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Generation and stability of inertia–gravity waves
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In the ocean, stratification and rotation allow for the existence of inertia–gravity
waves. Instabilities of these waves, such as triadic resonant instability (TRI), may
play a key role in the mixing process of the deep ocean. In an experimental set-up,
we generate inertia–gravity waves which may become unstable depending on the
background rotation and wave frequency. The instability produces secondary waves
that match the spatial and temporal resonance conditions of TRI. The effect of
rotation is introduced in a pre-existing theory and results in a prediction of the
growth rate of TRI in the case of an infinite plane wave. The issue of finite size
of the beam is then addressed using a simple model in which we show that the
instability is enhanced in a given range of Coriolis parameter. Finally, we compare
the experimental threshold of the instability with the model, and find good agreement
except at higher rotation rate. At constant primary wave frequency, we analyse the
evolution of the secondary wave characteristics with rotation. The appearance of
unexpected sub-inertial secondary waves may be related to the discrepancy observed
between predicted and experimental thresholds at higher rotation.

Key words: instability, internal waves, waves in rotating fluids

1. Introduction
In rotating stratified fluids, such as the oceans, waves called inertia–gravity waves

can propagate. Their characteristics and their stability are driven by both the rotation,
through the Coriolis parameter f , equal to twice the rotation rate Ω , and the
stratification, through the buoyancy frequency N = [(−g/ρ̄)(dρ/dz)]1/2, where ρ(z) is
the density distribution (ρ̄ is a reference value) over the vertical coordinate z and g
is the acceleration of gravity. For the case in which the axes of rotation and gravity
are antiparallel, the dispersion relation of the inertia–gravity waves is

θ = arcsin

(√
ω2 − f 2

N2 − f 2

)
, (1.1)

where θ is the angle between the wave beam and the horizontal. Assuming N> f , the
dispersion relation shows that propagating waves only exist for excitation frequencies
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in the range f < ω < N. One of the prominent processes that leads to transport
of energy from large to small scales in the oceans is the parametric subharmonic
instability (PSI). At laboratory scale, where viscosity is not negligible, this instability
is referred to as triadic resonant instability (TRI) (see, e.g., Müller et al. (1986) and
references therein). It is characterized by a primary internal wave giving birth to
two secondary subharmonic waves through nonlinear triadic interaction (Benielli &
Sommeria 1998; Koudella & Staquet 2006; Clark & Sutherland 2010; Gayen & Sarkar
2013). The instability occurs when temporal and spatial resonance are satisfied,

ω0 =ω1 +ω2, (1.2)
k0 = k1 + k2, (1.3)

where k is the wavevector and subscripts 0, 1 and 2 refer to the primary and two
secondary waves respectively. As proved by Hasselmann (1967), this instability
requires the frequencies (defined positive) of the secondary waves to be smaller than
that of the primary wave. The difference interactions ω1 − ω2 = ±ω0 are neutrally
stable and therefore do not play a role in our study. In most cases, and specifically in
oceanic conditions with larger Reynolds number, the secondary waves have a higher
wavenumber, which makes them more prone to break and overturn, creating mixing
(Staquet & Sommeria 2002).

In the non-rotating case, Bourget et al. (2013) showed good agreement between
the theory for internal plane wave instability and experimental observations of the
instability of a quasi-monochromatic internal wave beam. In the non-stratified case,
similar experimental conclusions were reached by Bordes et al. (2012) in the case of
purely inertial plane waves. Sutherland (2013) raised the question of the validity of
these theories in the case of finite wave beams, which are more relevant for oceanic
applications, where wave beams, emitted from the interaction of the barotropic tide
and the sea-floor topography, can have a very narrow profile (Lien & Gregg 2001;
Gostiaux & Dauxois 2007). The important role played by the finite size of the wave
beam on TRI was investigated experimentally and a simple model was proposed in
Bourget et al. (2014). A theoretical study was developed to understand how such
wave beams differ, with regard to TRI, from monochromatic plane waves (Karimi &
Akylas 2014). This theory confirms the experimental results of Bourget et al. (2014).
Tackling the issue of a finite size beam in a rotating fluid experimentally might bring
a new understanding on the transfer of energy between scales, on the secondary wave
selection and on the open question of wave turbulence in the open ocean. To the
best of our knowledge, there has been no experimental work in the laboratory on the
importance of rotation on TRI. Such problems have been tackled numerically for a
low-mode internal tide (Hazewinkel & Winters 2011) and theoretically for an inviscid
scenario (Young, Tsand & Balmforth 2008). Both studies have shown that rotation is
of paramount importance for the threshold and for the characteristics of TRI.

An important question in the oceanic context is the latitude dependence of TRI.
Recent numerical and field studies have shown that when first-mode semidiurnal (M2)
inertia–gravity tides travel from low latitude towards higher latitudes, they undergo
a dramatic loss of energy near the latitude of 29◦ (MacKinnon 2005; MacKinnon
et al. 2013a,b). This latitude, called the ‘critical latitude’, corresponds to a Coriolis
frequency equal to half of the frequency of the primary wave. This loss might be
linked to enhanced instability and a resultant large transfer of energy to the secondary
waves (Hibiya 2004; Simmons 2008).

In this paper, we present an experimental study of the role of rotation on TRI as
well as the influence of the beam width on this instability. In § 2, we present our
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FIGURE 1. (Colour online) (a) Experimental set-up fixed to a rotating table, which permits
the production of inertia–gravity waves in the tank, with controlled N and f . Synthetic
schlieren and particle image velocimetry (PIV) are used to investigate the wave properties.
(b) Density profile along the vertical axis z expressed as the difference between the
measured density and the density of pure water. (1) Profile taken before rotation, (2)
profile taken after linearly accelerating the table to 9.54 rpm during 15 min and (3) profile
taken after 2 h of constant rotation at 9.54 rpm ( f = 2 rad s−1). It should be noted that
this rotation rate, used here for the purpose of this test, is much larger than the values used
for our experiments in what follows. The dashed line (4) is a linear adjustment leading to
a value of N = 1.13 rad s−1. For the sake of clarity, curves (2)–(4) are shifted vertically
by respectively 5, 10 and 15 cm.

experimental set-up, study inertia–gravity wave generation and show that waves may
be subject to TRI. The characteristics of the secondary waves are then compared in
§ 3 with theoretical values obtained from the inclusion of rotation in the theoretical
framework derived in Bourget et al. (2013, 2014). Using this model, we infer the
importance of finite size effects and apply it to the oceanic case. Finally, in § 4, we
present measurements of the effect of rotation on the instability threshold and show
that our theoretical analysis is in good agreement with the observations. We also focus
in this section on how secondary wave characteristics are affected by rotation, and
we interpret their evolution. We show the unexpected generation of waves below the
Coriolis frequency. Some conclusions are drawn in the last section.

2. Experimental study
2.1. Experimental set-up

The experimental set-up, shown in figure 1(a), is similar to the one described in
Bourget et al. (2013, 2014), with the exception that the whole apparatus is set in
rotation on a turntable (PERPET, designed and constructed by GP Concept). The
turntable is 1.92 m in diameter and its rotational velocity can be adjusted from
Ω = 0 to 60 rpm, which allows variations of the Coriolis parameter f = 2Ω from
0 to 12.5 rad s−1 with 0.1 % precision. The axis of rotation is aligned with gravity
with 2 mm m−1.

Experiments are conducted in a rectangular tank 80 cm long and 17 cm wide
filled with linearly stratified fluid, i.e. a constant buoyancy frequency N, using the
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standard double-bucket method (Fortuin 1960; Oster & Yamamoto 1963). Then, the
experimental apparatus is set into rotation. In order to avoid mixing and to keep N
unchanged, the angular acceleration is less than 10−3 rad s−2. Figure 1(b) displays
the density profile before rotation, after spin-up of the table and after two hours of
constant rotation. On a time scale much larger than the typical experimental time (ca.
20 min), the variation of N is smaller than its accuracy, i.e. ±0.25 %. The linear fit
of the profile gives the value of the buoyancy frequency, which is of the order of
1 rad s−1. This is the typical value of N used in all of the experiments presented in
this paper. We restricted our study to the case f < N. In this range of rotation rates,
isopycnal deformation is very small (< 0.5 cm), which preserves the alignment of the
background density gradient with gravity and with the rotation axis. For all of the
experiments presented in this article, solid body rotation is established in the fluid.

The inertia–gravity waves are generated using a configuration identical to the one
described in Bourget et al. (2013). The wave generator (Gostiaux et al. 2006; Mercier
et al. 2010), consisting of stacked moving plates, is set horizontally at the surface in
such a way that the plates move vertically. The time-dependent vertical motion of the
generator is prescribed in the form

ζ (x, t)= a(x) cos(ω0t− `0x), (2.1)

where ω0 is the frequency of the oscillations. This forcing sets the horizontal
component of the wavevector, denoted `0, and no component in the transverse
(y) direction. The amplitude a(x) is constant (denoted a0) over two wavelengths
in the middle of the generator and is smoothly decreased over a half-wavelength
on each side to avoid spurious inertia–gravity wave emission. In this paper, `0 and
the amplitude are kept constant (`0 ≈ 80 m−1 and a0 = 5 mm). The motion of the
generator generates a plane wave of finite extent. The length of the tank is chosen
to be long enough so that reflected waves are dissipated before coming back into the
field of view.

As a preliminary step, particle image velocimetry (PIV) is performed in a horizontal
plane 10 cm below the generator to observe the motion of the wave in the (x, y)
plane and measure the transverse component of the velocity. The fluid is seeded
with 2 mg l−1 of hollow glass particles (110 p8, sphericell). A horizontal laser
sheet is created by a cylindrical lens, and observations are made via a mirror below
the tank inclined at 45◦ (see figure 1a). The CIVx algorithm (Fincham & Delerce
2000) computes the cross-correlation between two successive images, giving the
instantaneous horizontal two-dimensional velocity.

This velocity measurement in a horizontal plane shows that, as expected for
linear inertia–gravity waves (Sutherland 2010), rotation induces a velocity component
oriented in the transverse direction, vy, proportional to the Coriolis parameter f . The
main result of these measurements is, however, that no dependence in the y direction
is observed: the wavevector is contained in the (x, z) plane, i.e. k · ey= 0. This result
remains true in the bulk of the fluid, while in the first centimetre close to the wall a
decrease of velocity is observed due to viscous boundary layers, previously observed
for pure internal waves ( f = 0) by Brouzet et al. (2016).

The absence of transverse gradients allows for the use of a synthetic schlieren
technique (Sutherland et al. 1999; Dalziel, Hughes & Sutherland 2000), which is more
accurate for the visualization and study of TRI (Bourget et al. 2014). The motion of
the fluid is recorded in a vertical plane by a camera at 2 fps. The CIVx algorithm
computes the cross-correlation between the real time and the t = 0 background
image, when the fluid is at rest. The outcome is the instantaneous two-dimensional
density-gradient field ∂xρ

′(x, z, t) and ∂zρ
′(x, z, t) where ρ ′(x, z, t)= ρ(x, z, t)− ρ0(z),

ρ(x, z, t) and ρ0(z) being the instantaneous and initial fluid densities respectively.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.635
Downloaded from https:/www.cambridge.org/core. Bibliothèque Diderot de Lyon, on 21 Feb 2017 at 09:26:40, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.635
https:/www.cambridge.org/core


Generation and stability of inertia–gravity waves 543

0

0

–15
–50

–25

0

25

50

–10

–5

0

10

x (cm)

x

z

z 
(c

m
)

20

10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1.0

FIGURE 2. (Colour online) The dimensionless frequency ω0/N of an inertia–gravity wave
plotted versus the angle of propagation θ0 defined in (2.2) for various values of the
dimensionless Coriolis parameter f /N ranging from 0 to 0.85. The lines are theoretical
predictions (from (2.2)) over which are plotted experimental measurements. For all of
these experiments N was close to 1 rad s−1. The inset shows a typical snapshot of
a density-gradient field obtained from synthetic schlieren, for the following parameters:
ω0/N = 0.66 and f /N = 0.35.

2.2. Wave characteristics and dispersion relation
A typical snapshot of a wave field produced by the generator and measured using
synthetic schlieren is shown in the inset of figure 2. From such an image, the phase
of the wave is extracted using the Hilbert transform method developed by Mercier,
Garnier & Dauxois (2008) and previously used for pure internal waves (Bourget et al.
2013). From there, the components (`0,m0) of the wavevector are obtained by linearly
fitting the variation of the phase with x and z respectively. The error is estimated by
the standard deviation of the difference between the measured values and the values
predicted by the linear fit. In addition, from a single-point time series of the density-
gradient field, the wave frequency, the peak of the spatial average of the fast Fourier
transform of the time signal, can be extracted. Once these characteristics of the waves
are obtained, one can check whether they satisfy the dispersion relation

ω2
0 =N2 sin2 θ0 + f 2 cos2 θ0 =N2 `

2
0

κ2
0
+ f 2 m2

0

κ2
0
, (2.2)

where θ0 is the angle of propagation such that k0 = (`0, 0, m0)= κ0(sin θ0, 0, cos θ0),
where κ0 is the magnitude of the wavevector k0. Figure 2 displays the wave frequency
versus the angle of propagation θ0, arctan(`0/m0), for several values of the Coriolis
parameter. The result is consistent with the dispersion relation (2.2) for inertia–gravity
waves, shown in the figure as lines. Even if our wavemaker was designed to
generate pure internal waves, these two observations demonstrate that the wavemaker
successfully generates well-defined inertia–gravity waves in the vertical plane (x, z)
as long as f is smaller than 0.85N. For larger values of f , we were unable to obtain
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FIGURE 3. (Colour online) Snapshots of the vertical density field, ∂zρ
′(x, z, t), at t=50 T0

displayed in an ( f /N, ω0/N) plane. The disposition of the snapshots indicates the relative
importance of f /N and ω0/N: (a) (ω0/N, f /N)= (0.66,0.05), (b) (ω0/N, f /N)= (0.66,0.2),
(c) (ω0/N, f /N)= (0.8, 0.2). For the three experiments, the wavemaker has the geometrical
characteristics (`0= 72 m−1, a0= 5 mm). The top left panels (a′), (b′) and (c′) show time
series taken in respectively experiment (a), (b) and (c) at a point located 5 cm below the
wavemaker, roughly at the centre of the wave beam (indicated by a star in wave field a).

a well-defined wave beam: the emitted wave had a much lower amplitude and a
poorly defined wavelength. This problem may result from the lack of an imposed
transverse velocity from the wavemaker. For f /N . 1, vy becomes of the same order
of magnitude as vx, and there is a loss of efficiency of the wave generator in this
range. In the study presented in this article, however, we did not need to consider
cases with f /N > 0.45.

2.3. An unstable plane wave
Evolving in the (ω0, f ) parameter space, the observed wave field is not always as
simple as shown in the inset of figure 2. Three examples of density-gradient fields,
taken at different locations of the parameter space, are shown in figure 3. In the three
cases, the amplitude a0 and the horizontal component of the wavevector, `0, are the
same. The corresponding time signals taken at a given location (indicated by a star in
a) are also shown, in the top left corner. The signals are fairly stable after an initial
transient of less than five periods, demonstrating that steady states are established for
the frequencies and Coriolis parameter values considered.

For the lowest frequency and Coriolis parameter (case a), the wave field is
described by straight lines for the density-gradient phase, and a single-point time
signal oscillates sinusoidally. However, as f /N is increased (case b), there is a
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FIGURE 4. (Colour online) (a) The time–frequency diagram corresponding to the unstable
wave presented in figure 3(c) (ω0/N = 0.8, f /N = 0.2, `0= 72 m−1, a0= 5 mm). Here, Sz
is the time–frequency spectrum of the vertical density-gradient field, computed on a 30T0
wide sliding time window. (b) The corresponding experimental measurement of secondary
wave dimensionless wavevector components `1,2/`0 and m1,2/m0 of the same unstable
wave. Ellipses represent the experimental errors as described in § 2.2. The black (grey)
lines represent the theoretical resonance locus for f /N = 0.2 ( f /N = 0). The positions
corresponding to the maximum growth rate (3.6) are indicated by two grey circles.

modification of the wave field: in the first 5 cm there is a deformation of the
phase lines, below which the primary wave amplitude is significantly decreased. This
corresponds to the appearance of TRI. This feature is emphasized by the modulation
of the time signal (panel b), which is typical of the appearance of new frequencies
in the system. When ω0/N is increased as well (case c), the TRI is fully developed.
To obtain more information about TRI, the time–frequency response Sz(ω, t) of the
corresponding signal (time series c) can be computed (Flandrin 1999):

Sz(ω, t)=
〈∣∣∣∣∫ +∞−∞ du ∂zρ

′(u, x, z)eiωuh(t− u)
∣∣∣∣2
〉
, (2.3)

where h is a Hamming time window of chosen length. In figure 4(a), Sz(ω, t) indicates
the appearance of two secondary waves growing in time, with frequencies ω1 and ω2
such that ω1 +ω2 =ω0.

The corresponding wavevectors, computed as in the previous subsection, are shown
in figure 4(b) in an (`/`0,m/m0) plane. They satisfy the spatial resonance condition
k0 = k1 + k2. The corresponding theoretical resonance locus, obtained using the
temporal and spatial resonance conditions and the dispersion relation for each of the
three waves, is also shown. This curve depends naturally on the Coriolis parameter
and is similar to the one presented by McComas & Bretherton (1977). In figure 4(b),
we show this locus for two cases, f /N = 0 (no rotation) and f /N = 0.2. We observe
that when f /N increases, the allowed range for the secondary vertical wavenumber
increases whereas the allowed range for the secondary horizontal wavenumber shrinks,
leading to secondary waves propagating more horizontally (recall that the wavevector
is perpendicular to the group velocity). The tips of the vectors k1 and k2 are located,
within experimental errors, on the curve that shows the theoretical resonance locus
for the corresponding Coriolis parameter f /N = 0.2.
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As a conclusion of this first set of observations, inertia–gravity waves can either
be unstable through TRI or remain stable. Rotation seems to play a key role in this
picture, by favouring the instability (at least in some cases like in figure 3) but also by
changing the characteristics of the secondary waves. To gain insight into the role of
rotation in TRI, we first present the theoretical framework for weak TRI of a viscous
plane wave and then consider finite size effects on the wave beam.

3. Growth rate of TRI
3.1. Infinite plane wave theoretical growth rate

A general theory for TRI of an inviscid inertia–gravity wave beam was previously
obtained by Young et al. (2008). Viscosity, however, is not negligible in laboratory
experiments. The conditions under which TRI can develop have been theoretically
presented for internal waves by Koudella & Staquet (2006) and Bourget et al. (2013)
and for inertial waves by Bordes et al. (2012). This framework for weakly nonlinear
infinite plane waves including viscous dissipation can be generalized by taking into
account both stratification and rotation. We consider an incompressible continuously
stratified Boussinesq fluid with constant buoyancy frequency N, rotating around the
vertical axis parallel to gravity at a constant angular rotation Ω (i.e. the Coriolis
parameter is f = 2Ω). We assume no variation in the transverse (y) direction, which
is verified by experimental observation. The velocity is written as (vx = ∂zψ , vy, vz =
−∂xψ), vy being the velocity in the transverse direction and ψ the streamfunction
of the in-plane flow. After some calculations of weak nonlinearities, fully detailed in
appendix A, one can obtain the evolution equations for the amplitudes of waves 0, 1
and 2:

Ψ̇0 = I0Ψ1Ψ2 − 1
2
νκ2

0

(
1+ f 2m2

0

κ2
0ω

2
0

)
Ψ0, (3.1)

Ψ̇1 = I1Ψ0Ψ
∗

2 −
1
2
νκ2

1

(
1+ f 2m2

1

κ2
1ω

2
1

)
Ψ1, (3.2)

Ψ̇2 = I2Ψ0Ψ
∗

1 −
1
2
νκ2

2

(
1+ f 2m2

2

κ2
2ω

2
2

)
Ψ2, (3.3)

where Ir is

Ir = γr
`pmq −mp`q

2ωrκ2
r

[
ωr(κ

2
p − κ2

q )+ `rN2

(
`p

ωp
− `q

ωq

)
+mrf 2

(
mp

ωp
− mq

ωq

)]
, (3.4)

with γ0 = 1, γ1,2 = −1, (p, q, r) = (0, 1, 2), or any circular permutation thereof.
Here, Ir is an interaction coefficient between the primary and the two secondary
waves resulting from the nonlinear term in the Navier–Stokes and incompressibility
equations. In the dispersion relation (2.2) and in the interaction coefficient (3.4), the
products fm and N` appear, highlighting the symmetric role played by stratification
for the horizontal wavevector component and by rotation for the vertical wavevector
component.

In § 2, we observed that rotation has an influence on the development of the
instability. To understand this effect, the growth rate σ of the instability can be
extracted using (3.2) and (3.3) assuming a constant amplitude for the primary wave,
because we consider only the early times of the instability growth. This amplitude will
be defined using the Reynolds number Re= 2πΨ0/ν. The details of the calculation of
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FIGURE 5. (Colour online) (a) The evolution of the theoretical threshold of TRI in the
case of an infinite plane inertia–gravity wave of horizontal wavenumber `0= 80 m−1. The
threshold is represented by the critical Reynolds number Rec = 2πΨ0,c/ν and is plotted
versus f /N at constant ω0/N. (b) The growth rate (3.6) at different values of the Coriolis
parameter f /N, renormalized by the maximum growth rate at f /N = 0 (σ0 = 0.11 s−1)
versus the horizontal component `1 of one of the secondary wavevectors, for a primary
wave at (`0 = 80 m−1, ω0/N = 0.8, Re= 188).

the generalized growth rate, which takes into account both rotation and stratification,
is in appendix A, yielding
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= −1
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(
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f 2m2
1

ω2
1
+ f 2m2

2

ω2
2

)
+√I1I2|Ψ0| + o(νκ2

1,2). (3.6)

The condition for instability is that the growth rate σ from (3.6) is positive for at
least one combination of `1,m1, ω1, `2,m2, ω1, ω2 that respects the dispersion relation
and the resonance conditions. The theoretical threshold in amplitude is defined as the
value Ψ0,c of the amplitude when the maximum value of σ is zero. The threshold of
TRI depends on the amplitude of the primary wave and on its frequency, but not on
its wavelength: if k0, k1 and k2 are multiplied by the same coefficient K, the growth
rate (3.6) is multiplied by K2, and the threshold is unchanged. In figure 5(a), we show
the amplitude threshold (Rec = 2πΨ0,c/ν) as a function of f /N for various values of
ω0/N. As underlined by Bourget et al. (2014), if f = 0 there is no TRI threshold.
When rotation is introduced in the system, however, it induces a finite threshold for
TRI. This reflects the fact that, as the amplitude of the primary wave vanishes, the
frequencies of the secondary waves tend towards zero and ω0. When there is rotation
in the system, a zero-frequency subharmonic wave is no longer allowed, hence the
appearance of a threshold in amplitude, which increases with f /N. This threshold
tends to infinity as f reaches ω0/2. A simple explanation for this observation is that
for both ω1,2 > f and the temporal resonance condition to be fulfilled, f must be
smaller than ω0/2.
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Figure 5(b) shows the associated growth rate (3.6) as a function of `1/`0 for various
values of f /N. For each curve, the growth rate reaches a maximum resulting in a
selection criterion for TRI. It should be noted that outside the range of `1/`0 presented
in the figure, the growth rate tends monotonically towards negative values. In this
model, for low values of f /N, rotation has little impact on the maximum growth rate.
For larger values of f /N, the maximum growth rate decreases strongly as f increases.
This is a general feature, related to the threshold divergence as f approaches ω0/2.

Within this theoretical framework, one can compute the two wavevectors kσmax

corresponding to the maximum growth rate of TRI for experiment (c) in figure 3.
Their tips are represented by grey circles in figure 4. The measured wavevectors fall
on this theoretical prediction, within their experimental errors.

3.2. Finite size effect
In the case of infinite plane waves, we showed in the previous section that the
amplitude instability threshold increases continuously with the Coriolis parameter
f /N. From an oceanic perspective, this would mean that inertia–gravity waves at the
Equator would be more prone to TRI than waves at higher latitude (because of the
latitude dependence of the Coriolis parameter f = 2ΩEarth sinη, where η is the latitude).
This does not correspond to existing oceanic observations: numerical simulations
(MacKinnon 2005; MacKinnon et al. 2013b) and field studies (MacKinnon et al.
2013a) highlight the existence of a critical latitude at f =ω0/2 where TRI is strongly
enhanced. The experiments presented in § 2 show that TRI appears only when rotation
is strong enough (compare figures 3a and b) with other parameters kept constant. The
predictions presented in the previous section cannot explain this behaviour and actually
seem to show that rotation prevents TRI. The major difference from the experiment
lies in the infinite beam width of the plane wave in our theoretical development.
The effect of finite size for pure internal waves ( f = 0) was studied theoretically
by Karimi & Akylas (2014). Laboratory experiments have also been performed by
Bourget et al. (2014), who derived a simple model taking into account the finite size
effect of the beam width. The theory by Karimi & Akylas (2014) and the model
by Bourget et al. (2014) are based on the same premises: the triadic interaction has
to be strong enough in the limited time that subharmonic perturbations overlap with
the beam. As schematically shown in figure 6(a), the secondary waves leave the
interaction region of width W with a velocity equal to the projection of their group
velocity onto the direction n⊥= k0/κ0, perpendicular to the primary wave propagation
direction. The amplitude of this exit velocity is then |vg,i · n⊥|.

Following the approach of Bourget et al. (2014), the time evolution of the secondary
wave amplitude also depends on the rate at which these waves leave the interaction
region, which we call the advection rate. This rate can be expressed as the ratio of the
exit velocity defined above over the width of the primary wave beam. The amplitude
equations (3.2) and (3.3) of the secondary waves thus become

Ψ̇1 = I1Ψ0Ψ
∗
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[
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(
1+ f 2m2

1

κ2
1ω

2
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)
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W

]
Ψ1, (3.7)

Ψ̇2 = I2Ψ0Ψ
∗

1 −
1
2

[
νκ2

2

(
1+ f 2m2

2

κ2
2ω

2
2

)
+ |vg,2 · n⊥|

W

]
Ψ2. (3.8)

Increasing the rotation f affects the time spent by the secondary wave in the primary
wave beam in two different ways. First, as f increases, the group velocity is reduced,
vanishing at f =ω. Second, changing the rotation affects the direction of propagation.
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FIGURE 6. (Colour online) (a) Schematics of the triadic resonant interaction, highlighting
the existence of an interaction zone of width W corresponding to the width of the primary
wave. (b) Typical transverse profile of the wave amplitude, for the wave presented in figure
3(a) extracted by Hilbert transform. (c,d) The ratio of the outgoing advection rate of the
secondary waves away from the primary wave beam over the maximum growth rate of the
instability, as a function of f /ω0. This ratio is shown individually for each secondary wave
and also for the sum of both advection rates, which directly compares the two terms of
(3.10):(1/4)(|vg,1 ·n⊥|+ |vg,2 ·n⊥|)/2λσmax. Inset: corresponding maximum growth rate σmax
(normalized by the maximum growth rate at f = 0, σ0). Two different sets of parameters
are considered: (c) experimental parameters (ω0/N = 0.8, `0 = 80 m−1 and Re= 188); (d)
oceanic case, where parameter values are taken from Gayen & Sarkar (2013) and Sun &
Pinkel (2013) (ω0/N = 0.1, `0 = 6.3× 10−2 m−1 and Re= 3.9× 105).

If the primary and the secondary waves were collinear, the secondary waves would
never leave the primary beam. In contrast, when the group velocity of the secondary
waves vg,(1,2) is not perpendicular to the primary wavevector k0, the secondary waves
will leave the primary beam. From (3.7) and (3.8), one can then extract a modified
instability growth rate, in the same way as the growth rate (3.6) was extracted in the
infinite beam case:
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(3.9)

Taking into account the experimental values, I1I2|Ψ0|2 is the leading term inside the
square root in this equation, so that

Σ = σ − 1
4W

(|vg,1 · n⊥| + |vg,2 · n⊥|)+ o(νκ2
1,2)+ o

( |vg,1,2 · n⊥|
W

)
. (3.10)
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A beam will be considered wide when its width W is large compared with the
wavelength. In such a case, one recovers expression (3.6) from (3.10). To get an
idea of the actual width of our experimental beam, generated as described in § 2.1,
figure 6(b) shows a typical transverse profile of the beam (measured perpendicular
to the direction of propagation of the wave). The effective width of the beam lies
between 1.5λ and 3λ.

The relative importance of the advection rate of each secondary wave, 1/4W|vg,i · n⊥|,
versus the growth rate is shown in figure 6(c,d), where the ratio between the two is
plotted as a function of f /ω0, for two given sets of parameters. Based on figure 6(b),
the typical beam width was chosen to be W=2λ. Small values of this ratio correspond
to cases where finite size is not a limiting process for TRI, since the secondary waves
stay long enough in the primary beam. Figure 6(c) corresponds to values used in
our experiments. First, we notice that although the advection term is not dominant,
which justifies the first-order approximation leading to (3.10), it is not negligible. In
addition, we observe the existence of a particular range of f /ω0 where TRI is more
likely to occur. In the range 0< f /ω0 < 0.45, σmax is fairly constant (see the inset of
figure 6c), but, in the range 0.35 < f /ω0 < 0.45, the interaction time is larger (low
advection rate), which enhances the instability. Figure 6(d) shows the same ratio for
typical oceanic inertia–gravity waves (characteristics extracted from Gayen & Sarkar
(2013) and Sun & Pinkel (2013)). In this case, the advection rate is the dominant term
and the range of f /ω0 favouring TRI is roughly reduced to a single value, close to 0.5.
In the ocean, wave beams can be extremely narrow (Lien & Gregg 2001; Gostiaux &
Dauxois 2007). In such cases, we can make the assumption that the finite size effect
is paramount and that TRI will only appear in the most favourable case, i.e. f 'ω0/2
from figure 6(d). This result is consistent with MacKinnon et al. (2013a,b), and gives
a sensible explanation for the predominance of TRI at a critical latitude rather than
at the Equator.

The approach presented in this section shows that TRI is favoured for a given range
of Coriolis parameters. Let us now return to laboratory experiments and check whether
this feature can be observed.

4. Experimental instability threshold and secondary wave characteristics
4.1. Experimental threshold

We now focus on estimating the threshold of the triadic instability experimentally. To
do so, we generate inertia–gravity waves with a given horizontal wavelength (`0 =
80 m−1) for a given generator displacement amplitude of 5 mm but with varying
frequency ω0 and Coriolis parameter f . The parameter space is not reduced by keeping
a constant amplitude. Indeed, in our experiments Re decreases as ω0/N decreases. A
good approximation is to assume that the Reynolds number is simply proportional to
(ω0/N)2, in agreement with the experimental measurements. Because `0 is fixed by the
generator, in this configuration, the wave can be described with only two parameters
(ω0/N, f /N). For this reason, the threshold that will be discussed here is a threshold
in frequency rather than a threshold in amplitude. In figure 7, we show the numerous
experimental measurements in this parameter space. Stable or unstable cases, with
respect to TRI, are indicated by a different symbol. For example, for f /N = 0 the
primary wave is stable at ω0/N = 0.66, but is unstable at ω0/N = 0.71, in agreement
with previous studies (Bourget et al. 2014). These measurements allow one to locate
the instability frequency threshold, which lies between the highest frequency for which
no TRI is detected and the lowest frequency for which TRI is observed.
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FIGURE 7. (Colour online) Experimental observations showing the triadic resonance
stability or instability of a primary wave of dimensionless frequency ω0/N at Coriolis
parameter f /N. The fixed parameters are `0 = 80 m−1, e0 = 5 mm, leading to Re > 100
for each experiment. The predicted threshold is shown by a dotted line in the infinite beam
case, by a dashed line in the finite beam case with a 3-wavelength-wide beam and by a
dash-dotted line in the finite beam case with a 1.5-wavelength-wide beam. Our prediction
uncertainty due to the uncertainty in the width of the beam is displayed as a light green
zone. The hatched zone corresponds to a forbidden zone for TRI: if ω1 and ω2 are larger
than f , then according to the space resonance condition, ω0 is larger than 2f . The larger
symbols help to locate on this graph the experiments described in other figures of this
article, with the figure number indicated. The horizontal dashed line indicates ω0/N= 0.8,
which corresponds to the experiments presented in figure 8.

For low values of the Coriolis parameter ( f /N < 0.12), the threshold remains fairly
constant. It then decreases to reach a minimal value around f /N = 0.2. At larger
values of the Coriolis parameter, the threshold follows a limit defined by the line
ω0 = 2f . Below this line (hatched zone in the figure), TRI is forbidden. Indeed, the
two secondary frequencies have to be larger than f , so that ω0 = ω1 + ω2 has to be
larger than 2f for the temporal resonance condition to be satisfied.

In the previous section, we wrote a simplified expression Σ for the growth rate of
the instability, which takes into account the finite size effect. This growth rate can be
used to estimate the threshold of the instability from the model and compare it with
experimental observations.

An experimental criterion is needed to determine whether or not the frequency
is above the threshold. To find this criterion, we consider the case f /N = 0. From
figure 7, we estimate that the threshold in this case is located around ω0/N = 0.68.
For these values of f and ω0, we then calculate the maximum value of Σ(`1) (with
respect to `1), later referred to as Σ0. In what follows, we assume for a given
primary wave in the parameter space (ω0/N, f /N) that any corresponding value of
the growth rate Σ that is larger than Σ0 leads to an unstable case, whereas any value
below gives a stable primary wave. To estimate the evolution of the threshold with
increasing f /N, we operate as follows.
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(i) We choose a given f /N value.
(ii) At ω0/N = 0.8 (a region always unstable experimentally, whatever the value of

f , except in the hatched zone), the maximum value of Σ(`1), later referred to as
Σmax, is calculated.

(iii) If Σmax > Σ0, ω0/N is decreased by a chosen step (in our study this step is
∆(ω0/N)= 0.02).

(iv) For the new value of frequency and corresponding amplitude, the new Σmax is
calculated.

(v) The procedure is repeated until Σmax<Σ0. The threshold is therefore determined
within a given error (in our study a 2 % error on ω0/N).

As discussed earlier, because the exact width W of the beam is not known, an
additional error is introduced. For this reason, we show in figure 7 the threshold curve
in the two cases W= 1.5λ and W= 3λ, which are the limiting values for W according
to figure 6(b). The band between these two threshold curves represents the margin of
error in our estimation of the threshold. We note that this band lies roughly in the
region that separates experimental points where TRI takes place from experimental
points where the primary wave is stable. The corresponding curve for infinitely wide
beams is also shown to emphasize the importance of the finite size effect.

4.2. Frequencies of the secondary waves
In figure 7, the good agreement between the model and the experimental threshold
prevails until f /N ≈ 0.3. Above this value, unstable events are observed below the
threshold predicted by the model. To get more insight into this feature, we focus on a
particular value of the frequency of the primary wave, ω0/N= 0.8, for different values
of f /N. For each run, a temporal fast Fourier transform of the vertical density gradient
∂zρ
′ is performed on the signal recorded during the steady state (t = 90T0) using a

30T0 time window. In figure 8, showing the corresponding spectrum, there is a strong
peak at ω0/N = 0.8, corresponding to the forcing frequency, and a pair of twin peaks,
as expected, for 0< f /N < 0.4, corresponding to secondary waves of frequencies ω1
and ω2, smaller than ω0. Above 0.4, the primary wave is stable, as expected. For
every value of f /N, there is a symmetry with respect to the position ω0/2N, and
the temporal resonance condition is fulfilled: ω1 + ω2 = ω0. As expected from the
dispersion relation, as f /N increases the main secondary peaks move closer to ω0/2N,
bringing TRI closer to what is commonly known as PSI. Interestingly, rotation not
only has an influence on secondary wave characteristics but may also foster the
instability. In this context, the experiment at f /N = 0.25 is particularly interesting.
One can see that the instability is stronger, with several secondary frequencies, which
are much weaker in the cases f /N= 0.2 and f /N= 0.3 and do not appear in the other
cases. This enhanced instability can be explained by considering the secondary wave
1. Its frequency (ω1/N ' 0.51) is close to 2f . We demonstrated in the theoretical
analysis of the finite size effect that a wave at this frequency, now considered as the
primary wave, is most likely to undergo a secondary instability, thereby creating the
observed multiple TRI.

Let us now turn to the particular case 0.35 < f /N < 0.4. We observe in figure 8
that one of the secondary waves (later referred to as 1) has a frequency above f
and the other one (later referred to as 2) has a frequency below f . In this case, the
secondary wave 2 is a sub-inertial wave, and its existence is not taken into account
in our theoretical approach, where we assumed, for i= (0, 1, 2), that f <ωi <N. This
observation may be related to the discrepancy seen in figure 7 for f > 0.3.
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FIGURE 8. (Colour online) Renormalized amplitude of the fast Fourier transform of the
vertical gradient of density over a 30T0 time window at t ≈ 90T0, for a primary wave
propagating at ω0/N ' 0.8 and for various values of f /N, which correspond to 63.2◦ <
θ < 68.9◦. For the sake of clarity, the spectra are shifted vertically by a multiple of 3,
the vertical axis values corresponding to the case f /N = 0. On each spectrum, a red dot
indicates the value of f /N and separates it into two parts, one in green on the left where
ω< f and one on the right where ω> f . A vertical dashed line indicates ω/N= 0.4, which
corresponds roughly to ω0/N/2. On each spectrum, the peak on the right represents the
primary wave, and daughter waves correspond to the other peaks, identified with a cross.
For the sake of clarity, the value f /N is displayed with full precision only when it is
necessary, for the experiments just above and just below the threshold.

Snapshots of an experimental vertical density-gradient field at different times are
presented in figure 9 for the particular case f /N = 0.39. At early time, a plane wave
propagates from the top left corner to the bottom right corner of the field of view
(figure 9a). A few oscillating periods later, perturbations of the wave field appear
below the wave maker (figure 9b). These perturbations continue to evolve until a
stationary state is reached (figure 9c). This behaviour is similar (even at long times)
to what was observed when ω1 and ω2 were larger than f (for example, figure 3c).
The experimental time series at a point 5 cm below the wavemaker filtered at ω0, ω1
and ω2 respectively are shown in figure 9(d–f ), confirming that a stationary regime is
reached for the configuration under consideration.

From a theoretical point of view, the existence of sub-inertial waves in the case
of TRI was predicted for ω0 slightly smaller than 2f by Young et al. (2008). A
comparison between this theory and the experiments is not possible because the
viscosity and finite size effect of the primary wave are of paramount importance in
the laboratory case. A possible explanation for this type of sub-inertial waves could
be a misalignment between the background density gradient and the axis of rotation.
As mentioned in § 2.1, however, this alignment was carefully controlled in the
building of the rotating platform, leading to a maximum angle of 0.1◦, too small to
explain the observed phenomenon. A formal theory that incorporated our experimental
configuration would be interesting for the understanding of this phenomenon for which
the interpretation currently remains open.
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FIGURE 9. (Colour online) (a,b,c) Snapshots of the vertical density-gradient field for (a)
t = 4T0, (b) t = 10T0 and (c) t = 100T0, with T0 the primary wave period. The wave is
propagating from the top left to the bottom right. The Coriolis parameter is f /N = 0.39,
the wave frequency is ω0/N = 0.8 and the motion amplitude of the generator is 0.5 cm.
(d,e, f ) Vertical density gradient as a function of time for a point located 5 cm below the
wavemaker (indicated by a star in a), filtered at ω0 (d), ω1 (e) and ω2 ( f ).

5. Conclusions

In an experimental approach, we have studied the influence of ambient rotation on
TRI. Using the same experimental device as in Bourget et al. (2013) placed on a
rotating platform, we generated controlled inertia–gravity waves and characterized
them through their dispersion relation. In this set-up, resonance conditions for
TRI were verified. Using the analytical development of Bourget et al. (2013), we
introduced the effect of rotation, allowing us to study how growth rates are modified.
The experimental secondary wave frequencies and wavevectors are in good agreement
with the theoretical maximum growth rate.

This approach, however, only works for infinite plane waves and cannot explain
the experimental evolution of the threshold with rotation rate. For finite size beams,
one has to take into account the possibility that secondary waves leave the interaction
region, resulting in a decreased growth rate. Following Bourget et al. (2014), we
modelled this finite size effect by an advection rate. Using this model, we were able
to predict the evolution of the instability threshold with rotation and show that TRI
is enhanced at a finite non-zero value of the Coriolis parameter. This characteristic
value depends strongly on the size of the primary wave beam. In the ocean, viscosity
plays a much lesser role than in experiments, due to a larger Reynolds number. For
this reason, comparisons of our results with oceanic situations are always delicate.
Nevertheless, in the case of the enhanced instability that we observe in a range of the
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Coriolis parameter, a projection of the experimental results and theoretical explanation
for small viscosity and small width of the wave beam provides a sensible explanation
to the critical latitude phenomenon observed in situ and in numerical simulation by
MacKinnon (2005) and MacKinnon et al. (2013a,b). In addition, for some rotation
rates, the temporal spectrum observed in our experiment exhibits multiple peaks, i.e.
multiple triads. This feature might open interesting perspectives regarding mixing in
the ocean dynamics as well as in the understanding of the spectral content of the
internal wave background in the ocean (Garrett & Munk 1972).

At larger rotation rates, a discrepancy between observations and our model is
observed. This discrepancy may be related to the presence of one sub-inertial
secondary wave that is neither transient nor evanescent. This type of wave is not taken
into account in the model. Such waves were theoretically and numerically predicted
for an inviscid case (Young et al. 2008). The observation of these waves remains
puzzling, however, and it would be interesting to study them theoretically. Several
questions can be raised. In the same way that selection criteria were established for the
classical TRI secondary waves, can analogous criteria be obtained when a secondary
wave is sub-inertial? How is the direction of propagation of these sub-inertial waves
chosen? How is the appearance of these waves related to the primary wave remaining
stable as soon as 2f >ω0 (hatched region for TRI in figure 7)?
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Appendix A. The TRI theory for an inertia–gravity wave in the presence of
viscosity

A.1. Viscous plane wave
The two-dimensional dynamics (in the x, z coordinates) of a Boussinesq fluid is
usually described by the following three equations:

∂b
∂t
+ J(b, ψ)=N2 ∂ψ

∂x
, (A 1)

∂vy

∂t
+ J(vy, ψ)+ f

∂ψ

∂z
= ν1vy, (A 2)

∂∇2ψ

∂t
+ J(∇2ψ, ψ)− f

∂vy

∂z
=−∂b

∂x
+ ν12ψ, (A 3)

where b = −gρ ′/ρ̄ is the buoyancy perturbation, with ρ̄ and ρ ′ being respectively
the mean density and the difference between the density and the mean density, such
that ρ = ρ̄ + ρ ′. Here, J is the Jacobian operator, defined as J( f1, f2) = ∂xf1∂zf2 −
∂zf1∂xf2, and ψ is a function that can be interpreted as the current function in the
case of purely internal waves (as f = 0 imposes v · ey = vy = 0). We assume that all
quantities are invariant in the transverse y direction. This assumption is supported by
experimental observations that are detailed in § 2. Therefore, the incompressible flow
condition permits the velocity to be written as v = (∂zψ, vy,−∂xψ). Because we are
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interested in triadic interactions, we look for solutions of the form

b=
2∑

j=0

Rj(t) exp(i(kj · r−ωjt))+ c.c., (A 4)

vy =
2∑

j=0

Vj(t) exp(i(kj · r−ωjt))+ c.c., (A 5)

ψ =
2∑

j=0

Ψj(t) exp(i(kj · r−ωjt))+ c.c., (A 6)

where kj = (l, 0, m) has no transverse component. Substituting these solutions into
(A 1), (A 2) and (A 3), one obtains

2∑
j=0

[Ṙj − iωjRj − iN2`jΨj] exp(i(kj · r−ωjt))+ c.c.=−J(b, ψ), (A 7)

2∑
j=0

[V̇j − iωjVj + νκ2
j Vj + i fmjΨj] exp(i(kj · r−ωjt))+ c.c.=−J(vy, ψ), (A 8)

2∑
j=0

[−κ2
j (Ψ̇j− iωjΨj)+ i`jRj− νκ4

j Ψj− i fmjVj] exp(i(kj · r−ωjt))+ c.c.=−J(∇2ψ, ψ),

(A 9)

where for any variable A, Ȧ stands for the temporal derivative of A.

A.1.1. Resonance conditions
The Jacobians in (A 7)–(A 9) can be written as

J(b, ψ) =
2∑

p=0

∑
q 6=p

[(−`pmq +mp`q)RpΨq] exp(i((kp + kq) · r− (ωp +ωq)t))

− [(−lpmq +mp`q)RpΨ
∗

q ] exp(i((kp − kq) · r− (ωp −ωq)t))+ c.c., (A 10)

J(vy, ψ) =
2∑

p=0

∑
q 6=p

[(−`pmq +mp`q)VpΨq] exp(i((kp + kq) · r− (ωp +ωq)t))

− [(−`pmq +mp`q)VpΨ
∗

q ] exp(i((kp − kq) · r− (ωp −ωq)t))+ c.c., (A 11)

J(∇2ψ, ψ) =
2∑

p=0

∑
q 6=p

[(`pmq −mp`q)κ
2
pΨpΨq] exp(i((kp + kq) · r− (ωp +ωq)t))

− [(`pmq −mp`q)κ
2
pΨpΨ

∗
p ] exp(i((kp − kq) · r− (ωp −ωq)t))+ c.c. (A 12)

By averaging both the left-hand sides and the right-hand sides of (A 7)–(A 9) over the
period of a wave, we obtain the evolution of a particular wave (kr, ωr) associated with
the streamfunction Ψr, in which r= 0, 1 or 2. The resonant terms on the right-hand
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side that balance the left-hand side correspond to the waves fulfilling two conditions:
a spatial resonance condition

k0 = k1 + k2 (A 13)

and a temporal resonance condition

ω0 =ω1 +ω2. (A 14)

In the following, we consider that the frequencies are defined positive and that ω1 and
ω2 are smaller than ω0. The difference interactions ω1−ω2=±ω0 are neutrally stable
and do not play a role in our study.

A.1.2. Zeroth-order relations
The usual inviscid linear dynamics of (A 7) and (A 8) provides the polarization

expressions

Rj =−N2`j

ωj
Ψj, (A 15)

Vj = fmj

ωj
Ψj. (A 16)

The zeroth-order assumption, Ṙj�ωjRj in (A 9) yields the dispersion relation

ω2
j =N2 `

2
j

κ2
j
+ f 2 m2

j

κ2
j
. (A 17)

Keeping only resonant terms and using the polarization equations (A 15) and (A 16),
the Jacobians can be written as

J(b, ψ) = (`1m2 −m1`2)N2

(
`1

ω1
− `2

ω2

)
Ψ1Ψ2 exp(i(k0 · r−ω0t))

− (`0m2 −m0`2)N2

(
`0

ω0
− `2

ω2

)
Ψ0Ψ

∗
2 exp(i(k1 · r−ω1t))

− (`0m1 −m0`1)N2

(
`0

ω0
− `1

ω1

)
Ψ0Ψ

∗
1 exp(i(k2 · r−ω2t))+NRT, (A 18)

J(v, ψ) = −(`1m2 −m1`2)f
(

m1

ω1
− m2

ω2

)
Ψ1Ψ2 exp(i(k0 · r−ω0t))

+ (`0m2 −m0`2)f
(

m0

ω0
− m2

ω2

)
Ψ0Ψ

∗
2 exp(i(k1 · r−ω1t))

+ (`0m1 −m0`1)f
(

m0

ω0
− m1

ω1

)
Ψ0Ψ

∗
1 exp(i(k2 · r−ω2t))+NRT, (A 19)

J(∇2ψ, ψ) = (`1m2 −m1`2)(κ
2
1 − κ2

2 )Ψ1Ψ2 exp(i(k0 · r−ω0t))

− (`0m2 −m0`2)(κ
2
0 − κ2

2 )Ψ0Ψ
∗

2 exp(i(k1 · r−ω1t))

− (`0m1 −m0`1)(κ
2
0 − κ2

1 )Ψ0Ψ
∗

1 exp(i(k2 · r−ω2t))+NRT, (A 20)

where NRT stands for non-resonant terms that are not important in the problem.
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A.2. First-order expansion: slow amplitude variation
We make the further assumption that the amplitude Ψj varies slowly with respect to
the period of the wave. It is therefore appropriate to consider that Ψ̇j�ωjΨj. Use of
this assumption in the derivative of (A 15) and (A 16) yields

Ṙj =−N2`j

ωj
Ψ̇j, (A 21)

V̇j = fmj

ωj
Ψ̇j. (A 22)

Substituting these equations into (A 8), one obtains

V0 =
−γ0fβ0Ψ1Ψ2 + i fm0Ψ0 + f

m0

ω0
Ψ̇0

iω0 − νκ2
0

, (A 23)

V1 =
−γ1fβ1Ψ0Ψ

∗
2 + i fm1Ψ1 + f

m1

ω1
Ψ̇1

iω1 − νκ2
1

, (A 24)

V2 =
−γ2fβ2Ψ0Ψ

∗
1 + i fm2Ψ2 + f

m2

ω2
Ψ̇2

iω2 − νκ2
2

, (A 25)

where γ0 = 1, γ1,2 =−1 and

βr = (`pmq −mp`q)

(
mp

ωp
− mq

ωq

)
, (A 26)

with (p, q, r)= (0, 1, 2) or any circular permutation. One gets for (A 9)

R0 =− i
`0
[κ2

0 (Ψ̇0 − iω0Ψ0)+ νκ4
0Ψ0 − γ0α0Ψ1Ψ2 + i fm0V0], (A 27)

R1 =− i
`1
[κ2

1 (Ψ̇1 − iω1Ψ1)+ νκ4
1Ψ1 − γ1α1Ψ0Ψ

∗
2 + i fm1V1], (A 28)

R2 =− i
`2
[κ2

2 (Ψ̇2 − iω2Ψ2)+ νκ4
2Ψ2 − γ2α2Ψ0Ψ

∗
1 + i fm2V2], (A 29)

where

αr = (`pmq −mp`q)(κ
2
p − κ2

q ), (A 30)

with (p, q, r)= (0, 1, 2) or any circular permutation. Therefore, (A 7) leads to

N2`0

ω0
Ψ̇0 + iω0R0 + iN2`0Ψ0 = γ0δ0N2Ψ1Ψ2, (A 31)

where

δr = (`pmq −mp`q)

(
`p

ωp
− `q

ωq

)
, (A 32)
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with (p, q, r)= (0, 1, 2) or any circular permutation. The time derivative of the wave
amplitude, Ψ̇0, is related to the other wave amplitudes through

N2`2
0

ω2
0
Ψ̇0 + κ2

0 (Ψ̇0 − iω0Ψ0)+ νκ4
0Ψ0 − γ0α0Ψ1Ψ2

+ i fm0

−γ0fβ0Ψ1Ψ2 + i fm0Ψ0 + f
m0

ω0
Ψ̇0

iω0 − νκ2
0

+ i
N2`0

ω0
Ψ0 = γ0

`0

ω0
δ0N2Ψ1Ψ2. (A 33)

The zeroth order of the previous equation is simply the dispersion relation and
disappears because the considered waves propagate according to this relation.
Therefore, we can develop this expression at first order in Ψ̇0, ν and Ψ1Ψ2, which
means that the viscous and nonlinear terms have effects of comparable amplitude in
the time evolution of Ψ0. This first-order development yields

Ψ̇0 = γ0

2κ2
0

(
α0 + δ0N2`0

ω0
+ f 2m0β0

ω0

)
Ψ1Ψ2 − 1

2
ν

(
κ2

0 +
f 2m2

0

ω2
0

)
Ψ0. (A 34)

The evolution of Ψ0 is driven by two terms. The first one is an interaction term
between the two other resonant waves. The second one is a viscosity term enhanced
by rotation. Rotation turns the two-dimensional back-and-forth movement of the fluid
associated with purely gravitational waves into tilted ellipses, which lengthens the fluid
particle trajectories during a period, thereby increasing the viscous damping.

Generalization of this procedure to wave 1 and wave 2 yields

Ψ̇0 = I0Ψ1Ψ2 − 1
2
νκ2

0

(
1+ f 2m2

0

κ2
0ω

2
0

)
Ψ0, (A 35)

Ψ̇1 = I1Ψ0Ψ
∗

2 −
1
2
νκ2

1

(
1+ f 2m2

1

κ2
1ω

2
1

)
Ψ1, (A 36)

Ψ̇2 = I2Ψ0Ψ
∗

1 −
1
2
νκ2

2

(
1+ f 2m2

2

κ2
2ω

2
2

)
Ψ2, (A 37)

where Ir is

Ir = γr

2κ2
r

(
αr + δrN2`r

ωr
+ f 2mrβr

ωr

)
= γr

`pmq −mp`q

2ωrκ2
r

[
ωr(κ

2
p − κ2

q )+ `rN2

(
`p

ωp
− `q

ωq

)
+mrf 2

(
mp

ωp
− mq

ωq

)]
. (A 38)
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