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ABSTRACT

This paper proposes to revisit the 2-D Variational Mode De-
composition (2-D–VMD) in order to separate the incident and
reflected waves in experimental images of internal waves ve-
locity field. 2-D–VMD aims at splitting an image into a se-
quence of oscillating components which are centered around
specific spatial frequencies. In this work we develop a prox-
imal algorithm with local convergence guarantees, allowing
more flexibility in order to deal with modes having different
spectral properties and to add some optional constraints mod-
eling prior informations. Our method is compared with the
standard 2-D–VMD and with a Hilbert based strategy usually
employed for processing internal waves images.

Index Terms— Optimisation, mode decomposition, in-
ternal waves.

1. INTRODUCTION

The aim of this study is to extract reflecting and incident
waves from experimental images modeling the velocity field
of oceanic internal wave reflection. Internal waves are waves
propagating in the bulk of a fluid whose density varies with
depth (ocean, atmosphere, interior of stars) [1]. Due to their
intrinsic properties, these waves, as they reflect upon an in-
clined slope, can undergo a strong focalization [2]. An exper-
iment designed to study this phenomenon consists in observ-
ing the waves through a measurement of the fluid velocity [3].
The main challenge in this study is to separate the incident
and reflected waves, which have the same temporal frequency.
The incident wave is localized in the spatial Fourier spectrum,
while the reflected wave is not. The classical procedure to per-
form this separation is based on a Hilbert transform [4] but it
fails to achieve this separation properly by introducing some
boundary artefacts and undesirable oscillations.

This question can be formulated as an inverse problem
that consists in extracting K oscillating components, denoted
(uk)1≤k≤K with uk ∈ RN1×N2 , from the observed data z ∈
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RN1×N2 such that

z =

K∑
k=1

uk + ε,

where ε models an additive noise. The study of internal wave
reflection corresponds to the specific case K = 2, where z
models the velocity field, and each component is centered
around an unknown frequency ωk = (ωk,1, ωk,2) so that, for
every location (`1, `2) ∈ {1, . . . , N1} × {1, . . . , N2},

uk,(`1,`2) = ak,(`1,`2) cos
(
vk,1,(`1,`2)`1 + vk,2,(`1,`2)`2 + ϕ

)
,

where ak ∈ RN1×N2 models the amplitude changes and, for
i ∈ {1, 2}, the mean value of vk,i ∈ RN1×N2 is close to ωk,i,
and ϕ is a phase term.

In the recent literature of component extraction for image
analysis, efficient methods are 2-D synchrosqueezing [5] or
2-D empirical mode decomposition [6]. The drawback of the
first one is to require a supervised domain selection in order
to extract each component while the second one may suffer
lack of robustness when noise is involved. Another strategy
has been proposed in [7] based on monogenic analysis and in
[8] for estimating jointly (uk)1≤k≤K and (ωk)1≤k≤K . How-
ever, all these four methods are not designed to extract com-
ponents that can be spread out on the frequency spectrum in
one direction. In this work, we propose to revisit the work by
Dragomirestkiy and Zosso, initially formulated for analyzing
1-D signals [9] and extended to image analysis in [8], in order
to incorporate constraints imposed by internal waves analysis.

In section 2, we focus on the design of a new criterion
adapted to the problem of extracting reflecting and incident
waves from velocity field data. In Section 3, we derive an
algorithm solving the associated minimization problem in-
suring some local convergence guarantees and in Section 4,
experimental results demonstrate the efficiency of the pro-
posed method compared to state-of-the-art strategies. A
conclusion is drawn in Section 5.

Notation A matrix in RN1×N2 is denoted in bold as u
and its components are (u(`1,`2)∈L) with L = {1, . . . , N1} ×
{1, . . . , N2}. The Fourier transform of the image u is de-
noted û and the frequency indices are (ν1, ν2) ∈ V =
{b−N1/2c, . . . , bN1/2c} × {b−N2/2c, . . . , bN2/2c}.



2. CRITERION

The solution proposed in [8] aims to estimate jointly (uk)1≤k≤K
and (ωk)1≤k≤K by solving

min
(uk,ωk)1≤k≤K

{∥∥∥z− K∑
k=1

uk

∥∥∥2

2

+ α

K∑
k=1

∥∥∥D(uASk,(`1,`2)e
−j(ωk,1`1+ωk,2`2)

)
(`1,`2)∈L

∥∥∥2

2

}
, (1)

,where the 2D analytic signal uASk is defined in the Fourier
domain, for every frequency (ν1, ν2) ∈ V , as

ûASk,(ν1,ν2) = (1 + sign(ωk,1ν1 + ωk,2ν2))ûk,(ν1,ν2).

The 2D analytic signal is chosen to set to zero one half-plane
of the frequency domain relatively to the frequency vectorωk.
D models the gradient operator and the coefficient α > 0 de-
notes a regularization parameter allowing to adjust the selec-
tivity of the filter.

The limitations related to this criterion are essentially
twofold. First, incident and reflected wave have different
spectral behaviors. In particular, the spectrum of the reflected
wave is very compact horizontally but not vertically. We
introduce parameters αk,i, depending of the mode k and the
coordinate i ∈ {1, 2}, in order to separately adjust the hori-
zontal and vertical spectral compacity of each mode. Second,
we would like to add some prior information linked to the
physics of internal waves. In particular, the reflected wave
only propagates along the reflection slope and it is null far
away from the slope. This prior information can be intro-
duced by means of a penalty term fk(uk). For instance it can
be chosen as an indicator function iC(uk) whose value is 0
if uk ∈ C =

{
u ∈ RN | (∀(`1, `2) ∈ S) u(`1,`2) = 0}

and +∞ otherwise. For such a choice of the penalty fk, we
impose the component uk to be zero in the set of indices S.
Such a choice of C denotes a non-empty, closed and convex
subset of RN1×N2 . But more generally, we assume that fk
is at least convex, lower semi-continuous and proper from
RN1×N2 to ]−∞,+∞].

According to previous remarks, the criterion we derive is:

min
uk,ωk

{∑
k

fk(uk) + λ‖
∑
k

uk − z‖22

+
∑
k

αk,1

∥∥∥D1

(
uASk,(`1,`2)e

−jωk,1`1
)

(`1,`2)∈L

∥∥∥2

2

+

K∑
k=1

αk,2

∥∥∥D2

(
uASk,(`1,`2)e

−jωk,2`2
)

(`1,`2)∈L

∥∥∥2

2

}
, (2)

where D1 and D2 denote respectively the horizontal and ver-
tical gradient operator. The parameters αk,1 and αk,2 allow-
ing to adjust the selectivity are chosen positive. The parame-
ter λ allows us to adjust the fidelity to data. Similarly to (1),
this criterion is also non-convex. In what follows, we propose
an algorithmic solution to estimate a local minimizer.

3. ALGORITHM

A popular approach for solving (2) consists in alternating the
minimization over (uk)1≤k≤K and (ωk)1≤k≤K . For every
iterations m ≥ 1 and each mode k ∈ {1, . . . ,K}, we denote

φk,m(u) = fk(u) + λ‖u +
∑
i6=k

u
[m]
i − z‖22

+ αk,1

∥∥∥D1

(
uAS(`1,`2)e

−jω[m]
k,1 `1

)
(`1,`2)∈L

∥∥∥2

2

+ αk,2

∥∥∥D2

(
uAS(`1,`2)e

−jω[m]
k,2 `2

)
(`1,`2)∈L

∥∥∥2

2
, (3)

ψk,m(ω) = αk,1

∥∥∥D1

(
u
AS,[m+1]
k,(`1,`2) e

−jω1`1
)

(`1,`2)∈L

∥∥∥2

2

+ αk,2

∥∥∥D2

(
u
AS,[m+1]
k,(`1,`2) e

−jω2`2
)

(`1,`2)∈L

∥∥∥2

2
. (4)

Based on this functions, an alternating procedure is summa-
rized in Algorithm 1.

Algorithm 1 Gauss-Seidel algorithm
For m = 1, 2, . . .

For k = 1, . . . ,K u
[m+1]
k ∈ Argmin

u∈RN1×N2

φk,m(u)

ω
[m+1]
k ∈ Argmin

ω∈R2

ψk,m(ω)

This algorithmic strategy is used in [8] when α = αk,1 =
αk,2 and fk = 0. For this configuration, such a minimiza-
tion strategy provides satisfactory results however it involves
parameters tricky to adjust. Moreover, it is well known that
such an alternating minimization procedure requires restric-
tive conditions to guarantee convergence to a local minimizer
as discussed in [10, 11]. A simple solution to overcome these
difficulties is to replace each minimisation step by a proxim-
ity operator step as suggested in [11] and described in Algo-
rithm 2. Algorithm 2 has attractive convergence properties.
The convergence to a global minimum is ensured in the case
where the criterion is coercive and semi-algebraic [11].

Algorithm 2 Proximal alternating algorithm
Set µ > 0 and ρ > 0
For m = 1, 2, . . .

For k = 1, . . . ,K u
[m+1]
k = arg min

u∈RN1×N2

φk,m(u) + 1
2ρ‖u− u

[m]
k ‖22

ω
[m+1]
k = arg min

ω∈R2

ψk,m(ω) + 1
2µ‖ω − ω

[m]
k ‖22

In order to solve each step efficiently, we rewrite them
in the Fourier domain. We denote F the Fourier transform
and F−1 the inverse Fourier transform. Due to the Parse-
val/Plancherel theorem, both subproblems can be written in



the Fourier domain:

û
[m+1]
k = arg min

û

1

2ρ

{
‖û[m]

k − û‖22 + fk(F−1û)

+ λ‖û +
∑
i6=k

û
[m]
i − ẑ‖22

+ αk,1

∥∥∥(j(ν1 − ω[m]
k,1 )(1 + sign(ν1))û(ν1,ν2)

)
(ν1,ν2)∈V

∥∥∥2

2

+αk,2

∥∥∥(j(ν2−ω[m]
k,2 )(1+sign(ν2))û(ν1,ν2)

)
(ν1,ν2)∈V

∥∥∥2

2

}
,

ω
[m+1]
k = arg min

ω∈R2

{
1

2µ
‖ω[m]

k − ω‖22

+ αk,1

∥∥∥(j(ν1 − ω1)(1 + sign(ν1))û
[m+1]
k,(ν1,ν2)

)
(ν1,ν2)∈V

∥∥∥2

2

+ αk,2

∥∥∥(j(ν2 − ω2)(1 + sign(ν2))û
[m+1]
k,(ν1,ν2)

)
(ν1,ν2)∈V

∥∥∥2

2

}
.

The estimation step of ω[m+1]
k has an analytic expression

that is, for every i ∈ {1, 2},

ω
[m+1]
k,i =

ω
[m]
k,i + 8µαk,i

∑
(ν1,ν2)∈Ω

[m]
k

νi
(
û

[m+1]
k,(ν1,ν2)

)2
1 + 8µαk,i

∑
(ν1,ν2)∈Ω

[m]
k

(
û

[m+1]
k,(ν1,ν2)

)2 ,

(5)
where Ω

[m]
k denotes the half-plane in the Fourier domain:

Ω
[m]
k = {ν = (ν1, ν2) ∈ V | ν1ω

[m]
k,1 + ν2ω

[m]
k,2 > 0}.

On the other hand, the estimation of u[m+1]
k is obtained

through forward-backward iterations generating a sequence
(v

[p]
k )p≥0 build as

v
[p+1]
k = proxγρfk

(
v

[p]
k + γb − γF−1AFv

[p]
k

)
, (6)

where the proximity operator step allows us to deal with the
non-smooth function fk. It is defined as

(∀x ∈ RN1×N2) proxfkx = arg min
y
fk(y) +

1

2
‖x− y‖22,

which is reduced to the projection onto a closed convex set
when fk = ιC . In (6), A models a linear operator defined as

A : û→

{
A(ν1,ν2)û(ν1,ν2) if (ν1, ν2) ∈ Ω

[m]
k ,

0 otherwise,

with

A(ν1,ν2) = 1+2ρλ+4ρ(αk,1(ν1−ωk,1)2+αk,2(ν2−ωk,2)2)

and b ∈ RN1×N2 is such that

b(`1,`2) = u
[m]
k,(`1,`2) + 2ρλ(z(`1,`2) −

∑
i 6=k

u
[m]
i,(`1,`2))

The iterations are summarized in Algorithm 3.

Algorithm 3 Prox-2D-VMD algorithm
Choose the parameters λ > 0, ρ > 0, µ > 0
Set the parameters αk,1 > 0, αk,2 > 0

Initialize
(
u
[1]
k

)
1≤k≤K

,
(
ω

[1]
k

)
1≤k≤K

For every m = 1, 2, . . .

For every k ∈ {1, . . . ,K}

Set v[1]
k = u

[m]
k

Set γ ∈
]
0; 2/‖A‖

[
For p = 0, 1, . . .

b Update v
[p]
k as detailled in (6)

Set u[m+1]
k = limp→+∞ v

[p]
k

Compute ω[m+1]
k,1 and ω[m+1]

k,2 using (5)

4. EXPERIMENTAL RESULTS

Experiments are performed on a critical reflection velocity
field image z of size N1 = 132 and N2 = 238 illustrated on
Fig.1(a). Our goal is to extract the incident wave and the re-
flected wave (thus, K = 2) from z. Our method is compared
with a method based on Hilbert-transform, which is usually
used to process the internal waves velocity field [4] and with
the 2-D–VMD proposed in [8] where the data fidelity con-
straint is enforced strictly through an augmented Lagrangian.
An illustration of each strategy is illustrated in Fig.1. One can
observe that the Hilbert based strategy leads to mode mixing,
while the standard 2-D–VMD provides undesirables oscilla-
tions in the top of the 2-D field. The proposed method re-
moves all these artefacts.

In order to evaluate the impact of the proposed constraints,
we perform three different experiments. In the first experi-
ment, there is no optional constraint (f1 = f2 = 0) and no
directionality (αk,i ≡ α). In the second experiment, we add
the directionality constraint for the second component by set-
ting α2,2 = α/2, since the spectrum of the reflected wave is
expected to be more spread out horizontally than vertically.
In the third experiment, we combine the directionality with
the zero constraint by setting S to be the top first 70 rows of
u2 (α2,2 = α/2 and f2 = iC). The results are illustrated
in Figure 2, which shows mean vertical profiles of the inci-
dent wave u1 (solid line) and the reflected wave u2 (dashed
line). Mean profiles are obtained by averaging the absolute
value on each row of the images. In each plot, we compare
the proposed solution with the ones obtained with the Hilbert
filtering and 2-D–VMD. The left column presents the results
of the proposed method where α is fixed and λ varies. On the
right column, λ is fixed and α varies.

In the first experiment, we can observe that for larger λ,
the solution is closer to the standard 2-D–VMD that imposes
the exact equality between the data and the extracted com-
ponents. Here, varying λ allows us some flexibility, for in-
stance when noise is involved. A similar behaviour is ob-
served regarding the parameter α. One can observe that the
basic Hilbert filtering strongly attenuates the incident wave
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Fig. 1. Results on internal waves velocity field with critical wave reflection. 1st row: results obtained through a temporal and spatial Hilbert
filtering. 2nd row: 2-D–VMD. 3rd row: proposed method with α2,2 = α/2 and zero value constraint on the 70 first rows of mode 2 (f2 = iC).

on the boundaries and leads to undesirable oscillations on the
reflected wave.

In the second experiment, the directionality constraint al-
lows us to reduce the oscillations of the first IMF on the first
30 pixels near the slope. Moreover, adding this flexibility in
the directionality allows us to be less sensitive to the choices
of λ and α, which is why the profiles for different values of
parameters are superposed. In the third experiment, we il-
lustrate that the zero-constraint on the pixels of the second
component which are far from the slope enables to cancel the
undesired oscillations of the reflected wave and the boundary
effects.

In our experiments, we observe that 1000 iterates are
enough to insure convergence. Without the zero constraint,
the convergence of the algorithm is fast (about 3 seconds)
while with a zero constraint, the convergence is close to 10
minutes (since the computation of the modes uk involves
forward-backward iterations). In our experiments, the u

[1]
k

are set to zero, while the ω[1]
k are initialized on the unit circle.

however, we observe that the initialization of the uk and ωk
have no incidence on the final estimate.

5. CONCLUSION

This paper presents an efficient method for the separation
of incident and reflected wave in internal waves experimen-
tal images. This method revisits the 2-D–VMD proposed by
Dragomiretskiy and Zosso by adding stronger convergence
guarantees, giving more degrees of freedom for the setting
of parameters and the possibility to add some prior knowl-
edge through additional constraints. The proposed method
has been tested on internal wave experimental images with
critical reflection, and outperforms the classic Hilbert filter-
ing since it strongly reduces the boundary effects and the un-

desired oscillations in the estimated reflected wave.
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Fig. 2. Mean profile over the vertical axis of the estimates for different values of parameters α and λ. Black solid line is the mean
profile of data z. Color solid lines represent the extracted incident wave profiles with the different methods, while color dashed
lines represent the extracted reflected waves profiles: brown for Hilbert filtering, red for 2-D–VMD (α = 100), pink/blue/cyan
for the proposed method. In the first column, λ = 20 and α = {100, 500, 1000}. In the second column, α = 100 and
λ = {10, 20, 30}. First row shows the profiles estimated by our method in the unidirectional and unconstrained case. Second
row presents the profiles estimated with the proposed method in the directional case (α2,2 = α/2). Third row shows the profiles
estimated with the proposed method in the directional and constrained case (f2 = iC).


