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Abstract

The multifractal formalism was introduced in the context of fully-developed turbulence
data analysis and modeling to account for the experimental observation of some deviation
to Kolmogorov theory (K41) of homogenous and isotropic turbulence (Frisch, 1995). The
predictions of various multiplicative cascade models, including the weighted curdling (bino-
mial) model proposed by Mandelbrot (1974), were tested using box-counting (BC) estimates
of the so-called f(α) singularity spectrum of the dissipation field (Meneveau & Sreenivasan,
1991). Alternatively, the intermittent nature of the velocity fluctuations were investigated
via the computation of the D(h) singularity spectrum using the structure function (SF)
method (Parisi & Frisch, 1985). Unfortunately, both types of studies suffered from severe in-
sufficiencies. On the one hand, they were mostly limited by one point probe measurements to
the analysis of one (longitudinal) velocity component and to some 1D surrogate approximation
of the dissipation (Aurell et al., 1992). On the other hand, both the BC and SF methodologies
have intrinsic limitations and fail to fully characterize the corresponding singularity spectrum
since only the strongest singularities are a priori amenable to these techniques (Arneodo et al.,
1995b; Bacry et al., 1993; Muzy et al., 1993, 1994). In the early nineties, a statistical approach
based on the continuous wavelet transform was proposed as a unified multifractal description
of singular measures and multi-affine functions (Arneodo et al., 1995b; Bacry et al., 1993;
Muzy et al., 1993, 1994). Applications of the so-called wavelet transform modulus maxima
(WTMM) method have already provided insight into a wide variety of problems, e.g., fully
developed turbulence, econophysics, meteorology, physiology and DNA sequences (Arneodo
et al., 2002). Let us note that alternative approaches to the multifractal description have
been developed using discrete wavelet bases (Abry et al., 2000, 2002a,b; Veitch & Abry, 1999)
including the recent use of wavelet leaders (Jaffard et al., 2006; Wendt & Abry, 2007; Wendt
et al., 2007). Later on, the WTMM method was generalized to 2D for multifractal analysis
of rough surfaces (Arneodo et al., 2000; Decoster et al., 2000), with very promising results
in the context of the geophysical study of the intermittent nature of satellite images of the
cloud structure (Arneodo et al., 1999a, 2003; Roux et al., 2000) and the medical assist in the
diagnosis in digitized mammograms (Arneodo et al., 2003; Kestener et al., 2001). Recently,
the WTMM method has been further extended to 3D scalar as well as 3D vector field analysis
and applied to 3D numerical data issue from isotropic turbulence direct numerical simulations
(DNS) (Kestener & Arneodo, 2003, 2004, 2007).
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1 The Continuous Wavelet Transform

1.1 Introduction

The continuous wavelet transform (WT) is a mathematical technique introduced in signal anal-
ysis in the early 1980s (Goupillaud et al., 1984; Grossmann & Morlet, 1984). Since then, it has
been the subject of considerable theoretical developments and practical applications in a wide
variety of fields. The WT has been early recognized as a mathematical microscope that is well
adapted to reveal the hierarchy that governs the spatial distribution of singularities of multi-
fractal measures (Arneodo et al., 1988, 1989, 1992). What makes the WT of fundamental use
in the present study is that its singularity scanning ability equally applies to singular functions
than to singular measures (Arneodo et al., 1988, 1989, 1992; Holschneider, 1988; Holschneider &
Tchamitchian, 1990; Jaffard, 1989, 1991; Mallat & Hwang, 1992; Mallat & Zhong, 1992). This has
led Alain Arneodo and his collaborators (Arneodo et al., 1995b; Bacry et al., 1993; Muzy et al.,
1991, 1993, 1994) to elaborate a unified thermodynamic description of multifractal distributions
including measures and functions, the so-called Wavelet Transform Modulus Maxima (WTMM)
method. By using wavelets instead of boxes, one can take advantage of the freedom in the choice
of these “generalized oscillating boxes” to get rid of possible (smooth) polynomial behavior that
might either mask singularities or perturb the estimation of their strength h (Hölder exponent),
remedying in this way for one of the main failures of the classical multifractal methods (e.g. the
box-counting algorithms in the case of measures and the structure function method in the case of
functions (Arneodo et al., 1995b; Bacry et al., 1993; Muzy et al., 1993, 1994)). The other funda-
mental advantage of using wavelets is that the skeleton defined by the WTMM (Mallat & Hwang,
1992; Mallat & Zhong, 1992), provides an adaptative space-scale partitioning from which one can
extract the D(h) singularity spectrum via the Legendre transform of the scaling exponents τ(q) (q
real, positive as well as negative) of some partition functions defined from the WT skeleton. We
refer the reader to Bacry et al. (1993), Jaffard (1997a,b) for rigorous mathematical results and to
Hentschel (1994) for the theoretical treatment of random multifractal functions.

1.2 Definition

The WT is a space-scale analysis which consists in expanding signals in terms of wavelets which
are constructed from a single function, the analyzing wavelet ψ, by means of translations and
dilations. The WT of a real-valued function f is defined as (Goupillaud et al., 1984; Grossmann
& Morlet, 1984):

Tψ[f ](x0, a) =
1
a

∫ +∞

−∞
f(x)ψ(

x− x0

a
)dx , (1)

where x0 is the space parameter and a (> 0) the scale parameter. The analyzing wavelet ψ is
generally chosen to be well localized in both space and frequency. Usually ψ is required to be of
zero mean for the WT to be invertible. But for the particular purpose of singularity tracking that
is of interest here, we will further require ψ to be orthogonal to low-order polynomials (Arneodo
et al., 1995b; Bacry et al., 1993; Holschneider & Tchamitchian, 1990; Jaffard, 1989, 1991; Mallat
& Hwang, 1992; Mallat & Zhong, 1992; Muzy et al., 1991, 1993, 1994):∫ +∞

−∞
xmψ(x)dx = 0 , 0 ≤ m < nψ . (2)

As originally pointed out by Mallat and collaborators (Mallat & Hwang, 1992; Mallat & Zhong,
1992), for the specific purpose of analyzing the regularity of a function, one can get rid of the
redundancy of the WT by concentrating on the WT skeleton defined by its modulus maxima only.
These maxima are defined, at each scale a, as the local maxima of |Tψ[f ](x, a)| considered as a
function of x. As illustrated in Fig. 2(e,f), these WTMM are disposed on connected curves in the
space-scale (or time-scale) half-plane, called maxima lines. Let us define L(a0) as the set of all
the maxima lines that exist at the scale a0 and which contain maxima at any scale a ≤ a0. An
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Figure 1 Set of analyzing wavelets ψ(x) that can be used in Eq. (1). (a) g(1) and (b) g(2) as defined in Eq. (3).

important feature of these maxima lines, when analyzing singular functions, is that there is at
least one maxima line pointing towards each singularity (Mallat & Hwang, 1992; Mallat & Zhong,
1992; Muzy et al., 1994).

1.3 Analyzing Wavelets

There are almost as many analyzing wavelets as applications of the continuous WT (Arneodo
et al., 1988, 1989, 1992, 1995b; Bacry et al., 1993; Muzy et al., 1991, 1993, 1994). A commonly
used class of analyzing wavelets is defined by the successive derivatives of the Gaussian function:

g(N)(x) =
dN

dxN
e−x

2/2 , (3)

for which nψ = N and more specifically g(1) and g(2) that are illustrated in Fig. 1(a,b). Note that
the WT of a signal f with g(N) (Eq. (3)) takes the following simple expression:

Tg(N) [f ](x, a) =
1
a

∫ +∞

−∞
f(y)g(N)

(
y − x
a

)
dy,

= aN
dN

dxN
Tg(0) [f ](x, a). (4)

Equation (4) shows that the WT computed with g(N) at scale a is nothing but the Nth derivative
of the signal f(x) smoothed by a dilated version g(0)(x/a) of the Gaussian function. This prop-
erty is at the heart of various applications of the WT microscope as a very efficient multi-scale
singularity tracking technique (Arneodo et al., 2002).

1.4 Scanning Singularities with the Wavelet Transform Modulus Max-
ima

The strength of the singularity of a function f at point x0 is given by the Hölder exponent, i.e.,
the largest exponent such that there exists a polynomial Pn(x − x0) of order n < h(x0) and a
constant C > 0, so that for any point x in a neighborhood of x0, one has (Bacry et al., 1993;
Holschneider & Tchamitchian, 1990; Jaffard, 1989, 1991; Mallat & Hwang, 1992; Mallat & Zhong,
1992; Muzy et al., 1994):

|f(x)− Pn(x− x0)| ≤ C|x− x0|h . (5)

If f is n times continuously differentiable at the point x0, then one can use for the polynomial
Pn(x − x0), the order-n Taylor series of f at x0 and thus prove that h(x0) > n. Thus h(x0)
measures how irregular the function f is at the point x0. The higher the exponent h(x0), the more
regular the function f .

4



The main interest in using the WT for analyzing the regularity of a function lies in its ability
to be blind to polynomial behavior by an appropriate choice of the analyzing wavelet ψ. Indeed,
let us assume that according to Eq. (5), f has, at the point x0, a local scaling (Hölder) exponent
h(x0); then, assuming that the singularity is not oscillating (Arneodo et al., 1997a, 1998b; Mallat
& Zhong, 1992), one can easily prove that the local behavior of f is mirrored by the WT which
locally behaves like (Arneodo et al., 1995b; Bacry et al., 1993; Holschneider & Tchamitchian, 1990;
Jaffard, 1989, 1991, 1997a,b; Mallat & Hwang, 1992; Mallat & Zhong, 1992; Muzy et al., 1991,
1993, 1994) :

Tψ[f ](x0, a) ∼ ah(x0) , a→ 0+ , (6)

provided nψ > h(x0), where nψ is the number of vanishing moments of ψ (Eq. (2)). Therefore one
can extract the exponent h(x0) as the slope of a log-log plot of the WT amplitude versus the scale
a. On the contrary, if one chooses nψ < h(x0), the WT still behaves as a power-law but with a
scaling exponent which is nψ :

Tψ[f ](x0, a) ∼ anψ , a→ 0+ . (7)

Thus, around a given point x0, the faster the WT decreases when the scale goes to zero, the more
regular f is around that point. In particular, if f ∈ C∞ at x0 (h(x0) = +∞), then the WT
scaling exponent is given by nψ, i.e. a value which is dependent on the shape of the analyzing
wavelet. According to this observation, one can hope to detect the points where f is smooth
by just checking the scaling behavior of the WT when increasing the order nψ of the analyzing
wavelet (Arneodo et al., 1995b; Bacry et al., 1993; Muzy et al., 1991, 1993, 1994).

Remark
A very important point (at least for practical purpose) raised by Mallat and Hwang (Mallat

& Hwang, 1992) is that the local scaling exponent h(x0) can be equally estimated by looking at
the value of the WT modulus along a maxima line converging towards the point x0. Indeed one
can prove that both Eqs. (6) and (7) still hold when following a maxima line from large down to
small scales (Mallat & Hwang, 1992; Mallat & Zhong, 1992).

2 The Wavelet Transform Modulus Maxima Method for
Multifractal Analysis

2.1 Singularity Spectrum

As originally defined by Parisi & Frisch (1985), the multifractal formalism of multi-affine functions
amounts to compute the so-called singularity spectrum D(h) defined as the Hausdorff dimension
of the set where the Hölder exponent is equal to h (Arneodo et al., 1995b; Bacry et al., 1993; Muzy
et al., 1994):

D(h) = dimH{x , h(x) = h} , (8)

where h can take, a priori, positive as well as negative real values (e.g., the Dirac distribution
δ(x) corresponds to the Hölder exponent h(0) = −1) (Jaffard, 1997a).

2.2 The WTMM Method

A natural way of performing a multifractal analysis of fractal functions consists in generalizing the
“classical” multifractal formalism (Collet et al., 1987; Grassberger et al., 1988; Halsey et al., 1986;
Paladin & Vulpiani, 1987; Rand, 1989) using wavelets instead of boxes. By taking advantage of
the freedom in the choice of the “generalized oscillating boxes” that are the wavelets, one can hope
to get rid of possible smooth behavior that could mask singularities or perturb the estimation of
their strength h. But the major difficulty with respect to box-counting techniques (Argoul et al.,
1990; Farmer et al., 1983; Grassberger & Procaccia, 1983; Grassberger et al., 1988; Meneveau
& Sreenivasan, 1991) for singular measures, consists in defining a covering of the support of
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the singular part of the function with our set of wavelets of different sizes. As emphasized in
Refs. (Arneodo et al., 1995b; Bacry et al., 1993; Muzy et al., 1991, 1993, 1994), the branching
structure of the WT skeletons of fractal functions in the (x, a) half-plane enlightens the hierarchical
organization of their singularities (Figs. 2(e,f)). The WT skeleton can thus be used as a guide
to position, at a considered scale a, the oscillating boxes in order to obtain a partition of the
singularities of f . The wavelet transform modulus maxima (WTMM) method amounts to compute
the following partition function in terms of WTMM coefficients (Arneodo et al., 1995b; Bacry et al.,
1993; Muzy et al., 1991, 1993, 1994):

Z(q, a) =
∑
l∈L(a)

 sup
(x,a′)∈l
a′≤a

|Tψ[f ](x, a′)|


q

, (9)

where q ∈ R and the sup can be regarded as a way to define a scale adaptative “Hausdorff-like”
partition. Now from the deep analogy that links the multifractal formalism to thermodynam-
ics (Arneodo et al., 1995b; Bohr & Tèl, 1988), one can define the exponent τ(q) from the power-law
behavior of the partition function:

Z(q, a) ∼ aτ(q) , a→ 0+ , (10)

where q and τ(q) play respectively the role of the inverse temperature and the free energy. The
main result of this wavelet-based multifractal formalism is that in place of the energy and the
entropy (i.e. the variables conjugated to q and τ), one has h, the Hölder exponent, and D(h), the
singularity spectrum. This means that the singularity spectrum of f can be determined from the
Legendre transform of the partition function scaling exponent τ(q) (Bacry et al., 1993; Jaffard,
1997a,b):

D(h) = min
q

(qh− τ(q)) . (11)

2.3 Monofractal versus Multifractal Functions

From the properties of the Legendre transform, it is easy to see that homogeneous monofractal
functions that involve singularities of unique Hölder exponent h = ∂τ/∂q, are characterized by
a τ(q) spectrum which is a linear function of q (Fig. 3(c)). On the contrary, a nonlinear τ(q)
curve is the signature of nonhomogeneous functions that exhibit multifractal properties, in the
sense that the Hölder exponent h(x) is a fluctuating quantity that depends upon the spatial
position x (Fig. 3(c)). As illustrated in Fig. 3(d), the D(h) singularity spectrum of a multifractal
function displays a single humped shape that characterizes intermittent fluctuations corresponding
to Hölder exponent values spanning a whole interval [hmin, hmax], where hmin and hmax are the
Hölder exponents of the strongest and weakest singularities respectively.

2.4 Applications of the WTMM Method

2.4.1 DNA sequences: Monofractality of DNA walks

A DNA sequence is a four-letter (A, C, G ,T) text where A, C, G and T stand for the bases adenine,
cytosine, guanine and thymine respectively. A popular method to graphically portray the genetic
information stored in DNA sequences is to used the so-called “DNA walk” representation (Peng
et al., 1992). It consists first in converting the DNA text into a binary sequence by coding for
example with χ(i) = 1 at a given nucleotide positions and χ(i) = −1/3 at other positions (Voss,
1992), and then in defining the graph of the DNA walk by the cumulative variables f(n) =∑n
i=1 χ(i). The DNA walk obtained with the “G” mononucleotide coding for the largest intron

of the human dystrophin gene is shown in Fig. 2(a) for illustration. Fig. 2(c) illustrates the WT
when using an analyzing wavelet of sufficiently high order, namely g(2) (nψ = 2), to get rid of the
linear trends in the DNA walk landscape inherent to the heterogeneity of composition of genomic
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Figure 2 WT of monofractal and multifractal functions.
DNA walk: (a) DNA walk f(x) of the largest intron of human dystrophin gene (L = 109574) using the “G”
mononucleotide coding; (c) WT of DNA walk landscape color coded, independently at each scale a, using 256
colors from black (|Tψ| = 0) to red (max |Tψ|); (e) WT skeleton defined by the set of all maxima lines.
Fully developed turbulence: (b) Longitudinal velocity signal recorded in the Modane wind-tunnel experiment
(Rλ ' 2000) over about two integral scales; (d) WT of the velocity signal in (b) using the same color coding
as in (c); (f) corresponding WT skeleton.
The analyzing wavelet is the Mexican hat g(2) (Eq. (3)).

sequences (Arneodo et al., 1995a, 1996). Fig. 3(a) displays some plots of log2 Z(q, a) vs log2(a)
for different values of q, where the partition function Z(q, a) has been computed on the WTMM
skeleton (Fig. 2(e)), according to the definition (Eq. (9)) for a set of 2184 human introns of size
L ≥ 800bp. Using a linear regression fit, we then obtain the slopes τ(q) of these graphs. As shown
in Fig. 3(c), when plotted versus q, the data for the exponents τ(q) consistently fall on a straight
line that is remarkably fitted by

τ(q) = qH − 1 , (12)

with H = 0.60±0.02. From the Legendre transform of this linear τ(q) (Eq. (11)), one gets a D(h)
singularity spectrum that reduces to a single point:

D(h) = 1 if h = H , (13)
= −∞ if h 6= H ,

as the signature of a nowhere differentiable homogeneous fractal signal with a unique Hölder
exponent h = H = 0.60. Note that similar good estimates are obtained when using analyzing
wavelets of different order ( e.g. g(3)).

Within the perspective of confirming the monofractality of DNA walks, we have studied the
probability density function (pdf) of wavelet coefficient values ρa(Tg(2)(., a)), as computed at a
fixed scale a in the fractal scaling range. According to the monofractal scaling properties, one
expects these pdfs to satisfy the self-similarity relationship (Arneodo et al., 1995a, 1996, 2002):

aHρa(aHT ) = ρ(T ) , (14)
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Figure 3 Determination of the τ(q) andD(h) multifractal spectra of the “G” DNA walks of a set of 2184 human
introns (L ≥ 800bp) (◦) and of the turbulent velocity signals (•) using the WTMM method. log2 Z(q, a) vs
log2 a for, from bottom to top, q = −2, −1, 0, 1, 2, 3 and 4 in (a) and for q = −3, 0, 3 and 6 in (b). (c) τ(q)
vs q; the solid lines correspond respectively to a monofractal spectrum τ(q) = qH − 1 with H = 0.60 ± 0.02
(red) and to a quadratic multifractal spectrum τ(q) = c1q− c2

2
q2−1 with c1 = 0.36±0.02 and a non zero value

for the intermittent coefficient c2 = 0.028± 0.003 (blue). (d) D(h) vs h; while the singularity spectrum of the
monofractal DNA walk landscape reduces to a point (D(h = 0.6) = 1 and 0 elsewhere, ◦), it has a parabolic
shape and extends from hmin = 0.12 to hmax = 0.60 as the signature of the “intermittent” multifractal nature
of Eulerian turbulence (•). The analyzing wavelet is g(2) (Eq. (3)).
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Figure 4 Probability density functions of the wavelet coefficient values of the “G” DNA walk of 2834 human
introns (L ≥ 600) (red open symbols) and of the turbulent velocity signal (blue filled symbols). (a) and (b)
ρa(T ) for the sets of scales a = 4 (M), 16 (�), 64 (◦) and a = 27 (N), 144 (�), 760 (H), 3993 (•). (c) and
(d) aHρa(a

HT ) for the same sets of scales; H = 0.60 in (c) and H = 1/3 in (d). The analyzing wavelet is
g(2).

where ρ(T ) is a “universal” pdf (actually the pdf obtained at scale a = 1) that does not depend on
the scale parameter a. As shown in Fig. 4(a,c), when plotting aHρa(aHT ) vs T , all the ρa curves
corresponding to different scales (Fig. 4(a)) remarkably collapse on a unique curve when using a
unique exponent H = 0.60 (Fig. 4(c)). Furthermore the so-obtained universal curve cannot be
distinguished from a parabola in semi-log representation as the signature of monofractal Gaussian
statistics. Therefore, the fluctuations of DNA walks about the composition induced linear trends
cannot be distinguished from persistent fractional Brownian motion (fBm) BH=0.60 that display
long-range correlations (LRC) (H > 0.5) (Arneodo et al., 1996, 2002; Muzy et al., 1994). Similar
LRC were found in non-coding sequences as well as in coding regions (e.g. coding exons) in
eukaryotic genomes (but not for eubacterial sequences for which H = 0.5) as the signature of
nucleosomal structure, the first step of compaction of DNA in eukaryotic nuclei (Audit et al.,
2001, 2002).

2.4.2 Fully developed turbulence

It is now well accepted (Frisch, 1995) that in the fully developed regime, a turbulent flow is likely to
be in a universal state that can be experimentally characterized by statistical quantities such as the
multifractal spectra τ(q) andD(h). For more than thirty years, one of the main features recognized
experimentally is the intermittency of small scales (Frisch, 1995; Meneveau & Sreenivasan, 1991;
Monin & Yaglom, 1975) which manifests in a significant departure of the experimental velocity
data from the monofractal prediction τ(q) = q/3 − 1 of Kolmogorov (K41) (Kolmogorov, 1941)
based on the homogeneity assumption that, at each point of the fluid, the longitudinal velocity
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increments have the same scaling behavior δvl(x) ∼ l1/3, which yields the well known E(k) ∼ k−5/3

energy spectrum (Frisch, 1995). The pioneering studies (Anselmet et al., 1984; Frisch, 1995)
were performed using the structure functions method which, as discussed in Muzy et al. (1993),
intrinsically fails to fully characterize the D(h) singularity spectrum.

In Figs. 2(b,d,f), 3(b,c,d) and 4(b,d) are reported the results of a multifractal analysis of single
point longitudinal velocity data from high Reynolds 3D turbulence using the WTMM method (Ar-
neodo et al., 1998a,c, 1999b; Delour et al., 2001). The data were obtained by Gagne and collabora-
tors in the large wind tunnel S1 of ONERA at Modane. The Taylor scale based Reynolds number
is Rλ ' 2000 and the extent of the inertial range following approximately the Kolmogorov k−5/3

law is about four decades (integral scale L ' 7m, dissipation scale η ' 0.27mm). In Fig. 2(b)
is illustrated a sample of the longitudinal velocity signal of length of about two integral scales,
when using the Taylor hypothesis (Frisch, 1995). The corresponding WT and WT skeleton as
computed with g(2) are shown in Figs. 2(d) and 2(f) respectively. As shown in Fig. 3(b), when
plotted versus the scale parameter a in a logarithmic representation, the annealed average over
28000 integral scales of the partition functions Z(q, a) displays a well defined scaling behavior in
the inertial range for a rather wide range of q values: −4 ≤ q ≤ 7. When processing to a linear
regression fit of the data, one gets a non-linear τ(q) spectrum, the hallmark of multifractal scaling,
that is well approximated by the quadratic spectrum of log-normal processes:

τ(q) = c1q −
c2
2
q2 − d , (15)

with c1 = 0.36± 0.02, c2 = 0.028± 0.003 and where d = 1 is the spatial dimension (1D cut of the
3D velocity field). Similar, quantitative agreement is observed for the D(h) singularity spectrum
in Fig. 3(d) which displays a remarkable parabolic shape:

D(h) = d− (h+ c1)2

2c2
, (16)

that characterizes intermittent fluctuations corresponding to Hölder exponent values ranging from
hmin = 0.12 to hmax = 0.60, the largest dimension D(h(q = 0)) = −τ(0) = 0.999±0.001 = d being
attained for h = c1 = 0.36 ± 0.02, i.e., a value which is slightly larger than the K41 prediction
h = 1/3. This multifractal diagnosis is confirmed in Fig. 4(b) where the pdf of WT coefficients
has a shape which evolves across scales from Gaussian at large scale to more intermittent profiles
with stretched exponential-like tails at smaller scales. As illustrated in Fig. 4(d), there is no way
to collapse all the WT pdfs on a single curve with a unique exponent H as expected from the
self-similarity relationship (14). Instead, this can be done (Arneodo et al., 1997b, 1998c, 1999b) by
using a Gaussian kernel that strongly supports the log-normal cascade phenomenology (Castaing
et al., 1990; Delour et al., 2001; Kolmogorov, 1962; Oboukhov, 1962) of fully developed turbulence.

3 Generalizing the WTMM Method to d-Dimensional Im-
age Analysis

The generalization of the WTMM method in higher dimension is directly inspired from Mallat
et al. (Mallat & Hwang, 1992; Mallat & Zhong, 1992) reformulation of Canny multiscale edge
detector (Canny, 1986) in terms of 2D WT. The general idea is to start smoothing the discrete
image data by convolving it with a filter and then compute the gradient of the smoothed image.
This method has been implemented, tested and applied to 2D (Arneodo et al., 1999a, 2000, 2003;
Decoster et al., 2000; Roux et al., 2000) and 3D (Kestener & Arneodo, 2003) scalar field.

3.1 The d-Dimensional WTMM Method

Let us define d analyzing wavelet ψi(x = (x1, x2, . . . , xd)) that are respectively, the partial deriva-
tives of a smoothing scalar function φ(x) :

ψi(x = (x1, x2, . . . , xd)) = ∂φ(x = (x1, x2, . . . , xd))/∂xi , i = 1, 2, . . . , d. (17)
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Figure 5 2D wavelet transform analysis of a Landsat image of marine Sc clouds captured at l = 30m resolution
on July 7,1987, off the coast of San Diego (CA) (Arneodo et al., 1999a; Roux et al., 2000). (a) 256 grey-scale
coding of a (1024× 1024) portion of the original radiance image. In (b) a = 22.9σW , (c) a = 21.9σW and (d)
a = 23.9σW (where σW = 13 pixels ' 390 m), are shown the maxima chains; the local maxima of Mψ along
these chains are indicated by (•) from which originates an arrow whose length is proportional to Mψ and its
direction (with respect to the x-axis) is given by Aψ; only the central (512× 512) part delimited by a dashed
square in (a) is taken into account to define the WT skeleton. In (b), the smoothed image φb,a ∗ I is shown
as a grey-scale coded background from white (min) to black (max). ψ(x) is the first-order radially symmetric
analyzing wavelet.

φ(x) is supposed to be an isotropic function that depends on |x| only and that is well localized
around |x| = 0. Commonly used smoothing functions are the Gaussian function :

φ(x = (x1, x2, . . . , xd)) = e−|x|
2/2, (18)

and the isotropic Mexican hat :

φ(x = (x1, x2, . . . , xd)) = (d− x2)e−|x|
2/2, (19)

that correspond to a first-order (nψ = 1) and a third-order (nψ = 3) analyzing wavelet respectively.
For any scalar function f(x1, x2, . . . , xd) ∈ L2(Rd), the WT at point b and scale a can be

expressed in a vectorial form (Arneodo et al., 2000; Decoster et al., 2000; Kestener & Arneodo,
2003):

Tψ[f ](b, a) =


Tψ1 [f ] = a−d

∫
ddx ψ1

(
a−1(x− b)

)
f(x)

Tψ2 [f ] = a−d
∫
ddx ψ2

(
a−1(x− b)

)
f(x)

...
Tψd [f ] = a−d

∫
ddx ψd

(
a−1(x− b)

)
f(x)

 (20)

Then, after a straightforward integration by parts, Tψ can be expressed as the gradient field
vector of f(x) smoothed by dilated versions φ(x/a) of the smoothing filter. At a given scale a
the WTMM are defined by the positions b where the modulus Mψ[f ](b, a) = |Tψ[f ](b, a)| is
locally maximum along the direction of the WT vector. These WTMM lie on connected (d-1)
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Figure 6 The WT skeleton defined by the maxima lines obtained after linking the WTMMM detected at
different scales.

hypersurfaces called maxima hypersurfaces (see Figs 5 and 8). In theory, at each scale a, one only
needs to record the position of the local maxima of Mψ along the maxima hypersurfaces together
with the value of Mψ[f ] and the direction Aψ[f ](b, a) of Tψ[f ]. These WTMMM are disposed
along connected curves across scales called maxima lines living in a (d+1)-space (x1, x2, . . . , xd, a).
The WT skeleton is then defined as the set of maxima lines that converge to the (x1, x2, . . . , xd)
hyperplane in the limit a→ 0+ (see Fig. 6). As originally demonstrated in Arneodo et al. (1999a),
Decoster et al. (2000) and Kestener & Arneodo (2003), the local Hölder regularity of f(x) can be
estimated from the power-law behavior of Mψ[f ]

(
Lx0(a)

)
∼ ah(x0) along the maxima line Lx0(a)

pointing to the point x0 in the limit a → 0+, provided h(x0) be smaller than the number nψ
(= minj nψj ) of zero moments of the analyzing wavelet ψ. Then, very much like in 1D (Eq. (9)),
one can use the scale-partitioning given by the WT skeleton to define the following partition
functions :

Z(q, a) =
∑

L∈L(a)

(Mψ[f ](x, a))q , (21)

where q ∈ R and L(a) is the set of maxima lines that exist at scale a in the WT skeleton.
As before, the τ(q) spectrum will be extracted from the scaling behavior of Z(q, a) (Eq. (10))
and in turn the D(h) singularity spectrum will be obtained from the Legendre transform of τ(q)
(Eq. (11)) (Arneodo et al., 1999a; Decoster et al., 2000; Kestener & Arneodo, 2003).

3.2 Application of the 2D WTMM Method to High-Resolution Satellite
Images of Cloud Structure

Stratocumulus are one of the most studied clouds types (Davis et al., 1996). Being at once
persistent and horizontal extended, marine Sc layers are responsible for a large portion of the
earth’s global albedo, hence , its overall energy balance. Figure 5(a) shows a typical 1024x1024
pixels portion among 14 overlapping subscenes of the original Sc Landsat images where quasi-nadir
viewing radiance at satellite level is digitized on an eight-bit grey scale. The different steps of the
2D WTMM methodology are illustrated in Fig. 5 (b,c,d) where the WTMM chains and the local
maxima of Mψ along these chains computed with the first order (nψ = 1) analyzing wavelet, are
shown at different scales. In Fig. 7 are reported the τ(q) and D(h) multifractal spectra obtained
from the scaling behavior of Z(q, a) over the range of scales 390 m . a . 3120 m (Arneodo
et al., 1999a; Roux et al., 2000). Both spectra are clearly non linear and very well fitted by the
theoretical quadratic spectra of log-normal cascade processes (Eqs (15) and (16) with d = 2).
However, with the first-order analyzing wavelet, the best fit is obtained with the parameter values
c1 = 0.38 ± 0.02 and c2 = 0.070 ± 0.005, while for the third-order wavelet these parameters take
slightly different values, namely c1 = 0.37 ± 0.02 and c2 = 0.060 ± 0.005. The intermittency
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Figure 7 Determination of the multifractal spectra of radiance Landsat images of marine Sc using the 2D
WTMM method with either a first order (•) or a third-order (◦) radially symmetric analyzing wavelet (Eqs
(17,18) and (17,19) respectively). τ(q) vs q; (b) D(h) vs h, In (a) and (b), the solid lines correspond to the
theoretical multifractal spectra for log-normal cascade processes namely, Eqs (15) and (16) with parameter
values c1 = 0.38 and c2 = 0.07 and d = 2. The D(h) singularity spectrum of longitudinal velocity (dotted
line) and temperature (dashed line) fluctuations in fully developed turbulence are shown for comparison in (b).

coefficient c2 is therefore somehow reduced when going from nψ = 1 to nψ = 3. Actually, it is a
lack of statistical convergence because of insufficient sampling which is the main reason for this
uncertainty in the estimate of c2.

In Fig.7(b) are shown for comparison the D(h) singularity spectra of turbulent longitudinal
velocity data recorded at the Modane wind tunnel (Rλ ' 2000) and of temperature fluctuations
recorded in a Rλ = 400 turbulent flow (Ruiz-Chavarria et al., 1996). The D(h) curve for ma-
rine Sc clouds is much wider than the velocity D(h) spectrum (the intermittency coefficient c2
being almost three time larger) and it is rather close to the temperature D(h) spectrum. If it is
well recognized that liquid water is not really passive, the results derived with the 2D WTMM
method in Fig. 7 show that from a multifractal point of view, the intermittency captured by
the Landsat satellite looks statistically equivalent to the intermittency of a passive scalar in fully
developed 3D turbulence. The fact that the internal structure of Sc cloud somehow reflects some
statistical properties of atmospheric turbulence is not such a surprise in this highly turbulent
environment (Arneodo et al., 1999a; Roux et al., 2000).

3.3 Application of the 3D WTMM Method to 3D Isotropic Turbulence
Simulations

A central quantity in the K41 theory of fully developed turbulence is the mean energy dissipation
ε = ν

2

∑
i,j(∂jvi+∂ivj)2 which is supposed to be constant. Indeed, ε is not spatially homogeneous
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Figure 8 3D WT analysis of the DNS dissipation field ε. ψ is the first-order analyzing wavelet (φ(x) is the
Gaussian). (a) Isosurface plot of ε in a (128)3 subcube. (b) log(ε) in the (128)3 central part as coded using 64
grey levels. (c) Field lines of Tψ[f ](b, a) for a = σW = 7 pixels. (d) Same as (c) for a = 2σW . (e) WTMM
surfaces at scale a = 2σW ; from the WTMMM along these surfaces originates a black segment whose length is
proportional to Mψ and direction is along the WT vector; the colors on the WTMM surfaces are proportional
to Mψ. (f) same as (e) for a = 4σW .
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Figure 9 Multifractal analysis of Meneguzzi DNS simulation data (d = 3). using the 3D WTMM method
(◦) and BC techniques (•). (a) τε(q) = τWT

ε (q) or τBC
ε (q) − 3q vs q; the solid (dashed) lines correspond

to the p-model with weights p1 = 0.36, p2 = 0.78 (p1 = 0.32, p2 = 0.68). (b) Dε(h) = DWT
ε (h) or

DBC
ε (h) = fWT

ε (h + 3); the solid and dashed lines have the same meaning as in (a); the (4) correspond to
some average DBC

ε′ (h) spectrum of experimental (d = 1) surrogate dissipation data (Meneveau & Sreenivasan,
1991).

but undergoes local intermittent fluctuations (Frisch, 1995; Meneveau & Sreenivasan, 1991). There
have been early numerical and experimental attempts to measure the multifractal spectra of ε
or of its 1D surrogate approximation ε′ = 15ν(∂u/∂x)2 (where u is the longitudinal velocity)
using classical box counting techniques (Meneveau & Sreenivasan, 1991). In Figs. 8 and 9 are
reported the results of the application of the 3D WTMM method (Kestener & Arneodo, 2003)
to isotropic turbulence direct numerical simulations (DNS) data obtained by Meneguzzi with
the same numerical code as previously used by Vincent & Meneguzzi (1991), but at a (512)3

resolution and a viscosity of 5.10−4 corresponding to a Taylor Reynolds number Rλ = 216 (one
snapshot of the dissipation 3D spatial field). The main steps of the 3D WT computation are
illustrated in Fig. 8. Note that the WTMMM points that define the WT skeleton, now lie on
WTMM 2D surfaces at a given scale. The multifractal spectra obtained from this WT skeleton
are shown in Fig. 9. The τε(q) spectrum in Fig. 9(a) significantly deviates from a straight line
the hallmark of multifractality. But surprisingly, the data obtained from the 3D WTMM method
τWT
ε (q) significantly differ from the spectrum τε(q) = τBC

ε (q) − 3q estimated with box-counting
technique (Kestener & Arneodo, 2003). Actually the WT estimate of the cancellation exponent
τWT
ε (q = 1) + 3 = −0.19 ± 0.03 < 0, the signature of a signed measure. Indeed, as shown

in Fig. 9(a), the τWT
ε (q) data are rather nicely fitted by the theoretical spectrum τµ(q) of the

nonconservative binomial pmodel (Mandelbrot, 1974; Meneveau & Sreenivasan, 1991) with weights
p1 = 0.36 and p2 = 0.78 (p1 + p2 = 1.14 > 1). By construction, the BC algorithms systematically

15



provide a misleading conservative τε(q) spectrum diagnostic with p = p1/(p1 + p2) = 0.32 and
1 − p = p2/(p1 + p2) = 0.68. The difference between the two spectra is nothing but a fractional
integration of exponent H∗ = log2(p1 + p2) ∼ 0.19. This result is confirmed in Fig. 9(b) where
the singularity spectrum DBC

ε (h) is misleadingly shifted to the right by H∗ (= − the cancellation
exponent), without any change of shape as compared to DWT

ε (h) (Kestener & Arneodo, 2003).
This observation seriously questions the validity of most of the experimental and numerical BC
estimates of τBC

ε (q) and fBC
ε (α) = DBC

ε (h + 3) spectra reported so far in the literature. Besides
the fact that the τWT

ε (q) and DWT
ε (h) spectra seem to be even better fitted by a parabola, as

predicted for non-conservative log-normal cascade processes, these results raise the fundamental
question of the possible asymptotic decrease to zero of the cancellation exponent in the infinite
Reynolds number limit.

4 Perspectives

For many years, the multifractal description has been mainly devoted to scalar measures and
functions. However, in physics as well as in other fundamental and applied sciences, fractals ap-
pear not only as deterministic or random scalar fields but also as vector-valued deterministic or
random fields. Very recently, Kestener & Arneodo (2004, 2007) have combined singular value de-
composition techniques and WT analysis to generalize the multifractal formalism to vector-valued
random fields. The so-called Tensorial Wavelet Transform Modulus Maxima (TWTMM) method
has been applied to turbulent velocity and vorticity fields generated in (256)3 DNS of the incom-
pressible Navier-Stokes equations. This study reveals the existence of an intimate relationship
DV (h + 1) = Dω(h) between the singularity spectra of these two vector fields that are found
significantly more intermittent that previously estimated from longitudinal and transverse veloc-
ity increment statistics. Furthermore, thanks to the singular value decomposition, the TWTMM
method looks very promising for future simultaneous multifractal and structural (vorticity sheets,
vorticity filaments) analysis of turbulent flows (Kestener & Arneodo, 2004, 2007).
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