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Abstract. We study experimentally the thermal fluctuations of energy input
and dissipation in a harmonic oscillator driven out of equilibrium, and search for
fluctuation relations. Both the transient evolution from the equilibrium state, and
non-equilibrium steady states are analyzed. Fluctuation relations are obtained
experimentally for both the work and the heat, for the stationary and transient
evolutions. A stationary state fluctuation theorem is verified for various time
dependences of the imposed external torque. The transient fluctuation theorem
is satisfied for the work given to the system but not for the heat dissipated by the
system in the case of linear forcing. Experimental observations on the statistical
and dynamical properties of the position fluctuations of the torsion pendulum
allow us to derive analytical expressions for the probability density functions of
the work and the heat. We obtain for the first time an analytic expression for
the probability density function of the heat. The agreement between experiments
and our predictions is excellent.
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1. Introduction

Nanotechnology, like biology, biophysics and chemistry, is using or studying set-ups and
objects which are smaller and smaller. In these systems, one is usually interested in
mean values, but thermal fluctuations play an important role because their amplitudes
are often comparable with the mean values. This is for example the case for quantities
such as the energy injected into the system or the energy dissipated by the system. These
fluctuations can lead to unexpected and undesired effects: for instance, the instantaneous
energy transfer can be reversed by a large fluctuation, leading energy to flow from a
cold source to a hot one. These events, although rare, are quantitatively studied using
the recent fluctuation relations (FRs) that quantify the probabilities of these rare events
in systems which can be arbitrarily far from equilibrium. FRs have been demonstrated
in both deterministic systems [1, 2] and stochastic dynamics [3]–[9]. Furthermore van
Zon and Cohen proved that there is an important difference between the FRs for the
injected power and those for the dissipated power [7, 8]. It is important to notice that
the fluctuations of the work done by the external forces to drive the system between
two equilibrium states A and B allows one to compute, in some cases, the free energy
difference ΔF between A and B, using the Jarzynski equality [10, 11] and the Crooks
relation (CR) [12] which are in some way related to the FRs. Indeed using the JE and
CR one takes advantage of these work fluctuations and relates ΔF to the probability
distribution function (PDF) of the work performed on the system to drive it from A to B
along any path (either reversible or irreversible) in the system parameter space. Hatano
and Sasa produced a relation of the same kind [13] and an interesting extension of the JE
has been proposed in [14]. The JE and CR are beginning to be widely used to measure
the free energy in various biological [16]–[18], chemical [19] and physical systems [20, 14].

To safely apply FRs in practical cases, it is useful and important to check in
very controlled experiments the hypothesis on which these theorems are based. These
experiments will also allow a test of the accuracy with which the predicted effects are
observable and the limits of FRs in general applications. From this point of view, it is
of paramount importance to take into account that FRs and the JE and CR may use
different definitions of work which, if not correctly used, may lead to misleading results
(see [15] for a discussion of this point).

Experiments searching for FRs have been performed on dynamical systems [21]–[23],
but interpretations are very difficult because a quantitative comparison with theoretical
prediction is impossible. Other experiments have been performed on stochastic systems
described by a first-order Langevin equation: a Brownian particle in a moving optical
trap [24] and an out-of-equilibrium electrical circuit [25] in which existing theoretical
predictions [7, 8] were verified. Other experimental tests for FRs have been performed on
driven two-level systems [20] and in colloids [26]. The limits of the applicability of the
JE and CR in a second-order Langevin system have been studied experimentally in [27].
Other interesting comments on the Langevin equation can be found in [28].

In a recent letter [29] we presented experimental and theoretical results for the
fluctuations of the work done by an external time dependent force on a harmonic oscillator
either in the stationary or in the transient state, which are described by a second-order
Langevin equation. In the present paper, we describe the results on the work in more
detail and we extend the study to the heat dissipated by the system. We also present

doi:10.1088/1742-5468/2007/09/P09018 3

http://dx.doi.org/10.1088/1742-5468/2007/09/P09018


J.S
tat.M

ech.
(2007)

P
09018

Fluctuation theorems for harmonic oscillators

(a) (b)

Figure 1. (a) The torsion pendulum. (b) The magnetostatic forcing.

detailed analytical derivations of FRs based on experimental observations. As we will
see, there are important differences between the first-order and second-order Langevin
equations which are induced by the presence of the kinetic energy especially as regards
heat fluctuations. For this reason it is important to study the two cases separately.

This paper is organized as follows. In section 2, we present the experimental system,
and write its energy balance to define the work given to the system together with the
heat dissipated. We then introduce the fluctuation relations (FRs). In sections 3–5, we
present experimental results on the fluctuations of first the work and then the heat. A
short discussion on experimental results is given in section 6. Then, in sections 7 and 8, we
present some analytical derivations of FRs based on a hypothesis inspired by experimental
observations. We compare these analytical predictions to the experimental observations
and finally conclude in section 9.

2. System description

2.1. The harmonic oscillator

Our system is a harmonic oscillator and we measure the non-equilibrium fluctuations of its
position degree of freedom. The oscillator is damped due to the viscosity of a surrounding
fluid that acts as a thermal bath at temperature T . Our oscillator, depicted in figure 1(a),
is a torsion pendulum composed of a brass wire (length 10 mm, width 0.5 mm, thickness
50 μm) and a glass mirror glued in the middle of this wire (length 2 mm, width 8 mm,
thickness 1 mm). The elastic torsional stiffness of the wire is C = 4.65×10−4 N m rad−1.
It is enclosed in a cell filled by a water–glycerol mixture at 60% concentration. The system
is a harmonic oscillator with resonant frequency f0 =

√
C/Ieff/(2π) = ω0/(2π) = 217 Hz

and a relaxation time τα = 2Ieff/ν = 1/α = 9.5 ms. Ieff is the total moment of inertia of the
displaced masses (i.e. the mirror and the mass of displaced fluid) [30]. The damping has
two contributions: the viscous damping ν of the surrounding fluid and the viscoelasticity
of the brass wire which can be neglected here.

The angular displacement of the pendulum θ is measured by a differential
interferometer [27, 29, 31]. The measurement noise is two orders of magnitude smaller
than the thermal fluctuations of the pendulum. θ(t) is acquired with a resolution of
24 bits at a sampling rate of 8192 Hz, which is about 40 times f0. We drive the system
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out of equilibrium by forcing it with an external torque M by means of a small electric
current J flowing in a coil glued behind the mirror (figure 1(b)). The coil is inside a static
magnetic field. The displacements of the coil and therefore the angular displacements of
the mirror are much smaller than the spatial scale of inhomogeneity of the magnetic field.
So the torque is proportional to the injected current: M = A · J ; the slope A depends on
the geometry of the system.

The angular displacement θ of this harmonic oscillator is very well described by a
second-order Langevin equation:

Ieff
d2θ

dt2
+ ν

dθ

dt
+ Cθ = M +

√
2kBTνη, (1)

where η is the thermal noise, delta correlated in time of variance 1, and kB the Boltzmann
constant and T the temperature of the system which is that of the surrounding fluid.
The fluctuation dissipation theorem (FDT) gives a relation between the amplitude of the
thermal angular fluctuations of the oscillator at equilibrium and its response function. For
a harmonic oscillator, the equilibrium thermal fluctuation power spectral density (psd) is

〈|θ̂|2〉 =
4kBT

ω
Im χ̂ =

4kBTν

(−Ieffω2 + C)2 + (ων)2
, (2)

where χ̂ = M̂/θ̂ = A(Ĵ/θ̂). Using FDT (equation (2)), we measure the coefficient A and
test the calibration accuracy of the apparatus which is better than 3%. More details on
the set-up can be found in [27, 31].

2.2. Energy balance

When the system is driven out of equilibrium using a deterministic torque, some work
is done on it and a fraction of this energy is dissipated into the heat bath. Multiplying
equation (1) by θ̇ and integrating between ti and ti + τ , one obtains a formulation of the
first law of thermodynamics between the two states at time ti and ti + τ (equation (3)).
This formulation was first proposed in [32] and used in other theoretical and experimental
works [13, 26]. The change in internal energy ΔUτ of the oscillator over a time τ , starting
at a time ti, is written as

ΔUτ = U(ti + τ) − U(ti) = Qτ + Wτ , (3)

where Wτ is the work done on the system over a time τ :

Wτ =
1

kBT

∫ ti+τ

ti

M(t′)
dθ

dt
(t′) dt′, (4)

and Qτ is the heat given to the system. Equivalently, (−Qτ ) is the heat dissipated by the
system. ΔUτ , Wτ and Qτ are defined as energy in kBT units. The internal energy is the
sum of the potential energy and the kinetic energy:

U(t) =
1

kBT

{
1

2
Ieff

[
dθ

dt
(t)

]2

+
1

2
Cθ(t)2

}

. (5)
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The heat transfer Qτ is deduced from equation (3); it has two contributions:

Qτ = ΔUτ − Wτ

= − 1

kBT

∫ ti+τ

ti

ν

[
dθ

dt
(t′)

]2

dt′ +

√
2kBTν

kBT

∫ ti+τ

ti

η(t′)
dθ

dt
(t′) dt′. (6)

The first term corresponds to the opposite of viscous dissipation and is always negative,
whereas the second term can be interpreted as the work of the thermal noise which has
a fluctuating sign. The second law of thermodynamics imposes that 〈−Qτ 〉 is positive.
We rescale the work Wτ (the heat Qτ ) by the average work 〈Wτ 〉 (the average heat 〈Qτ 〉)
and define wτ = Wτ/〈Wτ 〉 (qτ = Qτ/〈Qτ 〉). The brackets are ensemble averages. In the
present paper, xτ (resp. Xτ ) stands for either wτ or qτ (resp. Wτ or Qτ ).

It is worth saying that the definition of work in equation (4) is the classical one
but it is not the one used in JE and CR. This may lead to different FRs and to some
contradictions, as we have shown in [15].

2.3. Fluctuation relations

There are two classes of FRs. The stationary state fluctuation theorem (SSFT) considers a
non-equilibrium steady state. The transient fluctuation theorem (TFT) describes transient
non-equilibrium states where τ measures the time since the system left the equilibrium
state. A fluctuation relation (FR) examines the symmetry of the probability density
function (PDF) p(xτ ) of a quantity xτ around 0; xτ is an average value over a time τ . It
compares the probability of having a positive event (xτ = +x) versus the probability of
having a negative event (xτ = −x). We quantify the FR using a function S (symmetry
function):

S(xτ ) =
1

〈Xτ〉
ln

(
p(xτ = +x)

p(xτ = −x)

)
. (7)

The transient fluctuation theorem (TFT) states that the symmetry function is linear
with xτ for any values of the time integration τ and the proportionality coefficient is equal
to 1 for any value of τ :

S(xτ ) = xτ , ∀xτ , ∀τ. (8)

Contrary to the TFT, the stationary state fluctuation theorem (SSFT) holds only in the
limit of infinite time (τ):

lim
τ→∞

S(xτ ) = xτ , ∀xτ . (9)

The questions that we ask are whether fluctuation relations for xτ = wτ or xτ = qτ

for finite time satisfy the two theorems and what the finite time corrections are. In a first
time period, we test the correction to the proportionality between the symmetry function
S(xτ ) and xτ . In the region where the symmetry function is linear with xτ , we define the
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(a) (b)

Figure 2. (a) Typical driving torque applied to the oscillator; (b) response of the
oscillator to the external torque (gray line). The dark line represents the mean
response θ̄(t) to the applied torque M(t).

slope Σx(τ) : S(xτ ) = Σx(τ)xτ . In a second time period we measure finite time corrections
to the value Σx(τ) = 1 which is the asymptotic value expected from the two theorems.

3. Transient non-equilibrium state

For the transient fluctuation theorem, we choose the torque M(t) depicted in figure 2(a).
It is a linear function of time: M(t) = M0t/τr with M0 = 11.28 pN m and τr = 0.1 s =
10.52τα. The value of M0 is chosen such that the mean response of the oscillator is
of the order of the thermal noise, as can be seen in figure 2(b) where θ(t) is plotted
during the same time interval as figure 2(a). The system is at equilibrium at ti = 0
(M(ti = 0) = 0 pN m and M(t) = 0 pN m ∀t < ti). In this section the starting time ti of
integration of all quantities defined before (Wτ , ΔUτ and Qτ ) is ti = 0. So the work is

Wτ =
1

kBT

∫ τ

0

M(t′)
dθ

dt
(t′) dt′. (10)

3.1. Average value information

In figure 3(a), we represent the time average (〈τ−1Wτ 〉) of the power injected into the
system, the internal energy difference (〈τ−1ΔUτ 〉) and the time average of the power
dissipated by the system (〈τ−1Qτ 〉). 〈τ−1Wτ 〉 and 〈τ−1ΔUτ 〉 are linear in τ after some
short relaxation time τα defined in the Langevin equation: for τ/τα smaller than 1, some
oscillations around the linear behavior can be seen. The average value of the work 〈Wτ 〉
is therefore quadratic in τ and is equal to 33 kBT for τ = τr. The difference between
〈Wτ 〉 and 〈ΔUτ 〉 corresponds to the mean value of dissipated heat 〈−Qτ 〉 (equation (6)).
As can be seen in figure 3(a), 〈Wτ 〉 is larger than 〈ΔUτ 〉 for all times τ . The average of
the dissipated power (〈−τ−1Qτ 〉) is therefore positive for all times τ as expected from the
second principle. For τ larger than several τα, the dissipated power is constant and equal
to a few kBT per second because 〈τ−1Wτ 〉 and 〈τ−1ΔUτ 〉 have the same slope after some
τα. So we have the following behavior: the work done by the external work is used by the
system to increase its internal energy but a small amount of energy is lost at a constant
rate by viscous dissipation and exchange with the thermostat.

doi:10.1088/1742-5468/2007/09/P09018 7
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(a) (b)

(c) (d)

(e) (f)

Figure 3. TFT. (a) Average values of τ−1Wτ (◦), τ−1ΔUτ (��) and τ−1Qτ (♦)
plotted as functions of τ . (b) PDFs of wτ for various τ/τα: 0.31 (◦), 1.015
(��), 2.09 (♦) and 4.97 (×). Continuous lines are theoretical predictions with
no adjustable parameters. (c) Corresponding functions S(wτ ). The straight
continuous line is a line with slope 1. (d) PDFs of τ−1ΔUτ for two values of
τ/τα: 4.97 (◦) and 8.96 (��). (e) Corresponding PDFs of qτ . Continuous lines
are Gaussian fits. (f) Corresponding functions S(qτ ). The straight continuous
line is a line with slope 1.
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3.2. Work fluctuations

The probability density functions (PDFs) p(wτ ) of wτ are plotted in figure 3(b) for different
values of τ/τα. Four typical values of τ are presented: the first is smaller than the
relaxation time and the last equals five relaxation times; the results are the same for any
value of τ . The PDFs of wτ are Gaussian for any τ . In some way, this result could be
expected because it has been proved that in the case of a first-order Langevin equation
with a harmonic potential the work fluctuations are Gaussian for any kind of driving [33].
We observe that wτ takes negative values as long as τ is not too large. The probability of
having negative values of wτ decreases when τ is increased. From the PDFs, we compute
the symmetry functions. They are plotted in figure 3(c) as a function of wτ . They all
collapse on the same linear function of wτ for any τ , which implies that they all have
the same slope Σw(τ). The straight line in figure 3(c) has slope 1. Within experimental
error bars, Σw(τ) is equal to 1 for all time τ . Therefore work fluctuations for a harmonic
oscillator under a linear forcing satisfy the TFT. We checked that this property holds for
other values of M0 and τr.

3.3. Heat fluctuations

The PDFs of τ−1ΔUτ are plotted in figure 3(d) for two values of τ/τα: they are not
symmetric and have exponential tails. The PDFs of qτ can be seen in figure 3(e) for
the same values of τ/τα. They are qualitatively different from those of the work. We
have plotted in the same figure the Gaussian fit of the two PDFs of the dissipated heat.
It is clear that the PDFs of qτ are not Gaussian. Extreme events of qτ are distributed
on exponential tails. These tails can be interpreted noticing that Qτ = ΔUτ − Wτ and
ΔUτ have exponential tails. The variance of the PDFs of qτ is also much larger than the
variance of the PDFs of wτ .

We plot on figure 3(f) symmetry functions S(qτ ) for the same times τ/τα. Only the
behavior of large events can be analyzed here because the variance is much larger than
the mean σwτ 	 1. As can be seen in figure 3(f), S(qτ ) is not proportional to qτ ; therefore
TFT is not satisfied for finite time. Within experimental resolution, S(qτ ) is constant for
extreme events and equal to 2. This behavior can be interpreted by writing for large qτ ,
p(qτ ) = A± exp(−α±|qτ |) where α+ and α− are the rates of decrease on the exponential
tails. Each coefficient depends on τ . There is a simple expression for S(qτ ) for large
fluctuations:

S(Qτ ) = (α+ − α−)Qτ +
1

〈Qτ 〉
ln

(
A+

A−

)
. (11)

In figure 3(c), we see that the PDFs of qτ are symmetric around the mean value for the
two values of τ . This is not the case for small τ/τα. Thus we can conclude that α+ = α−
and that the symmetry function is equal to a constant: (〈Qτ 〉)−1(ln(A+) − ln(A−)).

As can be seen in figure 3(e), the PDFs become more and more Gaussian when τ
tends to infinity. It is expected that for infinite time, the PDF of qτ is a Gaussian. Thus,
the TFT appears to be satisfied experimentally in the limit of infinite τ . Our interesting
finding is that for Qτ the TFT if not valid for any times.

doi:10.1088/1742-5468/2007/09/P09018 9

http://dx.doi.org/10.1088/1742-5468/2007/09/P09018


J.S
tat.M

ech.
(2007)

P
09018

Fluctuation theorems for harmonic oscillators

4. Steady state: linear forcing

4.1. Definition of the work done on the system

We call a steady state a state in which both the forcing and the response to the forcing
do not depend on the initial time ti, but only on τ . This implies that 〈M(ti + τ)〉 is
independent of ti; and so is 〈θ(ti + τ)〉. If the torque drifts through time, the mean of
M(ti + τ) is linear with ti + τ . Thus we have to change the definition of the work done
on the system to keep it in a steady state. This is equivalent to a Galilean change of
reference frame. The work is now defined as

Wτ =
1

kBT

∫ ti+τ

ti

[M(t) − M(ti)]
dθ

dt
(t′) dt′. (12)

With this definition, the forcing is M̃(t) = M(t) − M(ti) and the response to the forcing

θ̃(t) = θ(t) − θ(ti). When we impose a forcing linear in time (M(t) = M0t/τr), the first

condition (〈M̃(ti + τ)〉 independent of ti) is satisfied. The second (〈θ̃(ti + τ)〉 independent
of ti) is also satisfied if ti ≥ 3τα, i.e. after a transient state. Thus the system is in a steady
state. We remark that, in the transient state, this definition of the work reduces to the
usual one, because M(ti) = M(t = 0) = 0 pN m.

4.2. Work fluctuations

The average of Wτ is quadratic in τ for any value of τ/τα. There are no oscillations in time
for small τ/τα. The PDFs of wτ are Gaussian for any value of τ/τα (figure 4(a)) [33]. The
probability of negative values is high and decreases with τ , like in the transient case. The
symmetry functions S(wτ ) are again proportional to wτ (figure 4(b)) but the slope Σw is
not equal to 1 for smaller τ and tends to 1 for τ 	 τα only, as can be seen in figure 4(c).
Thus we obtain a fluctuation relation for the work done on the system in this steady state
and this relation satisfies the SSFT. The slope at finite time is slightly oscillating at a
frequency close to f0.

4.3. Heat fluctuations

The heat dissipated during this linear forcing has a behavior very similar to the one
observed in the transient case (section 3.3). We can hence repeat here all that we said in
section 3.3.

5. Steady state: sinusoidal forcing

We now consider a periodic forcing M(t) = M0 sin(ωdt) which has been briefly described
in [29]. This is a very common kind of forcing which has already been studied in the case
of the first-order Langevin equation [26] and that of the two-level system [20] and in a
different context for the second-order Langevin equation [34]. Using the Fourier transform,
any periodic forcing can be decomposed as a sum of sinusoidal forcings. We explain here
the behavior of a single mode. We choose M0 = 0.78 pN m and ωd/(2π) = 64 Hz. This
torque is plotted in figure 5(a). The mean of the response to this torque is sinusoidal,
with the same frequency, as can be seen in figure 5(b). We studied other frequencies ωd.
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(a) (b)

(c)

Figure 4. SSFT with a ramp forcing. (a) PDF of Wτ for various τ/τα: 0.019 (◦),
0.31 (��), 2.09 (♦) and 4.97 (×). (b) Corresponding functions S(Wτ ). (c) The
slope Σw(τ) of S(Wτ ) is plotted versus τ (��: experimental values; continuous
line: theoretical prediction from equation (20) with no adjustable parameters).

(a) (b)

Figure 5. (a) Sinusoidal driving torque applied to the oscillator. (b) Response
of the oscillator to this periodic forcing (gray line); the dark line represents the
mean response 〈θ(t)〉.

The system is clearly in a steady state. We choose the integration time τ to be a multiple
of the period of the driving (τ = 2nπ/ωd with n an integer). The starting phase tiωd is
averaged over all possible ti in order to increase the statistics; in the remainder of this
section, we drop the brackets 〈·〉ti.
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(a) (b)

(c)

Figure 6. Sinusoidal forcing. (a) PDFs of the work wn integrated over n periods
of forcing, with n = 7 (◦), n = 15 (��), n = 25 (♦) and n = 50 (×). (b) The
function S(wn) measured at ωd/2π = 64 Hz is plotted as a function of wn for
several n: (◦) n = 7; (��) n = 15 (♦) n = 25; (×) n = 50. For these two
plots, continuous lines are theoretical predictions with no adjustable parameters
(equations (A.11) and (A.14)). (c) The slopes Σw(n), plotted as a function of n for
two different driving frequencies ωd = 64 Hz (��) and 256 Hz (◦); continuous lines
are theoretical predictions from equation (21) with no adjustable parameters.

5.1. Work fluctuations

The work is written as a function of n, the number of periods of the forcing:

Wn =
1

kBT

∫ ti+τn

ti

M(t′)
dθ

dt
(t′) dt′. (13)

The PDFs of wn are plotted in figure 6(a). Work fluctuations are Gaussian for all
values of n as in previous cases [33]. Thus symmetry functions are again linear in wn

(figure 6(b)). The slope Σw(n) is not equal to 1 for all n but there is a correction in finite
time (figure 6(c)). Nevertheless, Σw(n) tends to 1 for large n, so the SSFT is satisfied.
The convergence is very slow and we have to wait a large number of periods of forcing for
the slope to be 1 (after 30 periods, the slope is still 0.9).

This behavior is independent of the amplitude of the forcing M0 and consequently of
the mean value of the work 〈Wn〉. The system satisfies the SSFT for all forcing frequencies
ωd but finite time corrections depend on ωd, as can be seen in figure 6(c).
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(a) (b)

(c) (d)

(e)

Figure 7. Sinusoidal forcing. (a) Average value of Wn (◦) and Qn (��). In
the following plots, the integration time τ is a multiple of the period of forcing,
τ = 2nπ/ωd, with n = 7 (◦), n = 15 (��), n = 25 (♦) and n = 50 (×). Continuous
lines are theoretical predictions with no adjustable parameters. (b) PDFs of ΔUτ .
(c) PDFs of qτ . (d) Symmetry functions S(qτ ). (e) The slope Σq(n) of S(qτ ) for
qτ < 1, plotted as a function of n (◦). The slope Σw(n) of S(wτ ) plotted as a
function of n (��). The continuous line is a theoretical prediction.

5.2. Heat fluctuations

We first make some comments on the average values. The average of ΔUτ is obviously
vanishing because the time τ is a multiple of the period of the forcing. 〈Wn〉 and 〈Qn〉 have
consequently the same behavior and they are linear in τ , as can be seen in figure 7(a),
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but the PDFs of heat fluctuations qn have exponential tails (figure 7(c)). This can be
understood by noticing that, from equation (6), −Qτ = Wτ − ΔUτ and that ΔUτ has
an exponential PDF independent of n (figure 7(b)). Therefore, in a first approximation,
the PDF of qτ is a convolution of an exponential distribution (the PDF of ΔUτ ) and a
Gaussian distribution (the PDF of wτ ).

Symmetry functions S(qn) are plotted in figure 7(d) for different values of n; three
different regions appear:

(I) For large fluctuations qn, S(qn) equals 2. When τ tends to infinity, this region spans
from qn = 3 to infinity.

(II) For small fluctuations qn, S(qn) is a linear function of qn. We then define Σq(n) as the
slope of the function S(qn), i.e. S(qn) = Σq(n)qn. This slope is plotted in figure 7(e)
where we see that it tends to 1 when τ is increased. So, the SSFT holds in this region
II which spans from qn = 0 up to qn = 1 for large τ .

(III) A smooth connection between the two behaviors.

We observe that Σw(n) matches Σq(n) experimentally, for all values of n (figure 7(e)).
So the finite time corrections to the FR for the heat are the same as those of the FR for
work: Σw(n) = Σq(n).

These regions define the fluctuation relation from the heat dissipated by the oscillator.
The limit for large τ of the symmetry function S(qτ ) is rather delicate and we will discuss
it in section 8.2.

6. Discussion and conclusion on experimental results

In the previous sections, we have presented experimental results on a harmonic oscillator
driven out of equilibrium by an external deterministic forcing M . We operated with two
different time prescriptions: one in which M is a linear function of time, and one in which
M is a sinusoidal function of time.

The energy injected into the system is the work W of the torque M . The PDFs of
the work W are Gaussian whatever the time prescription of M is, and work fluctuations
satisfy a TFT (M linear in time) and a SSFT (M linear or sinusoidal in time). This
results for the harmonic oscillator, described by a second-order Langevin equation, confirm
the theoretical predictions obtained for a first-order Langevin equation with a harmonic
potential [33].

The energy dissipated by the system is represented by the heat Q, and we measured it
using the first principle of thermodynamics (equation (6)). Heat probability distributions
are not Gaussian and are very different from those of the work. They nevertheless satisfy
a SSFT in both the case of a sinusoidal forcing and for a linear forcing. But they do
not satisfy a TFT in the case of a linear forcing, because the symmetry functions are not
linear for all values of dissipated heat qτ .

In the next two sections, we use some experimental evidence to derive analytical
expressions for the PDFs of work and the heat exchanged on an arbitrary time interval
τ . We then derive FRs together with their finite time corrections.
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http://dx.doi.org/10.1088/1742-5468/2007/09/P09018


J.S
tat.M

ech.
(2007)

P
09018

Fluctuation theorems for harmonic oscillators

7. Work fluctuations: theoretical predictions

In this section, we derive the analytical expression for the PDF of the work given to
the system, and defined as the work of the torque applied to the pendulum, which is
either linear or sinusoidal in time. Experimentally, we observed that the PDFs are always
Gaussian, so we restrict our task to deriving expressions for the first two moments of the
work distribution.

To do this, we use experimental observations on the fluctuations of the angle θ, as
described in section 7.1 below. We then compute in section 7.2 the mean and the variance
of the work Wτ in the different experimental situations, and then write formally the
corresponding fluctuation relations, from which we obtain analytical expressions for the
finite time corrections to the fluctuation theorems.

7.1. Angular fluctuations in the presence of forcing

We discuss here the angular fluctuations. We decompose the angle θ into a mean value
〈θ〉 and a fluctuating part δθ, writing θ = 〈θ〉 + δθ. The mean value corresponds to
an ensemble average. It is obtained experimentally by averaging over realizations of the
forcing, and it is presented in figures 2 and 5.

A first experimental observation is as follows. The measured mean response 〈θ〉 is
exactly equal to the solution of the deterministic second-order equation obtained when
removing the noise term (η = 0) in the Langevin equation (1). We checked this from our
data, and found in this way a value of the calibration A (see section 2.1) in perfect
agreement with the one obtained from the application of the fluctuation dissipation
theorem.

A second experimental observation concerns the probability distribution of δθ in out-
of-equilibrium conditions. We know and observed that at equilibrium, δθ has a Gaussian
distribution with variance σ2

θ = kBT/C, and the associated momentum θ̇ has fluctuations

δθ̇ which also have a Gaussian distribution, with a variance kBT/Ieff . We observe that
the statistical properties of angular fluctuations δθ when a torque M(t) linear in time is
applied are the same as the statistical properties at equilibrium, when no torque is applied.
In figure 8(a), we plot the PDF of δθ measured at M �= 0 together with the Gaussian
fit of the PDF at equilibrium (continuous line). The two curves match perfectly within
experimental accuracy. Thus we conclude that the external driving does not perturb the
equilibrium distribution of angular fluctuations, so we use

P (δθ, M �= 0) = P (δθ, M = 0) =
1

√
2πσ2

θ

exp

(
− δθ2

2σ2
θ

)
. (14)

The third experimental observation concerns time correlations. In figure 8(b), we
plot the power spectral density function of δθ when applying an external forcing (◦).
We compare it to the prediction from the fluctuation dissipation theorem at equilibrium
(equation (2)) computed using the oscillator parameters. The two spectra are identical,
so we can confidently use for our system a description in terms of a second-order Langevin
dynamic where the noise term is not perturbed by the presence of the driving. From the
power spectral density function of θ (equation (2)), we derive the autocorrelation function
Rδθ(τ) of δθ during a time interval τ . It is the same at equilibrium and out of equilibrium,
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(b)(a)

Figure 8. (a) PDF of the fluctuations δθ = θ − θ̄(t) when the torque is applied
(◦), compared with a Gaussian fit of the PDF at equilibrium (continuous line).
(b) The measured spectrum of δθ (◦) is compared with the prediction from the
fluctuation dissipation theorem in equilibrium (continuous line).

and decreases exponentially:

Rδθ(τ) = 〈δθ(t + τ)δθ(t)〉 =
kBT

C sin(ϕ)
exp

(
−|τ |

τα

)
sin(ψ|τ | + ϕ), (15)

where ψ2 ≡ (ω0)
2 − (1/τα)2 and ϕ is defined by cos(ϕ) = 1/(ω0τα) and sin(ϕ) = ψ/ω0.

Thus we observe experimentally that when we drive the system out of equilibrium,
the angular fluctuations δθ are identical (with respect to the expressions above) to those
at equilibrium. This is reasonable because the driving amplitudes that we have used never
drive the system into a non-linear regime. The behavior could be very different in this
case. We verify the same properties for the sinusoidal time prescription of the torque, and
use the equilibrium expression for the correlation function in the following sections.

7.2. Work distribution

In figures 3, 4 and 6, we see that the PDFs of the work are Gaussian for any integration
time τ and whatever the forcing is. So these distributions are fully characterized by their
mean value 〈Wτ 〉 and their variance σ2

Wτ
= 〈δW 2

τ 〉 = 〈(Wτ −〈Wτ 〉)2〉. The external torque
M is deterministic, so the mean value of the work done on the system can be written as

〈Wτ 〉 =
1

kBT

∫ ti+τ

ti

M̃(t′)〈θ̇(t′)〉 dt′. (16)

We have defined M̃(t′) = M(t′) − aM(ti). The value a depends on the time prescription
of the torque that we apply to the oscillator. Choosing a = 1 gives a description of the
linear ramp and a = 0 corresponds to the sinusoidal forcing.

The variance of the PDFs is

σ2
Wτ

=
1

(kBT )2

∫ ti+τ

ti

∫ ti+τ

ti

M̃(t1) · M̃(t2)〈δθ̇(t2)δθ̇(t1)〉 dt1 dt2. (17)
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This expression involves the autocorrelation function of the angular speed δθ̇,
(〈δθ̇(t2)δθ̇(t1)〉). Using the expression for the autocorrelation function of angular

fluctuations (Rδθ, equation (15)), we can calculate exactly the expression for 〈δθ̇(t2)δ ˙θ(t1)〉:

〈δθ̇(t1)δθ̇(t2)〉 = − kBT

Ieff sin(ϕ)
exp

(
−|t2 − t1|

τα

)
sin(ψ|t2 − t1| − ϕ). (18)

We have calculated the mean value and the variance of the PDFs in the three situations
of interest: stationary and transient cases with a forcing linear in time, and the stationary
case with a forcing sinusoidal in time. Details and results can be found in the appendix.
In all of the cases, we compare the theoretical PDFs and the symmetry functions with the
experimental results. We have plotted in figures 3, 4 and 6 our theoretical PDFs and the
corresponding symmetry functions with no adjustable parameters. Within experimental
error bars, our analytical and experimental results are in excellent agreement. S(wτ) is
linear in wτ because the PDFs of the work are Gaussian. We now want to calculate
analytically the corrections to the slope Σw(τ) for finite time τ . For a Gaussian
distribution, the symmetry function is

S(wτ ) =
2〈Wτ 〉
σ2

W

wτ = Σw(τ)wτ . (19)

The expression for the slope Σw(τ) uses only the mean value and the variance of the
Gaussian distribution. We define Σ(τ) = (1 − ε(τ))−1, where the correction ε(τ) is a
decreasing function of τ . We obtain ε(τ) = 0 for the transient case, which is in agreement
with a TFT. For the two steady states, there are corrections to the value 1; we find:

(i) Linear forcing

ε(τ) =
1

ψτ

[
A

ω0τ
− e−τ/τα

(
B +

D

ω0τ

)]
. (20)

(ii) Sinusoidal forcing

ε(τ) =
E

τ/τα

+
F

τ/τα

e−τ/τα . (21)

Exact values of the coefficients A, B, D, E, F are given in the appendix. These two
expressions are in perfect agreement with experimental results as can be seen in figures 4
and 6. These corrections depend on the kind of forcing and it is difficult to predict their
form for an arbitrary forcing. Nevertheless, the two situations that we consider are useful
as building blocks of such an arbitrary forcing, and they provide a very nice test of our
method.

8. Heat fluctuations: theoretical predictions

We now determine an analytical expression for the PDF of the dissipated heat. To do
so, we make the same hypothesis as in the case of the work (see section 7.1 above), and
we complete them by making additional assumptions to simplify our derivations. We are
interested in PDFs of the heat for integration time τ large compared to τα, so exponential
corrections which are scaling like e−τ/τα can be neglected. In the case of sinusoidal forcing,
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this is correct after three or four periods of forcing (τ/τα = 1.64n). Under this assumption,
θ(ti+τ) and θ(ti) are independent, and so are (dθ/dt)(ti+τ) and (dθ/dt)(ti). Additionally,
as the equation of motion of the oscillator is second order in time, θ and dθ/dt are
independent at any given time t. We use the technique proposed in [7]. To obtain the
PDF p(Qτ ) of the heat, we define its Fourier transform, the characteristic function, as

P̂τ (s) ≡
∫ ∞

−∞
dqτ eisqτ p(qτ ). (22)

We then write p(qτ ) using equation (6) as

p(qτ ) =

∫ ∫
dθ dθ̇ P̃ (ΔUτ − Qτ , θ(ti + τ), θ(ti), θ̇(ti + τ), θ̇(ti)), (23)

where P̃ is the joint distribution of the work Wτ , θ and dθ/dt at the beginning and at
the end of the time interval τ . This distribution is expected to be Gaussian because Wτ

is linear in θ̇ and additionally θ, θ̇ and Wτ are Gaussian. The details of the calculation
are given in the appendix.

8.1. Linear forcing

The Fourier transform of the PDF of dissipated heat can be exactly calculated:

P̂τ (s) =
1

1 + s2
exp

{
−d2is

(
2

τ

τα

+ is

[
2

τ

τα

+ 2

]

+
−16 cos(ϕ)2 + 4 + 4is(4 cos(ϕ)2 + 1)

1 + s2

)}
.

As far as we know, there is no analytic expression for the inverse Fourier transform of
this function, or for the PDF of dissipated heat. However we can make some comments.
This expression is very similar to the one found in the case of a Brownian particle [7].
The factor (1 + s2)−1 is the Fourier transform of an exponential PDF and this is directly
connected to the exponential tails of the PDF. Moreover the PDF is not symmetric around
its mean, because there is a non-vanishing third moment. In this expression, only two
terms depend on τ . For large τ , this expression reduces to

P̂τ (s) =
1

1 + s2
exp

{
−2id2 τ

τα

s(1 + is)

}
. (24)

This expression will turn out to be similar to the one obtained with a sinusoidal forcing,
as we will comment on in the next section.

Both expressions depend on the non-dimensional factor d defined as

d =

√
1

CkBT

M0

ω0τr
. (25)

All moments of the distribution of Qτ are linear with d2 and 〈θ̇〉/
√
〈δθ̇2〉 = d. So d2

compares the mean value of the angular speed to the root mean square of the angular
speed fluctuations. This coefficient d2 increases when the system is driven further from
equilibrium. We consider it as a measure of the distance to equilibrium. In our system
d is positive, but smaller than 1, so we are out of equilibrium but not very far from it
(d = 0.059).
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8.2. Sinusoidal forcing

Just like in the experiments, we choose the integration time τ to be a multiple of the
period of the forcing, so 〈ΔUτ 〉 = 0 and therefore 〈Wτ 〉 = −〈Qτ 〉. Within this framework,
we find that the PDF of ΔUτ is exponential:

P (ΔUτ ) = 1
2
exp(−|ΔUτ |). (26)

It is independent of τ because ΔUτ depends only on θ and dθ/dt at times ti and ti+τ which
are uncorrelated. This expression is in perfect agreement with the experimental PDFs for
all times (see figure 7(b)). Some algebra then yields for the characteristic function of Q

P̂τ (s) =
1

1 + s2
exp

(
i〈Qτ 〉s −

σ2
W

2
s2

)
. (27)

The characteristic function of heat fluctuations is therefore the product of the
characteristic function of an exponential distribution (1/(1 + s2)) with that of a Gaussian
distribution (exp(i〈Qτ 〉s − (σ2

W /2)s2)). Thus the PDF of heat fluctuations is nothing
but the convolution of a Gaussian and an exponential PDF, just as if Wτ and ΔUτ were
independent. The inverse Fourier transform can be computed exactly:

P (Qτ ) =
1

4
exp

(
σ2

W

2

) [

eQτ−〈Qτ 〉 erfc

(
Qτ − 〈Qτ 〉 + σ2

W√
2σ2

W

)

+ e−(Qτ−〈Qτ 〉) erfc

(
−Qτ + 〈Qτ 〉 + σ2

W√
2σ2

W

)]

, (28)

where erfc(x) = 1 − erf(x) stands for the complementary erf function. In figure 7(c), we
have plotted the analytical PDF from equation (28) together with the experimental ones,
using values of σ2

W and 〈Qτ 〉 from the experiment and no adjustable parameters. The
agreement is perfect for all values of n, i.e. for any time τ . From equation (28), we isolate
three different regions for S(qτ ):

(I) If Qτ > σ2
W + |〈Qτ 〉| = 3|〈Qτ〉| + O(1), then S(qτ ) = 2 + O(1/τ). This domain of Sτ

corresponds to fluctuations larger than three times the average value. The PDF has
exponential tails, corresponding to an exponential distribution with a non-vanishing
mean.

(II) If Qτ < σ2
W − |〈Qτ 〉| = |〈Qτ 〉| + O(1), then S(qτ ) = Σ(n)qτ + O(1/τ) with

Σq(n) = 2|〈Qτ 〉|/σ2
W = Σw(n). In this domain, values of the heat are small and

heat fluctuations behave like work fluctuations. The slope Σ(τ) is the same as the
one found for work fluctuations. The exact correction to the asymptotic value 1 is
plotted in figure 7(e) and again it describes perfectly the experimental behavior.

(III) For σ2
W − |〈Qτ 〉| < Qτ < σ2

W + |〈Qτ 〉|, there is an intermediate region connecting
domains (I) and (II) by a second-order polynomial: S(qτ ) = 2 − (Σ(τ)/4)(qτ − (1 +
2/Σ(τ)))2 + O(1/τ).

These three domains offer a perfect description of the three regions observed
experimentally (figure 7(d)).

Now, we examine the limit of infinite τ in which the SSFT is supposed to hold. To
do this, we distinguish two variables: the heat Qτ and the normalized heat qτ . Their
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asymptotic behaviors are different because the average heat 〈Qτ 〉 depends on τ ; more
precisely it is linear in τ .

We discuss first Qτ . The asymptotic shape of the PDF of Qτ (equation (28)) for large
τ is a Gaussian whose variance is σ2

W , the variance of the PDF of Wτ . Thus, the PDF
of Qτ coincides with the PDF of Wτ for τ strictly infinite. As we have already shown,
work fluctuations satisfy the conventional SSFT; therefore heat fluctuations also satisfy
the conventional SSFT (equation (9)). We have found three different regions separated
by two limit values: the mean and three times the mean. But in the limit of large times
τ , the PDF shrinks and only region (II) is relevant. Region (II) corresponds to small
fluctuations and it is bounded from above by |〈Qτ 〉| + O(1) with the average 〈Qτ 〉 being
linear in τ . So all the behavior of the fluctuations of Qτ for large τ lies in region (II)
where the symmetry function is linear and the SSFT holds.

We turn now to the normalized heat qτ . As the average value of Qτ is linear in
τ , rescaling by 〈Qτ 〉 is equivalent to a division by τ ; the mean of qτ is then 1. This
normalization makes the two limit values constant. The boundary between regions (II)
and (III) is 1+O(1/τ) and the boundary between (III) and (I) is 3+O(1/τ). The function
S(qτ ) is not linear for large values of qτ > 1 but is linear just in region (II), for qτ < 1,
i.e. for small fluctuations. So the SSFT is satisfied only for small fluctuations but not for
all values of qτ , and we obtain for qτ a fluctuation relation which prescribes a symmetry
function that is non-linear in qτ .

These two different pictures, in terms of Qτ and qτ , result from taking two non-
commutative limits differently. The first description using Qτ implies that the limit τ
infinite is taken before the limit of large Qτ . The second description does the opposite.
However, the probability of having large fluctuations decreases with τ and experimentally,
for large τ , only the region (II) can be seen, and it is the region in which the SSFT holds.

As we have done in the case of the linear forcing, we introduce a non-dimensional
factor d such as

d =

√
1

CkBT

M0ωd

ω0ρ(ωd))
, (29)

ρ(ωd) =

√√
√
√

(

1 −
(

ωd

ω0

)2
)2

+ 4

(
ωd

ω0
cos(ϕ)

)2

. (30)

The moments of the distribution of Qτ are linear with d2 and, like the linear torque, d is

equal to the amplitude of θ̇ divided by
√
〈δθ̇2〉. We consider it also as a measure of the

distance to equilibrium. In our system d is positive, but smaller than 1, so we are out of
equilibrium but not very far from it: here d = 0.18.

9. Discussion and conclusion

We have studied the fluctuations of energy input and energy dissipation in a harmonic
oscillator driven out of equilibrium. This oscillator is very well described by a second-order
Langevin equation. We have performed experiments using a torsion pendulum driven out
of equilibrium following a stationary protocol in which either the torque increases linearly
in time, or it oscillates at a given frequency. We have also studied transient evolutions
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from the equilibrium state. We have defined the work given to the system as the work
of the torque applied during a time τ . Accordingly we have defined the heat dissipated
by the pendulum during this time τ , by writing the first principle of thermodynamics for
between the two states separated by time τ .

Fluctuations relations are obtained experimentally for both the work and the heat,
for the stationary and transient evolutions.

We have experimentally observed that angle fluctuations of the Brownian pendulum
have the same statistical and dynamical properties at equilibrium and for any non-
equilibrium driving. From this observation, we have derived expressions for the probability
density functions of the work and the heat. In our system, fluctuations of the angle
are Gaussian, and so are fluctuations of the work wτ . So the symmetry functions
S(wτ ) of the work are linear, and we have calculated exactly the time correction to the
coefficient of proportionality between S(wτ) and wτ . These corrections match perfectly
the experimental results, both in the case of a forcing linear in time and in the case of
one sinusoidal in time. We have also computed the analytic expression for the Fourier
transform of the PDFs of the dissipated heat. For the sinusoidal forcing, we have obtained
for the first time an analytic expression for the PDF of the heat. This expression is in
excellent agreement with the experimental measurements. For a torque linear in time,
the PDF of the heat has no simple expression but its Fourier transform gives insight into
the behavior of the symmetry function of the heat. It is very similar to the one obtained
in the case of a first-order Langevin dynamics [7]. We emphasize here that our analytical
derivations are strongly connected to experimental observations on the properties of the
noise; and are therefore different from any previous theoretical approach.

We have introduced a dimensionless variable d which we think is a measure of
the distance from equilibrium: the average dissipation rate is proportional to d, and
it increases when the system is further from equilibrium. d is also proportional to the
strength of the driving and in the fluctuation relations, it gives a proper unit for measuring
the amplitude of fluctuations. So d plays the same role as the dissipation coefficient (the
viscosity in our case) in the fluctuation dissipation theorem at equilibrium. We have an
expression for d for the two different time prescriptions we have used. These expressions
can be generalized:

d2 =
〈θ̇2〉
〈δθ̇2〉

. (31)

The numerator corresponds to the solution of the Langevin equation when removing the
thermal noise term (η = 0). The denominator corresponds to the variance of thermal

fluctuations of the angular speed δθ̇.
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Appendix A. Work fluctuations

In this section, we calculate the mean and the variance of the work done on the system
in the following cases:
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(i) Transient state, linear forcing.

(ii) Steady state, linear forcing.

(iii) Steady state, sinusoidal forcing.

A.1. The TFT, forcing linear in time

The torque is M(t) = M0t/τr. The mean value of the angular displacement is the solution
of equation (1):

〈θ〉 =
M0

ψCτr
(e−t/τα sin(ψt + 2ϕ) + ψt − sin(2ϕ)). (A.1)

For the work done on the system, the PDFs are Gaussian for all integration time τ . The
mean of the PDF of Wτ for a given τ is

〈Wτ 〉 =
M2

0

kBTψCτ2
r

[
1

2
ψτ 2 + τe−τ/τα sin(ψτ + 2ϕ) +

1

ω0

(e−τ/τα sin(ψτ + 3ϕ) − sin(3ϕ))

]
,

(A.2)

and its variance is

σ2
Wτ

=
2M2

0

kBTψCτ2
r

[
1

2
ψτ 2 + τe−τ/τα sin(ψτ + 2ϕ) +

1

ω0

(e−τ/τα sin(ψτ + 3ϕ) − sin(3ϕ))

]
,

(A.3)

σ2
Wτ

= 2〈Wτ〉. (A.4)

A.2. The SSFT, forcing linear in time

The torque is M(t) = M0t/τr. The mean value of the angular displacement is the solution
of equation (1) after some τα. Thus the exponential term has vanished:

〈θ〉 =
M0

ψCτr

(ψt − sin(2ϕ)). (A.5)

For the work done on the system, the PDFs are Gaussian for all integration time τ . The
mean of the PDF is

〈Wτ 〉 =
M2

0

2kBTCτ 2
r

τ 2, (A.6)

and the variance is

σ2
Wτ

=
2M2

0

kBTψCτ2
r

[
1

2
ψτ 2 + τe−τ/τα sin(ψτ + 2ϕ) +

1

ω0
(e−τ/τα sin(ψτ + 3ϕ) − sin(3ϕ))

]
.

(A.7)

From this, we deduce

ε(τ) =
1

ψτ

{
A − e−τ/τα

(
B +

D

ω0τ

)}
, (A.8)
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where

A = 2
sin(3ϕ)

ω0τ
,

B = 2 sin(ψτ + 2ϕ),

D = 2 sin(ψτ + 3ϕ).

A.3. The SSFT, forcing sinusoidal in time

The torque is M(t) = M0 sin(ωdt). The mean value of the angular displacement is

〈θ〉 = θ0 sin(ωdt + β) where θ0 =
M0

Cρ(ωd)
, (A.9)

where

cos(β) =
1 − (ωd/ω0)

2

ρ(ωd)
and sin(β) =

−2 (ωd/ω0) cos(ϕ)

ρ(ωd)
,

ρ(ωd) =

√√
√
√

(

1 −
(

ωd

ω0

)2
)2

+ 4

(
ωd

ω0

cos(ϕ)

)2

.

(A.10)

For the work done on the system, the PDFs are Gaussian for all integration times τ . The
mean of the PDF is

〈Wn〉 =
M2

0

kBTC

(
ω/ω0

ρ(ω)

)2

(τ/τα), (A.11)

and the variance is

σ2
n = 2〈Wn〉 + E + F e−τ/τα , (A.12)

where

E = −〈Wn〉(1 + (ω/ωd)
2) cos(2β)

(ω/ω0)2(τ/τα)
, (A.13)

F = − 〈Wn〉
(ω/ω0)2 · (τ/τα))

[sin(ψτ + ϕ) cos(2β) + (ω/ω0)
2 sin(ψτ − ϕ) cos(2β)

+ (ω/ω0) sin(ψτ) sin(2β)]. (A.14)

Appendix B. Heat fluctuations

In this section, we calculate the Fourier transform of the PDF of the dissipated heat in
two cases:

(i) Linear forcing.

(ii) Sinusoidal forcing.
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B.1. Linear forcing

We introduce first non-dimensional parameters:

x̃(t) =

√
C

kBT

(
θ(t) − M(t)

C

)
,

ẋ =

√
Ieff

kBT
θ̇(t).

(B.1)

The mean value and the variance of x̃ and ẋ can be simply expressed:

d =

√
M2

0

CkBT

1

ω0τr
,

〈x̃〉 = −2 · d · cos(ϕ), 〈ẋ〉 = d, 〈δx̃2〉 = 1, 〈δẋ2〉 = 1,

(B.2)

where d is a non-dimensional value. Integrating by parts, the work Wτ can be rewritten
as

Wτ = d · ω0[(ti + τ)x(ti + τ) − tix(ti)] −
(dω0)

2

2
[(ti + τ)2 − t2i ] + W ∗,

W ∗ = −(dω0)

∫ ti+τ

ti

x̃(t′) dt′.
(B.3)

With these definitions, we obtain Qτ = 1
2
Δx̃τ + 1

2
Δẋτ −W ∗ and 〈Qτ 〉 = −〈W ∗〉. Like the

distribution of Wτ , the distribution of W ∗ is Gaussian for all values of τ and we find

〈W ∗〉 = 2d2τ/τα,

σ2
W ∗ = 2d2(2τ/τα + 1 − 4 cos(ϕ)2).

(B.4)

For convenience, we introduce a five-dimensional vector: Y = (W ∗, x̃(ti + τ), x̃(ti), ẋ(ti +
τ), ẋ(ti)). As explained in section 3.3 the probability density function P̃ is Gaussian and
is thus fully characterized by the covariance matrix C defined as

Cij = 〈(Yi − 〈Yi〉)(Yj − 〈Yj〉)†〉, (B.5)

where Z† denotes the complex conjugate of Z. So the distribution P̃ is written as

P̃ (Y ) =

√
1

(2π)5 det C exp

(
−1

2
(Y − 〈Y 〉)TC−1(Y − 〈Y 〉)

)
, (B.6)

where ZT denotes the transpose of Z. We suppose that the integration time is larger than
the relaxation time. Under this assumption, θ(ti + τ) and θ(ti) are independent, and so

are θ̇(ti + τ) and θ̇(ti). As the equation of motion of the oscillator is second order in time,

θ and θ̇ are independent at any given times t. With these hypotheses, we get

〈δx̃(ti)δx̃(ti + τ)〉 = 〈δx̃(ti)δẋ(ti)〉 = 〈δx̃(ti)δẋ(ti + τ)〉
= 〈δẋ(ti)δx̃(ti + τ)〉 = 〈δẋ(ti)δẋ(ti + τ)〉
= 〈δẋ(ti + τ)δx̃(ti + τ)〉 = 0. (B.7)
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The other coefficients of the covariance matrix are

〈δW ∗δx̃(ti)〉 = 〈δW ∗δx̃(ti + τ)〉 = −2d cos(ϕ),

〈δW ∗δẋ(ti)〉 = 〈δW ∗δẋ(ti + τ)〉 = −d.
(B.8)

We now compute the Fourier transform of the PDF of the heat. We define two
quantities:

e =

⎛

⎜⎜
⎜
⎝

1
0
0
0
0

⎞

⎟⎟
⎟
⎠

N =

⎛

⎜⎜
⎜
⎝

0 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞

⎟⎟
⎟
⎠

. (B.9)

One can write Qτ as Qτ = 1
2
Y TNY − eTY . The Fourier transform can thus be written as

P̂τ (s) =

∫
dY

√
(2π)5 det C

exp(M),

M = −1
2
(δY )TC−1(δY ) + is(1

2
Y TNY − eTY ).

(B.10)

We use a new variable defined as

Y ′ = Y − (1 − isC · N)−1(〈Y 〉 − is · C · e). (B.11)

With this definition, the argument in the exponential M can be rewritten as

M = −1
2
Y ′(C−1 − isN)Y ′ + γ,

γ =
is

2
[(N〈Y 〉 − e)T(1 − isCN)−1(〈Y 〉 − isCe) − 〈Y 〉Te].

(B.12)

Changing the integration variable to Y ′ yields

P̂τ (s) =

∫
dY ′

√
(2π)5 det C

exp

(
−1

2
Y ′T(C−1 − isN)Y ′

)
· exp(γ)

=
exp(γ)

√
det(1 − isC · N)

. (B.13)

To get an explicit expression for P̂τ , the inverse of the matrix (1 − isC · N) is required in
the expression for γ and its determinant. These are obtained as follows. We find

1 − isC · N =

⎛

⎜
⎜⎜
⎝

1 is(2d cos(ϕ)) is(−2d cos(ϕ)) isd −isd
0 1 − is 0 0 0
0 0 1 + is 0 0
0 0 0 1 − is 0
0 0 0 0 1 + is

⎞

⎟
⎟⎟
⎠

.

The determinant of the matrix is (1 + s2)2. For the inverse of this matrix, we get

(1 − isC · N)−1 =

⎛

⎜⎜
⎜
⎜
⎝

1 − is
1−is

(2d cos(ϕ)) is
1+is

(2d cos(ϕ)) − is
1−is

d is
1+is

d

0 1
1−is

0 0 0

0 0 1
1+is

0 0

0 0 0 1
1−is

0

0 0 0 0 1
1+is

⎞

⎟⎟
⎟
⎟
⎠

.
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We deduce γ:

γ = −is〈W ∗〉 − s2

2

[
σ2

W + 2d2(1 + 4 cos(ϕ)2) +
4isd2

1 + s2
(4 cos(ϕ)2 − 1)

+
4s2d2

1 + s2
(4 cos(ϕ)2 + 1)

]
. (B.14)

So the analytic expression for the Fourier transform of the PDF of the heat dissipated
during a linear forcing is

P̂τ (s) =
1

1 + s2
exp

{
−d2is

(
2

τ

τα
+ is

[
2

τ

τα
+ 2

]

+
−16 cos(ϕ)2 + 4 + 4is(4 cos(ϕ)2 + 1)

1 + s2

)}
. (B.15)

B.2. Sinusoidal forcing

We determine in a first time period the Gaussian joint distribution P̃ of Wτ , θ(ti), θ(ti+τ),

θ̇(ti) and θ̇(ti + τ). For notational convenience, we introduce a five-dimensional vector:
�X = (Wτ , θ(ti + τ), θ(ti), θ̇(ti + τ), θ̇(ti)). The PDF P̃ is fully characterized by the
covariance matrix C:

Cij = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)†〉, (B.16)

where Z† denotes the complex conjugate of Z. We suppose that the integration time is
larger than the relaxation time. Under this assumption, θ(ti+τ) and θ(ti) are independent,

and so are θ̇(ti + τ) and θ̇(ti). As the equation of motion of the oscillator is second order

in time, θ and θ̇ are independent at any given times t. With these hypotheses, we get

〈δθ(ti)δθ(ti + τ)〉 = 〈δθ(ti)δθ̇(ti)〉 = 〈δθ(ti)δθ̇(ti + τ)〉
= 〈δθ̇(ti)δθ(ti + τ)〉 = 〈δθ̇(ti)δθ̇(ti + τ)〉
= 〈δθ̇(ti + τ)δθ(ti + τ)〉 = 〈Wτθ(ti)〉
= 〈Wτθ(ti + τ)〉 = 〈Wτ θ̇(ti)〉
= 〈Wτ θ̇(ti + τ)〉 = 0. (B.17)

The covariance matrix is a diagonal matrix:

C =

⎛

⎜
⎜
⎜
⎝

σ2
W 0 0 0 0
0 kBT/C 0 0 0
0 0 kBT/C 0 0
0 0 0 kBT/Ieff 0
0 0 0 0 kBT/Ieff

⎞

⎟
⎟
⎟
⎠

. (B.18)

ΔUτ is a function of the positions and velocities at the beginning (ti) and at the end
(ti + τ). Thus, ΔUτ and Wτ can be considered as independent. The PDF of Qτ is the
convolution of the PDF of Wτ which is Gaussian and the PDF of ΔUτ :

P (Qτ ) =

∫ +∞

−∞
PWτ (z)PΔUτ (Qτ + z) dz. (B.19)
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We first calculate exactly the PDF of the variation of the internal energy. We have
shown that θ(ti), θ(ti + τ), θ̇(ti) and θ̇(ti + τ) are independent. The Fourier transform of
the PDF is

P̂ΔUτ (s) = P̂Ep(ti+τ)(s) · P̂Ec(ti+τ)(s) · P̂Ep(ti)(−s) · P̂Ec(ti)(−s), (B.20)

where Ep = (1/2kBT )Cθ2 and Ec = (1/2kBT )Ieff θ̇2. The distribution of θ is Gaussian
with variance kBT/C. The distribution of Ep and the distribution of Ec are the same:

PEp(x) = PEc(x) =
1√
πx

exp(−x). (B.21)

The Fourier transform of this distribution is P̂ (s) = (1 − is)−1/2. This distribution is the
same for Ep and Ec at ti and ti +τ . Thus the Fourier transform of the variation of internal
energy is

P̂ΔUτ (s) = (1 + s2)−1, (B.22)

and the probability is

P (ΔUτ ) = 1
2
exp(−|ΔUτ |). (B.23)

As ΔUτ and Wτ are independent, the Fourier transform of the dissipated heat can be
calculated:

P̂Qτ (s) =
exp

(
i〈Qτ 〉 − (σ2

W /2)s2
)

1 + s2
. (B.24)

This expression can be inverted because it is simply the convolution of a Gaussian
distribution with an exponential distribution. So we find equation (28).
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