. ln a) provide estimates of h(q) and D(q)
respectively and therefore of the D(h) singularity spec-
trum.
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Fig. 1. Set of compactly supported analyzing wavelets ψ
(n)

(m).
nψ corresponds to the number of vanishing moments. The func-

tions ψ
(n)

(m) are smooth versions of ψ
(n)

(0) obtained after m suc-
cessive convolutions with the box function χ

The WTMM method has been tested on academic ex-
amples, e.g., generalized devil’s staircases and fractional
Brownian motions [75–82]. It has already been successfully
applied to numerical and experimental data from various
domains such as fully developed turbulence [75,78,79,81,
82,100–102], DNA sequences [103–105], finance [106,107]
and fractal growth phenomena [108,109].

2.4 Defining our battery of analyzing wavelets

There are almost as many analyzing wavelets as appli-
cations of the CWT. In previous works [65–72,75–81],
we have mainly used the class of analyzing wavelets de-
fined by the successive derivatives of the Gaussian function

G(N)(x) = dN

dxN
e−x

2/2 for which nψ = N . Throughout this
study, we will rather use the set of compactly supported

analyzing wavelets ψ
(n)
(m) plotted in Figure 1 [82,100]. They

are constructed from Dirac distributions (ψ
(n)
(0) ) via succes-

sive convolutions with the box function χ. The index mψ,
corresponding to the number of convolutions, character-
izes the smoothness of the analyzing wavelet. nψ is by
definition the number of vanishing moments of ψ.

Let us note that the functions ψ
(0)
(m) are not analyz-

ing wavelets since there are not of zero mean. However,

when using ψ
(0)
(1) (which is nothing else than the box func-

tion χ) into the (continuous) partition function defined
in equation (9), one recovers classical box-counting tech-
niques [66,83–85] commonly used for multifractal analy-
sis of singular measures. Let us also remark that when

using ψ
(1)
(0)(x) = δ(x − 1) − δ(x), the CWT is nothing

but the local increment of the considered function and
the (continuous) partition function (9) then reduces to
the so-called structure function of order q [1–3]. We refer
the reader to reference [76] where a comparative study of
the structure function approach and the WTMM method
is reported. Actually the structure function approach
fails to fully capture the singularities present in a signal.
The main insufficiencies of this method come from the ir-
regular character of the analyzing wavelet ψ

(1)
(0) and from

the continuous integral used in equation (9). It is because
the partition function in equation (10) is computed from
the WT skeleton that the entireD(h) singularity spectrum
becomes accessible to the WTMM method. This is why
the WTMM method is much more than a simple general-
ization of the box-counting techniques and the structure
functions approach [75–82].

3 Detecting vorticity filaments
with the wavelet transform modulus maxima

3.1 Description of the turbulent pressure data

In this paper, we study the experimental pressure sig-
nal recorded by Couder and his collaborators in a steady
swirling turbulent flow in a 3D closed system [33–35]. The
experimental setup is fully described in references [34,35].
The pressure time series has a very specific aspect as il-
lustrated in Figure 2a where the pressure is expressed in
units of standard deviations. Most of the time the signal
exhibits random fluctuations around a mean value. These
fluctuations are symmetrical and no difference is observed
between the positive and negative fluctuations of small
amplitude. However, large peaks are also observed inter-
mittently in this signal. They are exclusively negative and
correspond to depressions in the flow. In Figures 2b and
2c, the probability density function (PDF) of the values of
the pressure signal is shown in linear and semi-logarithmic
coordinates respectively. This PDF is extremely non sym-
metrical with the lowest negative pressure values that can
be as small as 13 times the standard deviation while the
highest pressure values do not exceed 5 times the standard
deviation. Moreover, whereas the PDF on the positive side
is well fitted by a Gaussian shape [33–35], its tail for neg-
ative pressures rather behaves as an exponential [33–37].

When using their bubble visualization technique,
Couder et al. [30–35] have shown that each strong nega-
tive peak in the pressure signal corresponds to a filament
passing on the transducer; reciprocally, all the filaments
passing over the transducer are likely to induce a deep
drop in the pressure signal. They have also brought ev-
idence that the shape of the pressure drops correspond-
ing to a filament passing directly on the probe, reflects
the state of the filament. If the filament has just formed
and is still straight, the pressure drop in the time series is
deep and narrow (see Figs. 5a and 6a). Older filaments dis-
appear through what appears to be a vortex breakdown
process: the filament bursts into several smaller braided
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Fig. 2. (a) Time series of the pressure fluctuations over about
40 experimental turn over times (T ). Pressure is expressed in
units of standard deviations. The signal shows the superpo-
sition of symmetrical random background fluctuations with
intermittent large amplitude depressions. PDF of the pres-
sure values as shown in (b) linear coordinates and (c) semi-
logarithmic coordinates. The positive side of this PDF is well
fitted by a Gaussian shape (continuous line), while the tail on
the negative side appears to be exponential.

strands which finally vanish. When this complex structure
passes on the probe, the overall depression is still deep but
is now broader and presents multiple secondary negative
peaks (see Fig. 7a). Without visualization, one can assume
that a deep and narrow negative peak systematically cor-
responds to a young filament passing on the transducer.
On the other hand, a broader peak or a peak with com-
plex structure doesn’t correspond necessarily to a burst
filament. Indeed the width of the pressure drops depends
on the advection velocity of the filaments which can take
values between −ΩR and ΩR where ±Ω/2π are the ro-
tation frequencies of the two contra-rotating disks and R
their radius. So the temporal width detected by pressure
measurement doesn’t directly give access to the spatial
size of the depression. In rare cases, a filament can in-
verse its advection velocity and pass several times on the
transducer. Then several consecutive narrowly spaced de-
pression peaks are recorded. However, when some complex
low pressure structure is observed, it is likely to correspond
to a burst filament. Another interesting experimental ob-
servation is that a filament takes less space and lives a
shorter time in its concentrated state than in its burst
state. Consequently the probability to have a filament on
the transducer is less important for a young filament than
for a burst one. Actually most of the deep pressure drops
that are recorded have a complex structure that requires

a specific detection technique to be recognized as corre-
sponding to a vorticity filament.

3.2 Wavelet based characterization of Burgers vortex

In previous works [34,35,39,41], the Burgers vortex
(which is a stationary solution of the incompressible 3D
Navier-Stokes equations (NS)) has been emphasized as a
well accepted model for the young filaments corresponding
to deep and narrow depressions in the recorded pressure
signals. In this model, the velocity field is defined in cylin-
drical coordinates by:

ur = − 1
2γr ,

uφ = Γ
2πr (1− e−r

2/4r2
0) ,

uz = γz ,

(16)

where r0 =
√
ν/γ is the core radius and Γ the circula-

tion of the vortex. This circulation is linked to the max-
imal rotation velocity (also called peripheral velocity),
Γ = 2πr0u

max
φ /0.32 = 2πr0u0. By replacing in the NS

equations, the velocity field by the expression given in
equation (16), one obtains after integration:

p(r, φ, z)− p(0, φ, 0) = −
1

2
ργ2(r2 +

z2

4
)

+ρ
Γ 2

4π2

∫ r

0

(1− e−(x/2r0)2

)2

x3
dx . (17)

In the particular case where the stretching is negligible as
compared to the rotation or when the vortex is no longer
stretched, one can approximate ur ∼ uz ∼ 0 and the
pressure field is then given by the integral form:

p(r/r0) = ρ
Γ 2

4π2r2
0

∫ r/r0

−∞

(1− e−(x/2)2

)2

x3
dx . (18)

Although in reality the filaments are certainly less axisym-
metrical than the ideal Burgers vortex shape defined in
equation (16), the coincidences observed with the bubble
visualization techniques [34,35] show that the recorded de-
pressions actually correspond to filaments perpendicular
to the wall (where the piezoelectric transducer is located)
and generally situated in the main shear layer. Moreover,
all the filaments do not pass exactly on the transducer and
their incident velocity angle with respect to the probe axis
fluctuates about some mean value which is not too differ-
ent from π/2 (the probe surface is tangential to the inner
surface of the wall and since the measurements are per-
formed in the main shear layer, the advection velocity of
the filaments is in good approximation tangential to the
wall). We refer the reader to references [39,41], where the
influence of various geometrical parameters (e.g., the an-
gle of the vortex axis with respect to the probe axis, its
incident angle and the distance at which it passes from
the probe) on the shape of the velocity field of a Burgers
vortex has been discussed and further used to interpret
experimental data.
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Fig. 3. WT of the pressure field of a Burgers vortex. (a) Profile
of the pressure given by equation (18) with u0 = 1 and r0 = 10.
(b) WT of this signal computed with the analyzing wavelet

ψ
(1)
(3) ; the amplitude is coded, independently at each scale a,

using 32 grey levels from white (|Tψ[p](x, a)| = 0) to black
(maxx(|Tψ[p](x, a)|)). (c) WT skeleton defined by the set of
WTMM lines. (d) and (e) show the behavior of the wavelet
coefficients along the left and right maxima lines respectively.
The scale a∗ corresponds to the scale shown in (a).

The pressure field given by equation (18) is illustrated
in Figure 3a when considering the parameter values u0 = 1
and r0 = 10, and when imposing the pressure to be
zero at infinity as a reference value. Let us note that the
minimum pressure is linked to the peripheral velocity by
the relation: pmin = −1.69(umaxφ )2 = −0.173u2

0. On the
other hand, the characteristic width of this depression is
equal to r0. In Figures 3b and 3c, we present respectively
the WT of this Burgers vortex pressure signal and its

WT skeleton computed with the analyzing wavelet ψ
(1)
(3)

(Fig. 1) [82]. This skeleton is made of two maxima lines
which point to the depression. The behavior of the wavelet
coefficients along these maxima lines is shown in Figures
3d and 3e, for the left and right lines respectively. The WT
modulus increases when decreasing a with a power-law

Fig. 4. Calibrating our wavelet-based methodology on Burg-
ers vortex: study of the behavior of a∗ and |Tψ(a∗)| as a func-
tion of the characteristic parameters of the Burgers vortex. (a)
a∗ vs. r0: the continuous line obtained by linear regression fit
has a slope equal to 1.58 and a null intercept (Eq. (19)). (b)√
|Tψ(a∗)| vs. u0: the continuous line has a slope equal to 0.28

and a null intercept (Eq. (20)). The analyzing wavelet is ψ
(1)
(3) .

behavior with exponent h = −1 (Eq. (7)), down to some
scale a∗. For scales a < a∗, the WT modulus no longer
increases but behaves with a power-law exponent nψ = 1,
where nψ is the number of null moments of the consid-
ered analyzing wavelet (Eq. (8)). Let us point out that
the wavelet coefficients behave in the same way on the
two maxima lines except that the coefficients are posi-
tive on one maxima line and negative on the other one.
So the space-scale analysis of the pressure Burgers vortex
provided by the WT skeleton reveals the following main
characteristic behavior:

• At large scale: a > a∗, this vortex can be assimilated
to a Dirac distribution which corresponds to a strong
singularity of (Hölder) exponent h = −1.
• At small scale: a < a∗, the WT microscope actually

explores the vortex core which is in fact a smooth func-
tion. According to equation (8), the exponent obtained
is the number of null moments of the analyzing wavelet
(here, nψ = 1).

The scale a∗ is linked to the width at mid-height of the
vortex core. We can easily demonstrate that a∗ is linearly
dependent on the parameter r0, the characteristic width
of the vortex. As shown in Figure 4a, the values obtained
for a∗ as a function of r0 systematically fall on a straight
line of slope 1.58:

a∗ = 1.58r0 . (19)

Likewise the maximum WTMM at scale a∗, |Tψ(a∗)|, is
linked to the depth of the vortex and then to the square of
u0. When plotting in Figure 4b, the square root of |Tψ(a∗)|
as a function of the parameter u0, we otain a well defined
straight line of slope 0.28:

|Tψ(a∗)|
1/2 = 0.28u0 . (20)

Through the relationships (19, 20), the WTMM allow us
to estimate the characteristic parameters of the Burgers
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Fig. 5. Time-scale analysis of a sample of the pressure signal
containing a deep depression due to a young filament passing
over the transducer. (a) Time series of the pressure fluctua-
tions. (b) WT skeleton computed with the analyzing wavelet

ψ
(1)

(3) . (c) and (d) show the behavior of the WT modulus along
the two maxima lines which point to the filament position as
a function of the scale parameter a in logarithmic coordinates.
The power-law increase of the WT modulus observed when
decreasing a, down to some small inner scale a∗, is quite sim-
ilar to the behavior obtained for Burgers vortex in Figures 3d
and 3e.

vortex, namely r0 and u0. Let us point out that similar lin-
ear dependence is found when using analyzing wavelets of
higher order [82]; the only difference comes from the value
of the slopes (respectively 1.58 and 0.28) in equations (19,
20) which are naturally wavelet dependent.

The WT skeleton therefore provides a very efficient
way to detect vortical structures. From the characteristic
behavior of the WTMM along the maxima lines one can
estimate the geometrical characteristics of these filaments
directly from the experimental pressure signal without
using arbitrary thresholding technique on the signal am-
plitude [60,82].

Remark

The pressure of a Burgers vortex defined in equation (18)
is a C∞ function. The Hölder exponent of this function is
thus h(0) = +∞ at x0 = 0 where is located the vortex.
Nevertheless, the fact that at scales a > a∗, this depression
can be assimilated to a localized peak, makes sound the

Fig. 6. (a) Pressure signal containing a young filament. (b)
and (c) illustrate the behavior of the WT modulus along the
two maxima lines which point to the filament position as a
function of the scale parameter a in logarithmic coordinates.

The analyzing wavelet is ψ
(1)

(3) .

identification of these particular events to strong (h(0) =
−1) “quasi” singularities of the pressure field.

3.3 Detecting vorticity filaments with the wavelet
transform modulus maxima

3.3.1 Young filaments

We have detected by a simple thresholding technique a lot
of young filaments for which we have studied the behavior
of the WTMM [82]. In Figure 5a, we present a sample of
the pressure signal which contains a young filament with
an amplitude drop of about −20σp. The WT skeleton of

this signal, as computed with the analyzing wavelet ψ
(1)
(3) ,

is shown in Figure 5b. Let us point out that the cross-
ing of the filament over the probe seems to erase all the
surrounding fluctuations as observed on the WT skeleton
which doesn’t display any maxima line in the neighbour-
hood of the two lines corresponding to the filament itself
(this phenomenon is also visible on the previous “little”
filament). In Figures 5c and 5d, the WT modulus along
these two maxima lines is plotted as a function of the scale
parameter a in logarithmic coordinates. The correspond-
ing curves clearly increase from a large scale a0 where the
maxima lines appear, down to a very small scale a∗ which
is found almost identical for the two lines. At large scale,
for a > a∗, one thus recovers the characteristic behavior of
a strong singularity of negative Hölder exponent h ' −1,
as previously observed for Burgers vortex (Figs. 3d and
3e). Let us note that for this particular very intense de-
pression, the smallness of a∗ prevents us from exploring
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the smoothness of the filament core at scales a < a∗. As
illustrated in Figure 6, we have reproduced this WTMM
scaling analysis for different recorded depressions of am-
plitude deeper than −10σp. This systematic study of the
young filaments brings the clue that this “abnormal” in-
crease of the WT modulus when decreasing a is always ver-
ified. Moreover the fact that the scale a∗ does not depend
upon the considered maxima line seems to be a robust
feature from which one can extract the temporal width of
the depression (Eq. (19)) with a high degree of confidence.
As shown in Figures 6b and 6c, when the characteristic in-
ner scale a∗ is not too small, one can check that for scales
a < a∗ the WT modulus decreases when further decreas-
ing a. Unfortunately, because of the low sampling rate as
compared to the filament width, the range of scales left
to scaling analysis is so tiny that it is hopeless to check
accurately the validity of equation (8). Nevertheless, the
fact that this decrease is found to be very sensitive to the
order of the considered analyzing wavelet, can be seen as
a strong indication that when increasing enough the mag-
nification of the WT microscope, one ultimately explores
the filament core and reveals its smoothness. Furthermore,
let us mention that we have verified that, as predicted for
Burgers vortex (Eq. (20)), |Tψ(a∗)| is proportional to the
depth of the pressure drop [82].

3.3.2 Burst filaments

In the same way, we have detected different filaments with
a complex internal structure, that we will call burst fila-
ments [82]. In Figure 7, we present one of these filaments
(Fig. 7a) together with its WT skeleton (Fig. 7b). Note
that this skeleton shows maxima lines around the filament
as well as in between the two maxima lines which point to
the two great jumps which delimit (to the right and to the
left) the extend of the core of this burst filament. The be-
havior of the wavelet coefficients along these two maxima
lines is represented in Figures 7c and 7d. It is qualita-
tively very similar to the behavior observed for the young
filaments except that the characteristic inner scale a∗ is
significantly larger as reported before. For scales a > a∗,
the WT modulus increases when the scale is decreased as
the signature of a strong singularity with negative Hölder
exponent. For scales a < a∗, the WT modulus follows an
approximate power-law with an exponent clearly smaller
than nψ. Let us point out that the range of scales left
below a∗ is now large enough to allow the estimate of
a scaling exponent. For the filament shown in Figure 7,
we obtain from linear regression fit in Figures 7c and 7d,
the values h ' 0.57 and h ' 0.4 for the left and right
maxima lines respectively. Similar quantitative results are
obtained when considering different analyzing wavelets of
higher order. Indeed the core of the filament is no longer
smooth but displays some roughness properties that are
comparable to those of the background pressure fluctua-
tions characterized by a finite range of positive singularity
exponents (Section 5.1). Note that on the contrary to the
young filaments with a well defined smooth core, the burst
filaments have a more complex inner structure delimited

Fig. 7. Time-scale analysis of a sample of the pressure sig-
nal illustrating the effect on pressure fluctuations of a burst
filament passing over the transducer. (a) Time series of the
pressure fluctuations. (b) WT skeleton computed with the ana-

lyzing wavelet ψ
(1)

(3) . This skeleton contains maxima lines inside
the core of the filament which enlightens the inner complexity
of this structure. (c) and (d) illustrate the behavior of the WT
modulus along the two maxima lines which point respectively
to the large drop and large jump that delimit the extend of
the filament. These results are qualitatively similar to those
obtained for the Burgers vortex in Figures 3d and 3e, except
that the inner scale a∗ is different for the two maxima lines and
that the core of the filament is larger and no longer smooth.

by two maxima lines in the WT skeleton along which the
WT modulus reaches its maximum at a scale a∗ which
is no longer the same for these two lines. This asymme-
try makes the use of equation (19) derived for Burgers
vortex quite questionable. In Section 4.2, we will proceed
to a statistical study of the filament core size including
young and burst filaments. For the latter we will approx-
imate the width of their core by putting in the left-hand
side of equation (19), the arithmetic mean value of the
scales a∗ measured on the left and right maxima lines; the
width of the burst filaments so obtained will thus corre-
spond to the core size of some “average” axisymmetrical
Burgers like young filaments. As illustrated in Figure 8
for a different burst filament, the quantitative features ob-
served on the WTMM in Figure 7 are likely to be robust
characteristic features that can be used to differentiate
rather old burst filaments from just formed Burgers like
filaments [82].
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Fig. 8. (a) Pressure signal containing a burst filament. (b) and
(c) illustrate the behavior of the WT modulus along the two
maxima lines which delimit the extend of the filament, as a
function of the scale parameter a in logarithmic coordinates.

The analyzing wavelet is ψ
(1)

(3) .

3.4 Discriminating vorticity filaments from background
pressure fluctuations

From the results reported in the previous section, one can
reasonably hope to resort to the WT and to the restriction
to its modulus maxima, to distinguish a filament passing
on the transducer from the background pressure fluctua-
tions that are likely to be symmetrical [60,82]. For each
maxima line, we simply have to record the scale a0 where
the maxima line appears, and to find the maximum of
|Tψ[p](a)| when going down the scales along this maxima
line. We thus obtain a∗ and |Tψ(a∗)|. If a∗ = a0, this max-
ima line corresponds to a weak singularity certainly due to
symmetrical fluctuations. Conversely, if a∗ is significantly
smaller than a0, this line is likely to correspond to a strong
singularity and thus to a filament. However, when apply-
ing these criteria to analyze fractional Brownian motions
[110,111] of parameter H = 2/3 (i.e. a stochastic signal
which has a k−7/3 power spectrum like the pressure data
of interest here [34,35]), one finds that a lot af maxima
lines exist for which a∗ is different from a0. Therefore we
need a more efficient criterion than simply a∗ 6= a0 to dis-
tinguish the filaments from background fluctuations. In
Figure 9, we show the results of a comparative statisti-
cal study of the WT maxima line characteristics of the
fractional Brownian signal of parameter H = 2/3 (with
the same standard deviation as the experimental pressure
signal) and of the experimental pressure signal. For the
fractional Brownian signal, the data points obtained when
plotting log2(|Tψ(a∗)|) versus log2(a∗) in Figure 9a, form
a cloud of mean slope close to H = 2/3 (dashed line).

Fig. 9. Comparative statistical analysis of the characteris-
tics of the WT maxima lines of a fractional Brownian signal
of parameter H = 2/3 and of the experimental pressure sig-
nal. The standard deviation of both these signals was fixed to
1. Fractional Brownian signal: (a) log2(|Tψ(a∗)|) vs. log2(a∗);
(b) log2(a∗) vs. log2(a0). Pressure signal: (c) log2(|Tψ(a∗)|) vs.
log2(a∗); (d) log2(a∗) vs. log2(a0). The dashed lines in (a) and
(c) correspond to a slope H = 2/3. The continuous lines delimit
the separation between the “filament phase” and the “back-
ground pressure fluctuations phase” according to the criteria

defined in equation (21). The analyzing wavelet is ψ
(1)

(3) .

Comparatively, the cloud obtained for the pressure signal
in Figure 9c is broader and more diffuse while for a same
value of a∗, the values of |Tψ(a∗)| are more important. In
fact this observation shows the existence of very intense
events in the pressure data. In Figures 9b and 9d, a∗ is
plotted as a function of a0 for both the numerical and ex-
perimental signals using logarithmic coordinates. For the
fractional Brownian signal, 82% of the maxima lines have
a∗ equal to a0 as compared to only 55% for the pressure
signal. Moreover, for a same value of a0, a∗ takes smaller
values for the pressure signal which means that over a wide
range of scales the WT modulus increases (instead of de-
creasing) when the scale parameter a is decreased. Let us
point out that the total number of maxima lines obtained
for the fractional Brownian signal is about twice as large
as the total number obtained for the pressure signal. This
is possibly a consequence of the presence of filaments in
the pressure signal which erase fluctuations in their neigh-
bourhood as shown in Figure 5b.

Along the line of these observations, we have carried
out a systematic study of the WT skeleton of the experi-
mental pressure signal with the specific goal to define cri-
teria which will allow us to identify young as well as burst
filaments. In the remainder of this paper, we will consider
that a maxima line corresponds to a filament if the three
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Fig. 10. (a) A sample of the pressure signal. (b) WT of the
pressure signal; the amplitude is coded independently at each
scale a, with 32 grey levels from white (|Tψ(t, a)| = 0) to
black (maxt(Tψ(t, a)). (c) WT skeleton of the pressure signal.
(d) Sub-skeleton corresponding to the symmetrical background
pressure fluctuations. (e) Complementary sub-skeleton involv-
ing only maxima lines which verify conditions (21); this sub-
skeleton corresponds to the “filament phase”. The analyzing

wavelet is ψ
(1)

(3) .

conditions listed below are fulfilled [82]:• log2(a0/a∗) > 1.5 ;
• log2(|Tψ(a∗)|) > −0.5 ;
• log2 a∗ < 8 .

(21)

The first condition results from the necessity of checking
that on a finite range of scales ([a∗, a0]), the filaments
can be assimilated to a Dirac peak. The second condition
amounts to some thresholding on the pressure amplitude;
it is necessary in order to avoid assimilating as filaments
an important number of maxima lines which appear at

small scale (a0 < 25) and which correspond to rather small
pressure drops. Indeed we are not sure that these peaks
result from the presence of a filament because they are
also observed on the fractional Brownian signal. Let us
note that if one uses equation (20) together with the pre-
viously mentioned relationship pmin = −0.173u2

0 derived
for Burgers vortex, this second condition does not appear
to be very stringent since it consists in discarding pres-
sure drops of amplitude smaller than |pmin| <

√
2σp only.

The third condition has been added in order to avoid to
take into account rather large variations of the signal am-
plitude over a time interval of the order of one turn-over
time T = 2π/Ω (log2 T = 9.5) and which doesn’t corre-
spond to a filament passing over the probe. When these
three conditions are verified, we detect with a rather good
precision nearly all the filaments that can be identified
by the bubble visualization technique and many others
that would have been missed when using a rather crude
thresholding technique as experienced in previous works
to detect the young filaments [33–35,41].

The different stages of our strategy for discriminating
vorticity filaments from background pressure fluctuations
are illustrated in Figure 10 [60,82]. Figures 10a and 10b
show a sample of the pressure signal together with its WT
coded, independently at each scale a, with 32 grey levels

and computed with the analyzing wavelet ψ
(1)
(3) . The cor-

responding WT skeleton is presented in Figure 10c. For
each maxima line, we determine the quantities a0, a∗ and
Tψ(a∗). Then we classify these lines into two categories
corresponding to two different “phases” of pressure fluctu-
ations. In Figure 10d, we extract the WT sub-skeleton as-
sociated with the symmetrical background pressure fluctu-
ations, i.e. the set of maxima lines which do not verify the
conditions (21). The complementary of this sub-skeleton
is shown in Figure 10e; it corresponds to the “filament”
phase. All the maxima lines point to a pressure drop (or
jump) characteristics of a filament passing over the trans-
ducer. Let us point out that we detect non only the deepest
depressions associated to young filaments and which can
be equally detected using simple thresholding technique,
but also the pressure drops and jumps corresponding to
burst filaments. In Section 4, we will mainly concentrate
our study on the WT sub-skeleton corresponding to the
filament contribution. From a systematic investigation of
this sub-skeleton, we will carry out a statistical analysis
of the filament structural properties and of their tempo-
ral distribution. In Section 5, we will apply the WTMM
method [75–82] to the WT sub-skeleton corresponding to
the background pressure fluctuations, with the specific
goal to determine quantitatively the actual contribution
of the vorticity filaments to the multifractal properties of
the pressure fluctuations.

4 Statistical analysis of the vorticity filaments
using the wavelet transform modulus maxima

This section is devoted to a statistical analysis of the vor-
ticity filaments as detected from the experimental pressure
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signal using the wavelet-based criteria (21) established in
the previous section. For comparison, we will also present
the results obtained with a less accurate identification test
which will consist in simply selecting the WT maxima lines
which verify the condition a∗ 6= a0. As explained before,
with this less stringent condition, we are certain to detect
all the filaments but we are also aware that among the
retained maxima lines, some of them actually correspond
to background pressure fluctuations and not to vorticity
filaments passing over the probe.

4.1 Advection velocity of the vorticity filaments

As discussed in Section 3, the characteristic scale a∗ com-
puted from the WT maxima lines that are identified as
corresponding to a filament, is directly linked to the size
of the filament core. Nevertheless, what is actually mea-
sured is a temporal width which corresponds to the time
taken by the filament to cross over the transducer. A rea-
sonable (at least for the young filaments) definition of the
spatial width of these filaments is given by the following
formula:

r0 = r0(a∗)|U
f
adv| , (22)

where r0(a∗) = a∗/1.58 is the characteristic inner time
scale of a static Burgers vortex associated to the scale

a∗ (Fig. 4a), while Ufadv is the advection velocity of the
recorded filament. To determine this velocity, we must
know the component of the velocity field parallel to the
wall. In reference [34,35], Couder et al. devised an experi-
mental set up to measure simultaneously this velocity and
the pressure field. This apparatus involved three detec-
tors with a particular disposition: the two pressure probes
are placed in the wall, half way between the stirrers and
horizontally separated by a distance d = 1 cm; the hot
wire probe is placed between the two pressure probes and
perpendicular to the wall in order to measure U//. In Fig-
ures 11a and 11b are shown a sample of both the pres-
sure and velocity signals recorded simultaneously by one
of the transducers and the hot wire. The velocity signal
presents sudden fall downs towards zero. These particular
events are a direct consequence of the fact that the hot
wire actually measures the absolute value of U// and not
U// itself. Since the measurement is made in the turbu-
lent shear layer, i.e. in a region where U// often changes
its sign (〈U//〉 = 0 in this region), |U//| is expected to
exhibit some drops to zero each time there is a change of
sign of U//. Let us point out that on the contrary to what
is observed on the pressure signal, it is rather difficult
to identify on the velocity signal, the signature of special
events associated to a filament crossing the hot wire.

Remark

We saw in Section 3 that each filament is detected by two
WT maxima lines when we use the analyzing wavelets

ψ
(1)
(n) which have only one zero moment. The wavelet

coefficients are positive on one line and negative on the

Fig. 11. Simultaneous recording of (a) pressure and (b) lon-
gitudinal velocity. The sudden fall downs towards 0 of |U//|
come from the intermittent changes of the velocity sign.

other one. In the following of this section, we will restrict
our study to the maxima lines such that Tψ(a∗) < 0.
Similar results are obtained when retaining alternatively
the lines such that Tψ(a∗) > 0.

Now comes the question of computing the advection
velocity of the filaments from the recorded velocity sig-
nal. One possibility would be to use the complementary
information coming from the two pressure probes. For ex-
ample one could detect on the two pressure signals, the
positions t1 and t2 where the maxima lines point to the
same filament passing successively over the two probes.
The advection velocity could then be computed from the

relation |Ufadv| = d/|t2 − t1|, or by averaging the recorded

velocity |Ufadv| ≈
1

|t2−t1|

∫ t2
t1
|U//(t)|dt. But this method,

based on the detection of a same event by two different
transducers, is difficult to calibrate: indeed a filament can
evolve from both a structural and a dynamical point of
view in between its successive passings over the two trans-
ducers. Moreover a filament doesn’t always pass along the
axis that joints the two transducers and sometimes can
even be detected by one transducer only. In this case, the
so-obtained velocity may not correspond to the advection
velocity of the filament and its spatial core size may be
dramatically underestimated. A more reliable method ac-
tually consists in using the information coming from one
pressure probe only and more specifically from the time-
scale representation provided by the WT of the recorded
pressure signal. The scale a∗, determined for each filament
from the WTMM, being proportional to the temporal
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width of its core, one can then estimate the filament ad-
vection velocity from the following averaging formula [82]:

Ufadv =
1

a∗

∫ t1+a∗/2

t1−a∗/2
|U//(t)|dt, (23)

where t1 is the time identified from the WT skeleton as
the passing time of the filament over the first transducer.

In Figure 12a are reported the PDFs of the filament
advection velocity obtained when considering two differ-
ent selection criteria for the filaments, namely when us-
ing all the maxima lines that verify a∗ 6= a0 (◦) or when
considering only those that fulfill equation (21) (•). The
former distribution is slightly shifted towards larger val-

ues of |Ufadv| as compared to the PDF obtained for the
recorded (|U//|) velocity signal (continuous line). This ef-
fect is probably due to the fact that we take into account
(additional) maxima lines that do not correspond to a fila-
ment and for which the estimated value of a∗ is very small.
On the other hand, the PDF obtained from the maxima
lines which verify our filament selection criteria (Eq. (21))
is maximum for a value which is very close to the integral
velocity ΩR of the rotating disks, and looks very much
like the PDF of |U//|. A different look at the differences
between these three PDFs is given in Figure 12b when us-
ing a semi-log representation. It appears clearly that the
PDF of the filament advection velocity estimated using
equations (21, 23), decreases more quickly for the small
values of |U//| than the two other PDFs which admit val-
ues close to zero. This result is rather intuitive since the
probability to detect (on the two transducers as well as on
the hot wire) a filament with an advection velocity close
to zero is very small.

4.2 Spatial size of the filament core

In Figures 12c and 12d, we show the PDFs of the spa-
tial size of the filament core obtained from the WT skele-
ton when using equations (22, 23). Actually two sets of
data are represented according to the criterion one uses
to select the maxima lines corresponding to the filaments
namely the maxima lines for which a∗ 6= a0 (◦) and those
for which the conditions (21) are verified (•). The PDF
obtained with the former maxima lines is maximum for
a size r0 = 0.26 cm, value which is about half the size
of the transducers (0.5 cm). This histogram shows once
again that a large number of these maxima lines do not
correspond to a filament passing over the probe but are
more likely associated with symmetrical background fluc-
tuations with a scale a∗ much too small (the minimum
core size detectable experimentally should be the trans-
ducer size). The second and more realistic definition of
the filaments yields a different PDF. The maximum is
now reached for a value r0 = 0.7 cm very close to the
transducer size and the PDF decreases much faster to 0
for values smaller than this experimental ultra-violet cut-
off. The semi-log representation of both these PDFs in
Figure 12d shows an exponential behavior for the val-
ues of r0 in between 1 and 5 cm. For the maxima lines

Fig. 12. (a) PDFs of the advection velocity |Ufadv| computed
from the maxima lines which verify respectively a∗ 6= a0 (◦)
and conditions (21) (•). The continuous line corresponds to the
PDF of |U//|. (b) Semi-log representation of the same PDFs.
(c) PDFs of the characteristic scale r0 of the filament core ob-
tained from the maxima lines which verify respectively a∗ 6= a0

(◦) and conditions (21) (•). (d) Semi-logarithmic representa-
tion of the same PDFs. The continuous line corresponds to a
linear regression fit of the data between 1 cm < r0 < 5 cm.

which verify equation (21), a linear regression fit of the
data gives a slope equal to 0.5 cm−1 which corresponds
to a characteristic scale r0 = 2.00 ± 0.02 cm. This value
is quite important since it is as large as about 80 times
the Taylor microscale λ (≈ 0.025 cm). Let us note that
this estimate is much greater than the value r0 = 10λ
obtained by Couder et al. [34,35] when using a simple
thresholding method. This observation is not surprising
since the WTMM technique allows us to detect not only
the young filaments with a rather narrow core but also
the burst filaments with a more complex inner structure
(and therefore a not so well defined wider core). What is
really surprising in the results reported in Figure 12d is
that when estimating the core size of the burst filaments
as explained in Section 3.3 (i.e. with a reference to some
“average” Burgers vortex like profile), one gets values that
extrapolate remarkably the exponential tail of the PDF
up to values r0 <

∼ 6 cm. For r0 >
∼ 6 cm, one notices some

flattening of the PDF tail which suggests the existence
of very wide filamentary structures. Indeed a systematic
local study of these particular events shows that they cor-
respond to maxima lines for which a∗ cannot be associated
to a characteristic scale of a vortical structure but rather
to the distance that separates two large amplitude vari-
ations of the pressure signal that spread over some time
intervals of the order of the turn-over time [82].
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Fig. 13. Logarithm of the histogram of waiting time between
(a) successive filaments with a characteristic size r0 < 6 cm
and (b) successive filaments with size 1 cm < r0 < 6 cm.
The straight lines obtained from linear regression fit have a
slope equal to −1.04 and −0.73 respectively. Logarithm of the
number of filaments in a window of temporal widh τ for (c)
filaments of core size r0 < 6 cm and (d) filaments of core
size 1 cm < r0 < 6 cm. The different symbols correspond to
τ = 20T (•), 10T (◦), 5T ( ) and 2.5T ( ). The continuous
lines correspond to the logarithm of a Poisson’s distribution
(Eq. (24)) having the same mean value as the experimental
distributions obtained for the previous values of τ .

4.3 Waiting time between filaments

In Figures 13a and 13b are reported the results of a
statistical study of the waiting time between two suc-
cessive filaments. Figure 13a shows the PDF computed
for all the filaments with a core size r0 < 6 cm, while
Figure 13b is restricted to filaments such that 1 cm < r0 <
6 cm for which the core size PDF behaves exponentially
(Fig. 12d). As clearly revealed when plotting the logarithm
of both these PDFs, these distributions are exponential
over a wide range of waiting times 0.1 s < δt < 5 s. The
mean waiting time computed from linear regression fit of
the data in Figures 13a and 13b is respectively 〈δt〉 ' 0.7 s
and 1.45 s, values which are higher than the turn-over time
T = 0.34 s. Thus a filament pass on the transducer every
two up to four periods of rotation of the disks. Let us
note that this passing frequency is higher than the value
reported by Couder et al. in references [34,35]; this is an
additional indication that our wavelet-based method al-
lows us to detect more filaments than a simple threshold-
ing technique that misses most of the burst filaments not
associated to a deep depression. This exponential behav-
ior of the waiting time histogram is a necessary condition
to a Poisson’s law characteristic of independent events.

To check this possibility, let us compute the probability
to detect n filaments in a window of temporal width τ .
In practice, we move a window of width τ , step by step
(where the step is given by the sampling time) over the
whole pressure signal. At each step, we count all the events
identified as a filament with our criteria (21) that belong
to this window. Once the file (corresponding to 9 × 106

points) is fully processed, we repeat this operation for dif-
ferent values of τ to obtain the probability density Pτ (n, µ)
that can be compared to the Poisson’s distribution with
the same mean value µ:

PPoissonτ (n, µ) =
e−µµn

n!
· (24)

The comparison between the experimental distribution
and the Poisson’s law is shown in Figures 13c and 13d,
for four temporal widths τ = 20T (•), 10T (◦), 5T ( ) and
2.5T ( ), and for the two sets of filaments with r0 < 6 cm
and 1 cm < r0 < 6 cm respectively. In all cases and for all
temporal window widths, the PDFs obtained are very well
fitted by a Poisson’s distribution. Let us point out that the
agreement with the Poisson’s distribution is even better
when we remove from the statistics all the very narrow fil-
aments with r0 < 1 cm [112]. Thus with our wavelet-based
method, we obtain a Poisson’s distribution whatever the
time duration τ on the contrary to the results of Couder
et al. [34,35] who found Poisson statistics only for values
of τ larger than the turn-over time T (similar observa-
tions were reported in Refs. [37–39,42]). This discrepancy
comes from the fact that a thresholding method often de-
tects as filaments several events very close to each other
corresponding to filament strands issued from the break-
down of a filament and which consequently are likely to
be strongly correlated [112].

To summarize, our wavelet-based technique for fila-
ment detection allows us to detect young as well as burst
filaments without particular distinction. Generally the
fluctuations present in a burst filament are not identified
as filaments. We show that the waiting time statistics be-
tween successive filaments passing over the probe is def-
initely Poisson, thereby confirming that these events are
likely to be independent.

5 Multifractal analysis of the background
pressure fluctuations using the WTMM
method

In this section, we proceed to a multifractal analysis of
the pressure signal using the WTMM method described
in Section 2.3 [60,82]. Indeed our goal is to perform a
comparative statistical analysis of the self-similarity prop-
erties of the overall pressure signal to those of the same
experimental signal but once one has removed the vortic-
ity filaments according to the strategy defined in Section
3.4 (see also Fig. 10). In order to be consistent with the fil-
ament selection criteria used in Section 4, we will consider
two possible definitions for identifying the background
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pressure fluctuations:

- B1: all the maxima lines such that a∗ = a0.
- B2: all the maxima lines which do not verified the con-

ditions (21).

The first definition is less accurate and in fact does
not correspond to the whole “background pressure fluctu-
ations phase”. Indeed it is obvious that we have removed
from the statistics a lot of maxima lines that do not corre-
spond to a passing filament. Nevertheless with this defini-
tion we are sure that not even one of these filaments may
actually pollute our statistics. The second definition con-
tains all the background pressure fluctuations but it does
not exclude the possibility that some filamentary struc-
tures may have escaped our selection criteria.

5.1 Multifractal spectra

This section is devoted to the computation of the multi-
fractal spectra (i.e. the τ(q) and D(h) spectra defined in
Eqs. (11) and (12) respectively) of the experimental pres-
sure signal as well as of the background pressure fluctua-
tions B1 and B2 [82]. In Figure 14a, we show the partition
function of order q = 0 (Eq. (10)) obtained from the WT
skeleton of the whole pressure signal (•) and from the
sub-skeletons corresponding to the background pressure
fluctuations B1 (×) and B2 ( ) when using the first order

analyzing wavelet ψ
(1)
(3) . When plotting log2(Z(0, a)) as a

function of log2 a, one gets curves that are reasonably well
fitted by a straight line of slope −1 (continuous line). Thus
the fractal dimension of the support of the singularities of
these signals is likely to be 1: these signals are singular
over intervals of finite length. Let us point out that for
B1, one observes some breaking of this scaling behavior
at scales a >

∼ 26 which strongly indicates that we have re-
moved too many maxima lines at large scale when using
criterion B1. The corresponding curves h(0, a) vs. log2 a
(Eq. (14)) are presented in Figure 14b; one obtains again
a well defined scaling behavior over a scale range that ex-
tends up to some integral scale a = 29 corresponding to
the turn-over time. From linear regression fit of these data,
we get the following estimate for the Hölder exponent the
most frequently encountered in the experimental pressure
signal: h(0) = 0.54±0.02, i.e. a value significantly smaller
than the theoretical prediction h = 2/3 derived from di-
mensional argument (p ∼ v2) when assuming the valid-
ity of K41 theory [48] which predicts the existence of a
unique Hölder exponent h = 1/3 for the velocity field in
fully developed turbulent flows. Let us point out that we
get a close quantitative estimate h(0) = 0.57± 0.02 when

using the second-order analyzing wavelet ψ
(2)
(3) . As far as

background pressure fluctuations are concerned, the most
frequent Hölder exponent found for B2 is slighly smaller,
h(0) = 0.50 ± 0.02. More surprising is the estimate ob-
tained for B1, h(0) = 0.35 ± 0.02, which is significantly
smaller than the two previous estimates and about half
the theoretical value h = 2/3 that one can reasonably use
as a reference value.

Fig. 14. Multifractal analysis of the pressure signal using the
WTMM method. (a) log2(Z(q = 0, a)) vs. log2 a (Eq. (11)).
(b) h(q = 0, a) vs. log2 a (Eq. (14)). The different curves cor-
respond to the results obtained with the whole pressure signal
(•) and the background pressure fluctuations B1 (×) and B2
( ). The continuous lines correspond to linear regression fits of

the data. The analyzing wavelet is ψ
(1)
(3) .

The results of the computation of the partition func-
tion Z(q, a) for different values of q are shown in Fig-
ure 15a. When increasing |q|, oscillations become percep-
tible in the logarithmic representation of Z(q, a) vs. a,
which very quickly deteriorate the power-law scaling be-
havior observed in Figure 14a for q = 0. To make easier
and more reliable the regression linear fit estimate of τ(q)
(Eq. (11)), we will assume that τ(0) = −1 (which is a
reasonable assumption as the results in Fig. 14a do indi-
cate); this will allow us to plot log2(Z(q, a)/Z(0, a)) as a
function of log2(a) in order to estimate τ(q)+1. As shown
in Figure 15b, when using this trick one considerably im-
proves the scaling for the pressure signal as well as for the
background pressure fluctuations B1 and B2. Indeed the
more spectacular improvement is obtained for B1 and B2
for which scaling is now observed on a rather wide range of
scales (23 < a < 29) and this for a rather large interval of q
values: −2 ≤ q ≤ 5. For the pressure signal, one can how-
ever notice some breaking of this scaling behavior at scales
a <
∼ 24, i.e. at scales smaller than the characteristic time

scale Tb = T/6 ' 26 corresponding to the rotation period
of the 6 radial blades present on the two contra-rotating
disks. As shown in Figure 15b, this effect is remarkable
for q = 3, i.e. for large positive q values for which the par-
tition function Z(q, a) is dominated by the contribution
of the strongest singularities and very likely by the con-
tribution of the vorticity filaments. Thus an explanation
of this scale invariance breaking might simply be the fact
that one is reaching scales that become comparable to the
temporal characteristic size of a filament core. As previ-
ously discussed in Section 3, at scales smaller than this
characteristic inner scale, a filament no longer contribute
to Z(q, a) as a very strong singularity of negative Hölder
exponent but as a very smooth (C∞) component. In other
words, the partition function Z(q, a) can be decomposed
into two contributions:

Z(q, a) = Zf (q, a) + ZB(q, a) , (25)
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Fig. 15. Multifractal analysis of the pressure signal using
the WTMM method. (a) log2(Z(q, a)) vs. log2(a) (Eq. (11)).
(b) log2(Z(q, a)/Z(0, a)) vs. log2(a) (see text). The continuous
lines correspond to the best linear regression fits obtained in
the scale range Tb ≤ a ≤ T . (c) τ (q) spectrum obtained from
the power-law behavior Z(q, a)/Z(0, a) ∼ aτ(q)+1. (d) D(h)
singularity spectrum obtained by Legendre tranforming the
τ (q) spectrum (Eq. (12)). The symbols have the same meaning

as in Figure 14. The analyzing wavelet is ψ
(1)
(3) .

corresponding to summing over the maxima lines that be-
long to the WT sub-skeletons associated respectively to
the “filament phase” (Fig. 10e) and to the “background
pressure fluctuation phase” (Fig. 10d) [60]. From the char-
acteristic behavior of the WT modulus along the maxima
lines created by a filamentary structure (Figs. 6–8), i.e.
some power-law increase of |Tψ| down to a scale a∗ (h <

∼
−1) followed by some power-law decrease that depends
on the order (nψ) of the analyzing wavelet, one does not
expect Zf (q, a) to behave as a well defined power-law be-
havior. Moreover, as discussed in Section 4.2, the inner
scale a∗ actually fluctuates from one filament to the next
according to their age (the oldest having the largest core
size), which makes a priori more dramatic the influence
of the filaments on the scaling properties of the pressure
signal.

In Figure 15c are reported the estimate of the τ(q)
spectra obtained respectively for the pressure signal and
the background pressure fluctuations B1 and B2 from lin-

ear regression fit of the data in Figure 15b. The three
corresponding curves are clearly nonlinear, the hallmark
of multifractal signals. Nevertheless the observed curva-
ture (concavity) is less important for B1 and B2 than for
the overall pressure signal for which the τ(q) curve starts
decreasing for q >

∼ 3, which is the signature of the pres-
ence of very strong singularities with negative Hölder ex-
ponent (h = ∂τ/∂q < 0). Let us point out that the τ(q)
curves derived from the scaling behavior of ZB1(q, a) and
ZB2(q, a) (Eq. (25)), are monotonously increasing curves
which indicates that our filament selection criterium has
been efficient enough to get rid off the statistical contribu-
tion of the singularities with negative Hölder exponents.
This can be checked in Figure 15d where the correspond-
ing D(h) singularity spectra derived by Legendre trans-
forming the τ(q) data (Eq. (12)) are compared. The three
spectra under consideration have a single humped shape
characteristic of multifractal signals. The D(h) spectrum
for the pressure signal has a maximum equal to 1 for
h = 0.55, consistently with the results previously shown in
Figure 14. Its support extends from h = −0.1 to 0.9. At
this point one could be confused by the fact that this
support does not spread out further down to negative
values of the Hölder exponent such as those observed in
Figures 6, 7 and 8 (h ' −1) when detecting vorticity fil-
aments. As investigated in Section 4.3, the characteristic
waiting time between two successive recorded filaments is
about 2 to 4 turn-over times, which means that one fila-
ment is not present in each realization of the process under
study, as any singularity belonging to the support of the
D(h) spectrum should be. Along the line of Mandelbrot’s
argument in reference [113], one could quantify the sta-
tistical contribution of the filaments by extrapolating the
D(h) curve down to negative values for h < −0.1. From
this observation, one can expect the multifractal charac-
ter of the pressure fluctuations to be not so much affected
when removing from the statistics the events identified as
corresponding to vortex filaments. This is actually what is
observed for the background pressure fluctuations B1 and
B2 in Figure 15d. The D(h) curve for B2 has a maximum
equal to 1 for h = 0.48±0.05 and is narrower than the bell
shape curve previously computed for the entire pressure
signal. Its support 0.2 <

∼ h <
∼ 0.7 is naturally contained

in the support of the singularity spectrum of the pressure
signal since each singularity involved in B2 is obviously a
singularity of the pressure signal. What is more puzzling
is the fact that the D(h) curve obtained for B1 is shifted
towards smaller values of h, 0.05 <

∼ h <
∼ 0.65, suggest-

ing that B1 is more singular than B2. This observation
is inconsistent with the definitions of B1 and B2, since
the WT sub-skeleton of B1 is entirely included in the WT
sub-skeleton of B2, which implies that all the singularities
involved in B1 are also present in B2. There are several
possible origins to this puzzling result such as some lack
of convergence in the computation of Z(q, a) (especially
for B1) or some intrinsic departure from scale invariance
as experienced when proceeding to linear regression fit of
the data for B1 and B2 in Figures 15a and 15b. We will
come back to this latter point at the end of this section.
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5.2 Probability density function of wavelet coefficients

In Figure 16, we show the PDFs of the increments (ψ
(1)
(0))

of the pressure signal (4), and of its wavelet coefficients

computed with the analyzing wavelet ψ
(1)
(3) (N) for the two

scales a = 24 (Fig. 16a) and 27 (Fig. 16b). At first glance
these PDFs look like Gaussian functions. However, when
plotting the logarithm of these PDFs in Figures 16c and
16d, one reveals that the tails of these distributions be-
have like stretched exponentials. The maximum of these
PDFs is reached for Ta = Tψ[p](., a) ' 0, independently
of the considered scale a. In Figures 16c and 16d is also
represented the PDF of the WTMM of the pressure sig-
nal computed at the same scales with the same analyzing

wavelet ψ
(1)
(3) (•). While the tails of this PDF still display a

similar stretched exponential behavior, there exists how-
ever a main difference with the previous PDFs since, from
the definition of the WTMM, this PDF is zero for Ta = 0.
(As previously discussed in Sect. 2.3, this characteristic
feature of the WTMM PDF is a key point of the WTMM
method since it allows us to compute the partition func-
tion Z(q, a) (Eq. (10)) for negative values of q [75–82].)

In Figures 17a and 17b, we compare the PDF of
the WTMM of the pressure signal computed at a rather
small scale a = 24 < Tb (•) with the corresponding
PDFs for the background pressure fluctuations B1 (×) and
B2 ( ). These latest PDFs still have stretched exponen-
tial tails but this effect is much less pronounced than
for the PDF of the whole pressure signal. In Figures 17c
and 17d are shown the same PDFs but at a larger scale
Tb < a = 27 < T . At this scale, the removal of the maxima
lines corresponding to a passing filament produces a sig-
nificant change in the shape of the WTMM PDF for both
B1 and B2. The continuous lines in Figures 17c and 17d
correspond to a fit of the data with the following formula:

P (Ta) =
e−(ln(|Ta|

1/2)−m)2/2σ2

2|Ta|
· (26)

This expression results from the combination of the rela-
tion p ∼ v2 (p and v being respectivly the pressure and
the velocity fields) with the results obtained in a previous
analysis of wind tunnel turbulence at very high Reynolds
number and which reveals that the WTMM PDF of the
velocity field has a nearly log-normal shape whatever the
scale selected in the inertial range [100–102,114]. Indeed
equation (26) provides a remarkable fit of the WTMM
PDF for both B1 and B2 in the range of scales 25 <

∼ a <
∼

29 previously used to estimate the τ(q) and D(h) multi-
fractal spectra. This strongly suggests that the vorticity
filaments are likely to be responsible for the departure
from log-normal statistics of the velocity fluctuations [82].
Furthermore the pronounced stretched exponential tails of
the WTMM PDF of the overall pressure signal show that
the statistical weight of the vorticity filaments is appar-
ently more important in the low Reynolds swirling tur-
bulent flows under study here than in wind-tunnel fully
developed turbulent flows [68,75,96,100–102,114,115].

Fig. 16. Comparison of the PDF of the pressure increments
(4) with the PDF of the wavelet coefficients computed with

the analyzing wavelet ψ
(1)
(3) (N) for the scales a = 24 (a) and 27

(b). (c) and (d) correspond to the same PDFs but when using
semi-logarithmic coordinates. The symbols (•) correspond to
the PDF of the WTMM computed at the same scales with the

same analyzing wavelet ψ
(1)
(3) .

As illustrated in Figures 17a and 17b, the expression
(26) does not provide such a good fit of the tails of the
WTMM PDF of B1 and B2 at scale a <

∼ 25. This is prob-
ably an indication that our selection criteria for the fila-
ments are not efficient enough at small scale. Apparently
the WT sub-skeletons of B1 and B2 are somehow polluted
at small scale by the presence of filamentary structures
that have not been filtered out. At larger scale, equation
(26) seems to be relevant, at least up to the integral scale
corresponding to the turn-over time. However, when inves-
tigating the scale dependence of the parameters m and σ2,
we observe a clear departure from the expected logarith-
mic behavior. In fact both these parameters behave more
likely as (1−a−β)/β where β ' 0.15. Let us note that this
exponent β somehow quantifies the departure from scale
invariance (β = 0) of the background pressure fluctuations
B1 and B2 observed in Figure 15a. If this observation is
likely to explain the inconsistency in the D(h) singular-
ity spectrum estimates reported in Figure 15d, it rather
questions the relevance of the multifractal description of
the pressure fluctuations and this even once the vortic-
ity filaments have been removed from the statistics. This
result is not peculiar to the pressure fluctuations in low
Reynolds swirling turbulent flows but on the contrary it
corroborates the conclusions of previous analysis of high
Reynolds number turbulent velocity signals [6,100–102,
114,116–122]. As reported in reference [100–102], the WT
analysis of a turbulent velocity signal recorded in the
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Fig. 17. Comparison of the PDF of the WTMM of the pres-
sure signal (•) with the PDFs corresponding to the background
pressure fluctuations B1 (×) and B2 ( ). The scale parameter
is a = 24 for (a) and (b) and a = 27 for (c) and (d). The con-
tinuous lines correspond to a fit of the data by the expression

P (Ta) = e−(ln(|Ta|
1/2)−m)2/2σ2

/2|Ta| (Eq. (26)), where the pa-
rameters m and σ are estimated independently for the positive
and negative parts of the considered WTMM PDF.

Modane wind tunnel at IRλ ' 2000 brings some support to
the pertinence of a self-similar log-normal cascade process
to account for the intermittency phenomenon. However,
this cascading process breaks scale invariance in the sense
that the number of steps to go from a coarse scale a to a
smaller scale a′, does not behave as log(a′/a) but rather

as (a−β − a′−β)/β [6,100–102,122], where the exponent β
is found to depend on the Reynolds number. Actually β
has been shown to decrease when increasing IRλ [100–102],
thereby indicating that scale-invariance is likely to be re-
stored only for very high Reynolds numbers. The possible
asymptotic validity of the multifractal description a priori
equally applies to the velocity as well as to the pressure
field. Consequently one can reasonably expect that, once
removed the vorticity filaments, the background pressure
fluctuations (B1 and B2) possess multifractal properties
in the limit IRλ → +∞.

6 Conclusion

In this work, we have focussed our study on the low pres-
sure tail of the PDF of pressure fluctuations recorded in
a swirling turbulent flow at low Reynolds number. The
corresponding pressure drops are due to the presence of
vorticity filaments in the flow as evidenced by a bubble vi-
sualization technique in references [30–35]. From the abil-
ity of the WT to unfold the experimental pressure signal

into a time (or space)-scale representation, we have de-
fined a protocol to distinguish these filaments from back-
ground fluctuations. The criteria are based on the iden-
tification, in the pressure WT skeleton, of the maxima
lines that correspond to strong singularities with negative
Hölder exponent which are likely to be associated to vor-
ticity filaments. This strategy actually originates from an
early WT analysis of Modane wind tunnel velocity data
[68,96,115]. The results reported in the present work can
be seen as some experimental confirmation of the conjec-
ture raised in this previous study. We refer the reader to
Roux’s thesis [82], where a complementary WT analysis
of simultaneously recorded pressure and velocity signals
corroborates the fact that a passing filament appears in
the same way as a strong singularity with negative Hölder
exponent in the velocity signal. As first tested on the Burg-
ers vortex model, from the behavior of the pressure WT
modulus along the maxima lines, one can extract the main
characteristic parameters of these filaments, namely their
core size and peripheral velocity. The identification of the
maxima lines that correspond to a passing filament then
allows us to separate the WT skeleton of the pressure sig-
nal into two sub-skeletons associated respectively to the
“filament phase” and to the “background phase” of pres-
sure fluctuations.

The investigation of the “filament” WT sub-skeleton
shows that not only the young and just formed filaments
are identified but also the older and so-called burst fila-
ments. Even though the latter have a complex inner struc-
ture, they are individually identified as single isolated fil-
amentary events. According to our selection criteria, most
of the fluctuations observed in the core of these burst fila-
ments cannot be distinguished from the background pres-
sure fluctuations although they may correspond to thinner
braided vortices also called “worms” in numerical sim-
ulations [27,29]. A statistical analysis of the “filament”
WT sub-skeleton does not reveal any departure from Pois-
son statistics which indicates that successive vorticity fila-
ments passing over the probe are likely to be independent
events. The mean spatial core size is estimated as large as
about 80 Taylor scales which is much larger than the esti-
mate reported in previous works [34,35,39,42], e.g. ∼ 10λ
in references [34,35] when using simple thresholding tech-
nique not so well adapted to identified burst filaments with
a wide core. The mean waiting time between two succes-
sive filaments is found to be of the order of a few (2 to
4) turn-over times (i.e integral times). This characteris-
tic time is not small enough to expect these filamentary
structures to alter drastically the statistical properties of
the background pressure fluctuations.

A statistical analysis of the scaling properties of the
WT sub-skeleton corresponding to the background pres-
sure fluctuations confirms that the statistical contribution
of the vorticity filaments is not important enough to ac-
count by itself for the intermittency phenomenon. In fact,
once removed all the filaments, the background pressure
fluctuations display statistical properties that are com-
patible with the log-normal cascade process revealed in
references [100–102], when investigating the fluctuations
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of the velocity field recorded in the Modane wind-tunnel
experiment at much higher Reynolds number. In partic-
ular, when analyzing the background pressure fluctua-
tions, one recovers some departure from scale invariance
[6,100–102,116–122] which makes questionable the mul-
tifractal description of the intermittency phenomenon at
finite Reynolds numbers [100–102]. There are many objec-
tive reasons that might explain our results about the lack
of scaling observed when applying the WTMM method to
the pressure signal. Indeed the Reynolds number is very
small and the inertial range (where scaling is expected to
operate) very limited. Because of the special geometrical
configuration of the experimental setup, the isotropy and
homogeneity hypothesis are likely to be violated. More-
over there is no mean flow and one cannot use the Taylor
hypothesis to get spatial information on the pressure field.
In spite of these limitations, the adequation observed be-
tween our quantitative estimate of the scale behavior of
the pressure WTMM PDFs in the present study and of the
velocity WTMM PDFs in the analysis of Modane wind
tunnel turbulence in references [100–102], strongly sug-
gests that the statistical contribution of vorticity filaments
is not responsible for the intermittency phenomenon. This
observation does not allow us to conclude that the vortic-
ity filaments are definitely not responsible for the depar-
ture from K41 scaling theory [48]; indeed during their for-
mation and bursting, they certainly affect and influence
the neighbouring fluctuations that actually constitute the
background pressure fluctuations. A decisive test would be
to inhibit the physical formation of the vorticity filaments
in the turbulent flow itself. Some preliminary experimental
attempt in this direction (dilution of some polymer) has
been performed by Bonn et al. [32] without further devel-
opment (at least to our knowledge). There is no doubt that
more experimental and theoretical work is needed before
reaching a complete understanding of the physical role of
vorticity filaments in turbulent flows.
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