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This Letter presents an experimental study on the effect of wetting on the draining of a tank through an
orifice set at its bottom. The investigation focuses on flows of liquids in the inertial regime through an
orifice the size on the order of magnitude of the capillary length. The results show that although the flows
always follow a Torricelli-like behavior, wetting strongly affects the speed of drainage. Surprisingly, this
speed goes through a minimum as the outside surface of the tank bottom plate changes from hydrophilic to
hydrophobic. The maximum effect in slowing down the flows (up to 20%) is obtained for a static wetting
angle θs of about 60°. Experiments suggest that the effect of wetting on the exit flows, very likely, is related
to the meniscus that forms at the hole’s outlet. A simple model is proposed that estimates the variation
of kinetic energy within the meniscus. This model captures the main features of the experimental
observations, particularly the nonmonotonic variation of the speed of drainage as a function of θs with a
minimum for a static wetting angle of about 60°.
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The draining of a tank through an orifice was first
described by Torricelli almost 400 years ago [1]. In this
model the energy losses are neglected (i.e., inviscid fluid),
which led to the conclusion that the efflux velocity of the
fluid vT equals the velocity that the fluid would acquire
if allowed to fall from the free surface of the reservoir
to the opening. This results in the following equation:
vTðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghðtÞp

, where g is the acceleration due to
gravity and hðtÞ the height of fluid in the tank at time t.
On that basis it is easy to obtain the expression for the
drained volume versus time. This description has no free
parameter; it only depends on the initial height of fluid, the
tank geometry, and the hole’s radius. Nevertheless, since it
contains no dissipation, Torricelli’s model always over-
estimates fluid velocity. Because this physical situation is a
big issue in industry (agri-food, oil, etc.) as illustrated in a
large amount of engineering books [2], many investigations
have tried to correct this model [3–9]. All these corrections
use empirical coefficients. For example, a proportionality
coefficient α was introduced in Torricelli’s equation,
vcorrT ðtÞ ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghðtÞp

, to explain the difference between
Torricelli’s law and experimental observations [7]. Despite
these efforts, the influence of some parameters is still not
predictable. This is the case for the influence of wettability
of the interfaces. Wetting has been studied extensively for
many years [10,11]; however, its influence on macroscopic
flows has not been investigated much so far [12–16]. To the
best of our knowledge, no one has considered the effect of
wetting on the tank draining. For example, what happens
if the flowing fluid wets, or not, the surface surrounding
the opening? One may expect a strong effect if the size of
the hole is smaller or on the order of magnitude than the
characteristic length scale that compares the respective
effects of surface tension and gravity forces, namely, the

capillary length; κ−1 ¼ ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
, where γ is the air-liquid

surface tension of the fluid and ρ its density. In this latter
case, one can imagine that the surface wettability (in other
words the contact angle θs between the fluid and the outer
surface) might monitor the flow rate.
The question we address in this Letter is the impact of

wetting on Torricelli’s model when the size of the opening
is comparable to κ−1. For that purpose, we built a specific
experimental device that is described below, as well as the
obtained results. We then propose a simple model to
qualitatively explain the experimental observations.
Experimental setup (supplemental material, Appendix

A).—The experimental device consists of a square tank
(a × a with a ¼ 10 cm) made of two Dural plates and two
glass plates that is set down on a raised shelf. The bottom of
the tank is a thin plate (2 mm) with a calibrated cylindrical
hole of radius r0 at its center. This plate is removable
allowing us to change the size of the hole or the plate
material. The fluid temperature within the tank is regulated
to 25� 0.5 °C with 2 Peltier elements on both Dural plates.
Using the shadowgraph technique, movies of the liquid jet
at the exit of the tank during emptying are recorded at a
constant frame rate (10–100 Hz) by means of a CCD
camera (Basler acA200–165 um) and a macro lens
(18–108 mm). An electronic scale accurate to 0.1 g
(KERN 532) placed 20 cm below the tank measures the
drained mass of liquid as a function of time at a sample rate
of 5 Hz. The drained mass is then converted into drained
volume using the fluid density.
Results shown in this Letter are obtained using distilled

water at 25 °C (density ρ ¼ 997 kg · m−3 and viscosity
η ¼ 0.89 mPa⋅s), an opening radius r0 ¼ 1.75 mm
(2r0 ≈ κ−1), and initial heights h0 varying from 4 to
11 cm. With these experimental parameters, one can
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estimate the values of the Reynolds numbers at the onset of
the flows: Re ≈ vTð0Þr0η=ρ. They are found between 900
and 2500, thus in the ideal-fluid flow regime.
The tank is filled with fluid up to h0. The fluid is heated

to 25 °C and left at rest for a few minutes. The experiments
start at t ¼ 0 when the hole is opened; both jet shape and
drained mass are recorded according to time. The typical
duration for the hole openings is between 20 and 50 ms.
Wettability of the bottom plate is changed by using
different materials: glass, Dural, Plexiglas, PVC (polyvinyl
chloride), glass made hydrophobic (H-glass; coated glass
with Rain-X® Original Glass Water Repellent) and Teflon.
We characterize the wetting properties of these surfaces by
their static contact angle for water droplets, θs (Table I).
Results.—Figure 1 shows measurements of the drained

volume V versus time t for two different initial heights h0
and three bottom plates having different wetting properties.
Within the experimental error, the measurements are
reproducible. For the same height and the same plate (same
hole radius and wettability) all obtained flow volume
curves are similar. For a square tank, Torricelli’s model
predicts that the drained volume as a function of time is
given by

VðtÞ ¼ πr20
ffiffiffiffiffiffiffiffiffiffi
2gh0

p
t −

π2r40
2a2

gt2: ð1Þ

The dashed curves in Fig. 1 correspond to this model.
As expected the experimental curves are below those
of Torricelli’s model, nonetheless, they exhibit similar
behaviors with t. We observe that for the various bottom
plates the obtained experimental curves are all different,
thereby suggesting that the flow rate depends on the
wetting. The fastest flow is seen for the glass plate, the
slowest for the Plexiglas plate—i.e., for θs ≈ 60°—and
the flow for the coated glass plate is in between both.
Surprisingly, the slowest flows are obtained for a contact
angle θs on the order of 60°, likely indicating a non-
monotonic effect of wetting. Experimental curves are fitted
to a quadratic model αt2 þ βt, where α and β are free
parameters. This allows us to define both an effective radius
reff0 and an initial height heff0 that are calculated from Eq. (1)
using the fitting values of α and β. It should be noted that
reff0 and heff0 are the values that the hole radius and the initial
height of the fluid should be to obtain the experimentally
measured flow if the fluid was flowing out at the velocityffiffiffiffiffiffiffiffiffiffiffiffiffi
2ghðtÞp

. It is also worth mentioning that under certain
initial conditions, jet instabilities occur at the flow start.
These instabilities strongly depend on wetting and will not
be described here. They last for a few seconds at the
beginning of the experiment; however, this does not affect
the shape of the measured drained volume curves that
always fit to a parabola.
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FIG. 1. Drained volume V versus t for h0 ¼ 10 cm (1 L) and
5 cm (0.5 L) [r0 ¼ 1.75 mm]. The different colors represent the
different bottom plates, from dark, the more hydrophobic (coated
glass) to light, the more hydrophilic (glass). Dashed curves
correspond to the Torricelli’s model. The line thickness is larger
than uncertainties on the measured drained volumes.

FIG. 2. reff0 =r0 and ts (inset) as a function of θs for different
initial heights [r0 ¼ 1.75 mm]; reff0 =r0 exhibits a minimum for
θs ≈ 60° where ts shows a maximum. Lines are fits of reff0 =r0 and
ts data to quadratic polynomial functions to point out their
nonmonotonic evolution.

TABLE I. Static contact angle θs (°) measured for water droplets for the different materials used as the tank bottom
plate.

Glass Dural Plexiglas PVC H-glass Teflon

13.2� 1.5 51.8� 1.6 63.8� 1.9 67.7� 1.3 87.7� 5.3 98.5� 3
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The normalized effective initial height heff0 =h0 does not
seem to depend on wetting. All obtained values of heff0 =h0
are close to 1 (not shown), in the range [0.95–1.02], without
regularity; thus heff0 ≈ h0. The normalized effective radius
reff0 =r0 is displayed depending on the wetting angle θs in
Fig. 2. reff0 is always smaller than the opening radius
and evolves with θs. Therefore all dissipation and wetting
effects can be included in a single parameter reff0 in Eq. (1).
Note that reff0 is not equal to the jet radius. For each θs, reff0

decreases with h0. For each h0, reff0 changes nonmonotoni-
cally with θs and shows a minimum for θs ≈ 60°, as
expected from the drained volume curves. Another param-
eter that can be considered is the time ts, which is defined as
the moment when a discontinuity appears in the variation
of VðtÞ. Looking at the jet, ts is the moment when the jet
starts to taper significantly just before drainage stops. It
corresponds roughly to the duration required to drain the
tank. ts versus θs is shown in the Fig. 2 inset. For a given θs,
ts increases with h0 as

ffiffiffiffiffi
h0

p
and corresponds well to the end

time of the flow that is predicted from Torricelli’s model
using reff0 ; ts ≈ ða2 ffiffiffiffiffiffiffiffiffiffiffiffi

2h0=g
p Þ=πðreff0 Þ2. ts evolves with θs

nonmonotonically and exhibits a maximum for θs ≈ 60°, in
agreement with the variations of reff0 .
Further experiments were performed using as bottom

plate a glass plate with only one of its sides hydrophobic
(Supplemental Material [17], Appendix B). The hydro-
phobic side was set inside and outside the tank alternately
to investigate different configurations. On the basis of these
results, we assume that dissipation, both inside the tank and
the orifice, does not depend on the wettability of the inner
surface of the bottom plate and therefore the wettability
effect on flow is only due to the wetting of the outer surface

of the bottom plate with water. For given r0 and h0, without
taking into account the instabilities that can be seen at the
onset of the flow, the only difference between the flow jets
from the different materials is the meniscus that forms at
the hole’s outlet (see Fig. 3). The shape of this meniscus
evolves continuously with wettability; its lateral extension
on the plate rjetðz ¼ 0Þ increases with the plate hydro-
philicity (i.e., as θs decreases). We assume that the
meniscus shape does not affect dissipation inside the tank.
Hence we believe that the meniscus accelerates or decel-
erates the speed of drainage depending upon its shape and
that therefore the explanation of the nonmonotonic effect of
wetting on Torricelli’s law is related to the meniscus shape.
Thereby in an attempt to understand the effect of the
meniscus shape on the flow, in others words the effect
of θs, we propose a simple model that calculates the
variation of the kinetic energy Ek due to a flow within
the meniscus.
Modeling.—For all materials, even Teflon, a thin ring of

fluid close to the wall, right at the exit of the hole, spreads
outwards, radially and perpendicularly to the main flow, to
wet the surface around the opening. This is the origin of the
meniscus formation. Dissipation due to the radial flow at
the plate level is neglected and this thin layer of fluid is not
taken into account in the following. The meniscus always
has a cylindrical symmetry and its outer shape follows a
parabolic profile rjetðzÞ that goes from rjetð0Þ at the plate
level (rjetð0Þ ¼ rLjet þ R) to rjetðLÞ ¼ rLjet at the point where

the meniscus vanishes and connects to the jet [at z ¼ L,
∂z(rjetðLÞ) ¼ 0]. Note that rLjet is the jet radius right

below the meniscus, it is not equal to r0 nor reff0 and it
can be larger than both. The meniscus profile can be
expressed in terms of the distance from the plate z as
follows: rjetðzÞ ¼ ðR=L2Þz2 − ð2R=LÞzþ Rþ rLjet.
In this model, the meniscus is considered made of two

distinct parts in which the flow is different. A cylindrical
tube having a radius rLjet wherein a plug flow along the
z axis and of speed v0ðtÞ is assumed. v0ðtÞ is defined as
v0ðtÞ ¼ QvðtÞ=πðrLjetÞ2, where QvðtÞ is the experimentally
measured flow rate. Here, we neglect the fluid accele-
ration due to gravity over the meniscus length (i.e.,
v0 − vðLÞ ¼ ffiffiffiffiffiffiffiffi

2gL
p

≪ v0). A junction of length L connects
this tube to the bottom plate. Because of the radial
symmetry, within this junction vϕ ¼ 0, and the velocity
vector simply writes v ¼ vrer þ vzez. In first order, the
vertical fluid velocity vz is assumed to follow a linear law
with r. It should be noted that a parabolic profile was also
tested without major changes. To avoid speed discontinuity
at rjetðLÞ, velocity at the edge of the junction vz(rjetðzÞ) is
also assumed to vary linearly with z, from 0 at the plate
level to v0 at z ¼ L. Using these assumptions, the vertical
velocity profile vz is expressed depending upon both z
and r, the distance from the center of the jet as
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FIG. 3. Jets at the exit of the tank for similar conditions except
wetting [r ¼ 1.75 mm, h0 ¼ 10 cm and t ¼ 90 s]. From hydro-
philic to hydrophobic plate: (a) Glass (θs ≈ 13°), (b) Plexiglas
(θs ≈ 64°), (c) H-glass (θs ≈ 88°). Left side: Zoom in of
the jets at the hole exit to display the meniscus profiles for the
different wetting conditions. Right side: Images of the jets to
show their global shape; ≈ 5–6 mm beneath the opening exit the
three jets look similar. The main notations of the model are
reported in Fig. 3(a).
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r ≤ rLjet vzðr; zÞ ¼ v0 ð2Þ

r > rLjet vzðr; zÞ ¼
v0½rjetðzÞ − rþ zðr − rLjetÞ=L�

rjetðzÞ − rLjet
: ð3Þ

The fluid incompressibility equation together with the
condition vrðrLjetÞ ¼ 0, gives the expression of vr (for
r ≥ rLjet)

vrðr; zÞ ¼
Lrv0

RðL − zÞ2
�
r
3
−
rLjet
2

�
þ Lv0rLjet

3

6RrðL − zÞ2 : ð4Þ

Thanks to these profiles one can develop a hydrody-
namic model of the meniscus by writing the Navier-Stokes
equation (Supplemental Material [17], Appendix C).
By multiplying the Navier-Stokes equation by v, one
finds out the equation for the instantaneous change in
the volume kinetic energy density ∂tek ¼ ρv∂tv.
The instantaneous variation of kinetic energy within the
meniscus dEk=dt is obtained by integration of ∂tek over
the meniscus volume Ω.

dEk

dt
≈
Z
Ω

�
−ρðvrvz∂rvz þ v2z∂zvzÞ − vz∂zPðzÞ

þ ηvz

�∂rvz
r

þ ∂2
rvz þ ∂2

zvz

�
þ ρgvz

�
dΩ ð5Þ

where η is the dynamical viscosity and PðzÞ the local
pressure. It is assumed that the pressure only depends
on z and due to the junction shape, in addition to the
atmospheric pressure P0, Laplace’s pressure within the
meniscus must be taken into account. Thus PðzÞ is
written as PðzÞ ¼ P0 þ γ½1=rjetðzÞ − 1=RcðzÞ�, where Rc

is the curvature radius of the junction given by
RcðzÞ ¼ ð1þ ½∂zrjetðzÞ�2Þ3=2=(∂2

zrjetðzÞ).
Experimentally we observe that rLjet, R, and L depend

on both the outer plate wettability θs as well as the time t
through Qv (R increases as v0 diminishes, while rLjet
decreases). Unfortunately, we do not have any analytical
relationship between rLjet, R, L, θs and Qv and therefore we
are not able to predict rjetðzÞ as a function of the surface
wettability and the flow rate. Consequently, we are not able
to find out an expression of dEk=dt solely as a function of
θs and t. Thus, in order to compare our model with the
experimental results, we calculate values of dEk=dt at
different flow rates Qv for each wettability condition.
According to Eq. (5), four sources of variation are

distinguished: nonlinear convection, local pressure, viscous
dissipation, and hydrostatic pressure. The contribution
of each term as a function of v0, L, R, and rLjet can be
calculated separately using the formal calculus software
Mathematica. This provides an estimate of the respective
weight of each term. In this framework the viscous

dissipation is always negligible. From the experiments
v0ðQvÞ, RðQvÞ, LðQvÞ, and rLjetðQvÞ are obtained
(Supplemental Material [17], Appendix D). Using these
experimental values and the analytical expressions that are
found for the four terms, dEkðQvÞ=dt are calculated for
any Qv. Figure 4 displays calculated values of dEk=dt as a
function of θs for Qv ¼ 3, 4 and 5 mL:s−1, respectively.
Although values of dEk=dt calculated in this way are not
very accurate for large values of θs (then R and L are rather
difficult to estimate), one can notice that dEk=dt is always
positive. Thus whatever its shape, the meniscus always
accelerates the flow with respect to a straight jet that would
be without a meniscus at the hole’s outlet. It also exhibits a
minimum around θs ≈ 60°. Accordingly, ts should have a
maximum for θs ≈ 60°. This behavior can be understood as
follows. For hydrophilic surfaces, R is on the order of a few
millimeters and L=R ≈ 1, then contributions of all terms in
Eq. (5) are important, the largest one being that of the
nonlinear convection term; accordingly dEk=dt is high. As
the surface hydrophobicity increases, R decreases while
L=R grows up to 4–5, then contributions of all terms in
Eq. (5) decline sharply, thus resulting in small values of
dEk=dt. For hydrophobic surfaces, meniscuses are small,
R is on the order of hundreds of microns and L=R ≈ 2,
because of that the contribution of the local pressure term
becomes very high, yielding large values of dEk=dt
(Supplemental Material [17], Appendix E). Nevertheless,
the fluid never flows out quicker than what is predicted
by Torricelli’s model, because in the latter dissipation is
neglected.
Summary.—This work reports the effect of wetting on

the draining of a tank through a hole of millimetric size, on
the order of the fluid capillary length. The experimental
results show that although the flow still follows behavior

FIG. 4. Calculated values of dEk=dt from Eq. (5) as a function
of θs, forQv ¼ 3, 4 and 5 mL:s−1. Each value of dEk=dt reported
here is the average over several dEk=dt values calculated at the
same Qv but for different h0. The lines are guidelines to show the
minimum.
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that can be deduced from Torricelli’s law, wetting strongly
affects the speed of drainage that goes through a minimum
as the outside surface of the tank bottom plate changes from
hydrophilic to hydrophobic. The wetting seems to have a
maximum effect in slowing down the flow for a static
wetting angle θs of about 60°. Similar results were also
obtained for other hole radii—smaller or on the order of
magnitude of the capillary length κ−1, i.e., within the range
0.5–2.5 mm. We propose that the nonmonotonic effect of
wetting lies in the meniscus that forms at the hole outlet.
A simple model that calculates the variation of kinetic
energy within the meniscus captures the key points of this
phenomenon. These few results are in agreement with the
results presented here. We believe that this effect deserves
further investigation, both theoretical and experimental, in
particular to test other materials—like superhydrophobic
surfaces—or other fluids.
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