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between laboratory experiments and oceanic internal waves 
was the field study by Halpern (1971), regarding internal 
waves produced by tidal flows, which lead to experiments 
by Maxworthy (1979), whose results were then utilized 
by a number of field studies (e.g., Haury et al. 1979). The 
experiments by Cacchione and Wunsch (1974) studying the 
reflection of internal waves over a slope also provided expla-
nations of diapycnal mixing observed in the ocean, such as 
in the Monterrey Canyon (Künze et al. 2012). Additional 
examples of synergy between experiments and field observa-
tions, focussed on wave-induced mixing, can be found in the 
review by Ivey et al. (2008).

The methods employed to generate internal waves in lab-
oratory settings have evolved markedly since Görtler (1943) 
and Mowbray and Rarity (1967), who used an oscillating 
cylinder as their wave generation tool. Some prominent 
examples of internal wave generation mechanisms applied 
in the laboratory include: a single paddle extending verti-
cally across the depth of a wave tank, which excites vertical 
mode structures (Cacchione and Wunsch 1974); a paddle 
with a localized deformation to generate wave beams (Delisi 
and Orlanski 1975); and oscillating topographic features cut 
from foam blocks to generate low mode dominated internal 
wave fields (Echeverri et al. 2009). Oscillations of the wave 
tank itself have been used to generate internal wave attrac-
tors (Maas et al. 1997), while wave paddles continue to be 
used, an example being the study of instabilities arising from 
intersecting wave beams (Teoh et al. 1997).

The aforementioned generation methods are characterized 
by a fixed spatial structure, which in turn limits experimental 
control over the spatial structure of the internal wave field. 
A major advance, therefore, was the advent of novel internal 
wave generation technology comprising a series of stacked 
plates driven by an eccentric cam shaft (Gostiaux et al. 
2006), for which it is possible to configure the profile of the 

Abstract  There has been a rich interplay between labora-
tory experimental studies of internal waves and advancing 
understanding of their role in the ocean and atmosphere. 
In this study, we present and demonstrate the concept for 
a new form of laboratory internal wave generator that can 
excite axisymmetric wave fields of arbitrary radial struc-
ture. The construction and operation of the generator are 
detailed, and its capabilities are demonstrated through a pair 
of experiments using a Bessel function and a bourrelet (i.e., 
ring-shaped) configuration. The results of the experiments 
are compared with the predictions of an accompanying ana-
lytical model.

1  Introduction

Laboratory experimentation has a compelling history of 
advancing the field of internal wave dynamics. The pio-
neering experiments of Görtler (1943) and Mowbray and 
Rarity (1967) provided the first demonstration of the pecu-
liar internal wave dispersion relation. Early experiments 
studying wave generation in shear flows (Lee and Beardsley 
1974) evidenced the role of nonlinearities and dispersion. 
These effects were studied in situ, for example by Apel 
et al. (1975) using satellite observations, and much more 
recently by Thomas et al. (2016) using pressure sensors in 
the Massachusetts Bay. Another example of the interplay 
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stacked plates to have the shape of a desired wave form. The 
capabilities of this novel wave generator technology were 
comprehensively investigated and demonstrated by Mercier 
et al. (2010), who used such a generator to produce several 
different canonical wave forms, including plane waves, wave 
beams of different cross-sectional form and vertical modes. 
The versatility of this wave generator has led to its use in a 
multitude of experiments, including studies of internal tide 
scattering (Peacock et al. 2009), parametric subharmonic 
instability (Bourget et al. 2013; Ghaemsaidi et al. 2016; 
Maurer et al. 2016), propagation through non-uniform strati-
fications (Mathur and Peacock 2009; Paoletti and Swinney 
2012), and bolus generation (Moore et al. 2016).

To date, internal wave experiments have typically consid-
ered nominally two-dimensional (2D) configurations (i.e., 
assuming negligible variability across the experimental wave 
tank). Some experiments have looked into three-dimensional 
(3D) effects, such as the generation of a conical wave field 
by an oscillating sphere (Ghaemsaidi and Peacock 2013), 
oscillation of an axisymmetric Gaussian topographic feature 
(King et al. 2010), or of a horizontal torus (Ermanyuk et al. 
2017) and the generation of wave beams by narrow stacked 
plate generators in relatively wider tanks that produce 3D 
mean flows (Bordes et al. 2012). In an axisymmetric con-
figuration, Duran-Matute et al. (2013) used a torus to gener-
ate purely axisymmetric inertial waves. Messio et al. (2008) 
also studied the axisymmetric configuration characterizing 
purely inertial waves using PIV in a rotating tank. In this 
paper, we demonstrate the adaptation of a multi-plate wave 
generator to produce robust axisymmetric wave fields of 
arbitrary radial structure. The motivation for this arrange-
ment is that it is quite geophysically relevant, as it pertains 
to the generation of near-inertial waves by storms interact-
ing with the ocean surface (Alford 2001) and the generation 
of atmospheric internal waves by storm cells (Alexander 
et al. 1995), for which an assumption of axisymmetry is 
a reasonable first-order approximation that is certainly an 
improvement on a two-dimensional assumption. By virtue 
of the underlying symmetry, this advance is also naturally 
conducive to incorporating background rotation into the 
experimental investigations.

We begin, in Sect. 2, with an overview of the operational 
design of the wave generator and the experimental configu-
ration, including details of the rotating table facility. Then, 
in Sect. 3, we present details of an axisymmetric model 
of internal wave generation and propagation that we have 
developed and use for comparison with the experimental 
wave fields. In Sect. 4, we present experimental results for 
two different configurations of the wave generator, a Bessel 
function and a bourrelet (an axisymmetric oscillating bump). 
Finally, we present our conclusions in Sect. 5.

2 � Experimental methods

2.1 � Generator design

The construction of the axisymmetric wave generator fol-
lows the underlying operational principle of Gostiaux et al. 
(2006) by using a series of stacked plates forced by eccentric 
cams to initiate internal wave disturbances. The schematic 
and images in Fig. 1 show that the new axisymmetric design 
comprises 16-, 12-mm-wide concentric, PVC rings (the 
central one being a 12-mm-diameter cylinder). Each ring is 
38 mm high and there is a 1 mm gap between adjacent rings 
for flexibility; the total radius of the generator is 201 mm.

In contrast to a two-dimensional generator, for which the 
movement of each plate is driven by a single cam, each ring 
(with the exception of the central ring) is driven by two cams 
located equidistant from the central ring of the generator 
(see Fig. 1); this is necessary in order to enhance control and 
provide balance to the motion of the rings. To prevent jam-
ming of the plates, aluminum guides (not drawn in Fig. 1a) 
are used to ensure parallel, vertical motion.

Numbering the rings 1–16 from the center to the outer 
ring of the generator, their prescribed vertical motion is:

(a)

(b)

Fig. 1   a A schematic of the axisymmetric wave generator (with only 
half of the plates and cams shown, for clarity). The vertical motion 
of the rings is driven by the cams, which follow a sinusoidal motion 
at frequency � imposed by the motor. b Underside view of the wave 
generator
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where z0,n is the displacement amplitude of ring n (in the 
range 0–15 mm for our generator), � is the rotational fre-
quency of the camshaft, and �n is the phase of ring n (chosen 
by increments of �∕6 for our generator). Two configurations 
(a Bessel function and a bourrelet) are used in the present 
paper. For each case, the value of the displacement z0,n and 
the phase �n as a function of n will be defined in Sects. 4.1 
and 4.2, respectively.

This novel geometry opens up a wide range of possibili-
ties for the excitation of different types of internal wave 
fields in density-stratified fluids. For example, an axisym-
metric standing-wave pattern can be excited if all the phases 
of the plates are identical, or radially outward (inward) prop-
agating waveforms result if the plate phases are increasing 
outward (inward). Imposing different amplitudes of oscilla-
tion for different rings allows for scenarios such as a strong 
disturbance in the center of the domain that decreases 
smoothly towards the outer domain.

We also note that by virtue of its geometry the device 
is well suited for generating purely inertial waves in rotat-
ing systems. Since the possibilities are plentiful, our goal in 
this paper is to provide the first demonstration of the capa-
bilities of such a generator by visualizing some examples of 
inertia-gravity wave fields excited using this technology. We 
leave it to the interested reader to further explore the broad 
possibilities.

2.2 � Experimental arrangement

Our experiments were conducted in a cylindrical Plexiglas 
tank that was housed within a transparent Plexiglas tank of 
square cross section (see Fig. 2). Salt-stratified water resided 
both inside and outside of the cylinder, preventing signifi-
cant optical deformations for the visualization system. In 
setting the scale of the system, an important consideration 
was that viscous damping for inertia-gravity waves scales 
as the cube of the wave-vector amplitude. To try and lessen 
the impact of viscous damping, our square external tank had 
sides of length 1 m, enabling the inner cylindrical tank to be 
1 m in diameter; both tanks were 0.6 m in height. A series 
of horizontal holes were drilled around the lower section of 
the cylindrical tank to allow fluid to flow freely between the 
two chambers during filling from below.

The tank structure was mounted on a turntable (denoted 
as PERPET, designed and constructed by GP Concept) that 
was 1.92 m in diameter. The rotational velocity could be 
set in the range 0 < Ω < 60 rpm with an accuracy of 0.1%, 
which corresponds to a Coriolis parameter f = 2Ω in the 
range 0 < f < 12.5 rad s−1. The axis of rotation was vertically 
aligned with gravity with a tolerance of 2 mm m−1. A salt 
stratification was established using the standard double bucket 

(1)zn(t) = z0,n cos(�t + �n) ∀n ∈ [[1, 16]],

method (Fortuin 1960; Oster and Yamamoto 1963) with buoy-
ancy frequency N ≈ 1 rad⋅ s−1.

The tank was filled while at rest and then spun up very 
slowly, at an angular acceleration rate less that 10−3 rad s−2, 
in order to prevent mixing from degrading the stratification. 
Since a vertical density gradient suppresses vertical fluid 
motion, the typical timescale to achieve solid body rotation 
is longer for a stratified fluid than for a homogeneous fluid, 
for which three-dimensional flows such as Ekman pumping 
distribute momentum from the rotating base of the tank into 
the body of the fluid that is initially at rest. In the most extreme 
case, a body of stratified fluid will be set in rotation by vis-
cosity alone. In this case, assuming that the flow is purely 
azimuthal and that there is no variation of the velocity in z 
(case of an infinitely high cylinder), the azimuthal velocity v� 
is the solution to:

where � is the kinematic viscosity. Figure 3a presents histo-
ries of the horizontal velocity at a point in the bulk 
(r = 29 cm) undergoing external rotation (in the case of the 
stratified fluid, the horizontal velocity vh =

√

v2
�
+ v2

r
 

(2)
�v�

�t
= �Δv� ,

Fig. 2   Cross-sectional schematic of the experimental system com-
prising a transparent cylindrical tank within a square tank. The wave 
generator is placed above the tank, centered on the axis of rotation. 
The green dashed line shows the approximate position of the horizon-
tal laser sheet in which horizontal wave velocities are measured by 
PIV, viewed via the tilted mirror beneath the experimental tank
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reduces to v�, since radial motion is negligible). Once the 
momentum induced by the rotation of the tank walls is fully 
diffused, we expect the velocity to vanish in the rotating 
frame. As expected, the momentum diffusion time was nota-
bly shorter for a homogeneous fluid (∼2.5 h) than for a strati-
fied fluid (∼15 h). Equation (2) was solved using a classical 
solver, assuming a no-slip boundary condition at the edge 
(r = 0.5 m) and vanishing velocity at the center. The solution 
at r = 29 cm—the radius where the velocity was measured—
is included in Fig. 3a and is in good agreement with the 
measurements for a stratified fluid; viscosity is therefore the 
dominant force that drives the stratified fluid into rotation. 
Furthermore, the stratified experiments confirmed that radial 
velocity is negligible in comparison to the azimuthal 

velocity, which confirms the applicability of Eq. (2). To 
demonstrate the minimal impact of spin-up on the initial 
stratification, Fig. 3b presents an example of a density profile 
before rotation, after spin-up of the table, and after 16 h of 
constant rotation at Ω = 0.125 rad s−1. It is clear that even on 
a timescale much larger than the typical experimental time 
(∼20 min), the variation of N is negligible. We also checked 
that the bending of the isopycnal, due to rotation, was neg-
ligible; at maximum speed (∼0.8 rad s−1), the variation in 
depth over the 50 cm tank radius is smaller than 1 cm. The 
profile is measured at the edge of the tank.

Particle image velocimetry (PIV) was used to measure 
the experimental velocity field. A laser sheet was created by 
passing a 2-W Ti:sapphire laser (Laser Quantum) with a 532-
nm wavelength through a cylindrical lens. The laser sheet 
could be oriented both vertically and horizontally, with the 
former passing through the central axis of the rotation table 
(with visualization taking place through a normal facing side 
of the tank), and the latter requiring visualization through the 
tank base via a 45◦ inclined mirror (see Fig. 2). When the 
laser sheet was positioned vertically, the fluid was seeded 
with a concentration of 3.3 mg L−1 of hollow glass spheres 
(manufactured by Sphericel, with 1.1 kg L−1 density, and 10 μ
m diameter); when the laser sheet was oriented horizontally, 
the fluid was seeded with a concentration of 0.8 mg L−1 of 
silver-coated hollow glass spheres (manufactured by Dantec 
Dynamics, with 1.4 kg L−1 density, and 10 μm diameter). 
Experiments involving a horizontal laser sheet require seed 
particles with more reflectivity given that the scattered light 
has to travel through the 3-cm-thick tank bottom, which 
oftentimes has a layer of sedimented particles above it. The 
CIVx algorithm (Fincham and Delerce 2000) combined with 
UVMAT software1 was used to compute the cross-correlation 
between two successive images, giving, in the case of the 
vertical sheet, the instantaneous vertical and radial velocities, 
and in the case of the horizontal sheet, the instantaneous azi-
muthal and radial velocities. The maximum opening angle of 
the camera relative to the laser sheet was 20◦, which largely 
suppressed parallax. Moreover, a sufficiently high image 
acquisition rate was chosen (∼4 Hz) in order to minimize 
the out-of-plane particle displacement between successive 
images. Images were recorded using a Allied Vision Pike 
F-505 camera (maximal resolution of 2452 (H) × 2054 (V)) 
and 12.5-mm focal lens located at 130 cm from the middle of 
the tank, leading to a 0.36 mm/pixel resolution and a maxi-
mum field of view of 88 × 74 cm2.

Note also that in this paper, we focus on the wave field 
observed around 20 oscillation periods after the wave gen-
erator was started. We checked that at that time, the transient 

(a)

(b)

Fig. 3   a Magnitude of the horizontal velocity of the fluid |vh| (in 
the stratified case, vh ≃ v�) for the flow at radius r = 29 cm while the 
turntable is spun up to a rotation rate Ω = 0.125 rad s−1, for a homo-
geneous (black line) and a stratified (gray line) fluid. In the case of 
the stratified fluid, the measurements are in agreement with the solu-
tion to Eq. (2) (dashed line), which only considers the viscous dif-
fusion of momentum from the sidewalls. b A sample stratification 
measured before rotation, after the turntable has completed its accel-
eration to an angular velocity of Ω = 0.125 rad s−1 in 240 s, and after 
16 h of rotation at constant angular velocity Ω = 0.125 rad s−1; a ver-
tical offset of 5 cm has been introduced between the three profiles to 
aid visual comparison

1  J. Sommeria, LEGI / CNRS-UJF-INPG, http://servforge.legi.greno-
ble-inp.fr/projects/soft-uvmat.

http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat
http://servforge.legi.grenoble-inp.fr/projects/soft-uvmat


Exp Fluids  (2017) 58:143 	

1 3

Page 5 of 14   143 

stage is almost finished and a saturation in amplitude in the 
zone of measurement is observed, while no reflected waves 
coming from the side and/or the bottom appear yet on the 
field of view and disturb the wave field (they appear after 
about 50 oscillation periods).

3 � Analytical model

To investigate the quality of the wave fields produced by 
the wave generator, we consider an axisymmetric model of 
inertia-gravity wave generation and propagation in the pres-
ence of a background stratification, N (z), and background 
rotation, f. In contrast to two-dimensional models, for which 
the horizontal basis functions are naturally Fourier modes 
(Mathur and Peacock 2009), an axisymmetric system is 
characterized by Bessel functions. Figure 4 presents a sche-
matic of the basic geometry of a wave field that originates 
from an axisymmetrically configured generator driven at a 
fixed frequency, �, in a linear stratification (i.e., constant N). 
In such a configuration the inertia-gravity waves are emitted 
at a fixed angle � (defined in Fig. 4) relative to the horizontal 
according to the inertia-gravity wave dispersion relation:

Due to the finite extension of the generator, the energy of the 
wavefield focuses along a conical shape.

(3)�2 = N2 sin2 � + f 2 cos2 �.

3.1 � Governing equations

Following earlier derivations such as in Flynn et al. (2003) 
and Davis and Smith (2010), we begin by directly adopting 
a cylindrical coordinate system to model our experiment. 
Small-amplitude, axisymmetric inertia-gravity waves in a 
viscous, Boussinesq, density-stratified fluid with constant 
background rotation satisfy the following system of govern-
ing equations:

where �(r, z, t) = (vr, v� , vz) is the velocity field with radial 
(r), azimuthal (�) and vertical (z) components, �′ is the per-
turbation to the background density 𝜌̄(z), p is the pressure 
perturbation, N(z)=

√

(−g∕𝜌0)𝜕𝜌̄∕𝜕z is the background buoy-
ancy frequency, �0 is a reference background density and 
f = 2Ω is the Coriolis frequency for a given background 
rotation frequency Ω. Δh represents the vector laplacian pro-
jected in the horizontal (radial or orthoradial) directions, 
while Δz is the vector laplacian in the axial direction.2 We 
assume the absence of any azimuthal variation, i.e., �� ≈ 0;  
this assumption does not prohibit the existence of an azi-
muthal velocity component v�, as will be shown later.

Using the combined equations �tz (4), (5), �tr (6) and (7), 
and eliminating common terms between these four equa-
tions, we obtain3

Furthermore, introducing an axisymmetric stream function 
Ψ that satisfies (8),

(4)�tvr = fv� −
1

�0
�rp + �Δhvr,

(5)�tv� = −fvr + �Δhv� ,

(6)�tvz = −
��

�0
g −

1

�0
�zp + �Δzvz,

(7)�t�
� =

vzN(z)
2�0

g
,

(8)0 =
1

r
�r(rvr) + �zvz,

(9)
�ttzvr − �ttrvz = N(z)2�rvz − f 2�zvr

+ �Δh(�tzvr − �trvz + f �zv�).

Fig. 4   A schematic illustrating the structure of the inertia-gravity 
wave field radiated at a fixed frequency � in a constant N stratifica-
tion, subject to the dispersion relation (3). For an initial forcing of 
finite radius r0, the wave field is expected to primarily reside within a 
ring of width 2r0, with the radius of the ring increasing linearly with 
depth, thereby forming a conical shape. The dashed square illustrates 
the typical location of the field of view (aspect ratio not conserved) in 
our experiments

2  The mathematical expressions for the vector laplacian of X in the 
cylindrical coordinates are 
ΔhX =

�2X

�z2
+

�2X

�r2
+

1

r

�X

�r
−

X

r2
=

�2X

�z2
+ �r

(

1

r
�r(rX)

)

 and 

ΔzX =
�2X

�z2
+

�2X

�r2
+

1

r

�X

�r
.

3  Note that, mathematically �rΔz = Δh�r.
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Eq. (9) becomes

Using the expression of the vector laplacian projected along 
the horizontal direction, one can rewrite Eq. (12)

The linearity of the governing equations allows for particular 
modes to be independently studied. First, we do a Fourier 
transform in time, and consider only harmonic solutions. 
Using the axisymmetry of the experiment, the wave field can 
be expressed, without loss of generality, as the weighted sum 
of an infinite number of Bessel functions of the first kind. 
For the specific problem under consideration, the first-order 
Bessel function, J1, is an eigenmode of the horizontal projec-
tion of the laplacian operator, Δh.

We therefore take Ψ to be a harmonic solution incorporat-
ing a radial first-order Bessel function, J1:

where �(z) is the vertical structure of the wave field.4
Combining Eqs. (10) and (11) with well-known relations 

between Bessel functions and their derivatives, the velocities 
are expressed as:

Note that this choice is consistent with mass conservation, 
since we must have vr = 0 at r = 0.

3.2 � Inviscid solution

In the inviscid case, v� is given by

and Eq. (12) becomes

(10)vr = −
1

r
�z(rΨ),

(11)vz =
1

r
�r(rΨ),

(12)
− �tt

[

�zzΨ + �r

(

1

r
�r(rΨ)

)]

= N(z)2�r

(

1

r
�r(rΨ)

)

+ f 2�zzΨ + �Δh

[

−�tzzΨ − �tr

(

1

r
�r(rΨ)

)

+ f �zv�

]

.

(13)
−�ttΔhΨ = N(z)2ΔhΨ + (f 2 − N(z)2)�zzΨ

+�Δh

[

−�tzzΨ − �tr

(

1

r
�r(rΨ)

)

+ f �zv�

]

.

(14)Ψ(z, r, t) = �(z)J1(kr) exp(−i�t),

(15)vr = −� �(z)J1(kr) exp(−i�t),

(16)vz = k�(z)J0(kr) exp(−i�t).

(17)v� =
−if

�
� �(z)J1(kr) exp(−i�t),

For a constant stratification (i.e., N(z) = N0), the solution of 
this equation is proportional to exp(imz), with the vertical 
wavenumber m satisfying the dispersion relation:

We note that Eq. (19) corresponds to the dispersion relation 
in Eq. (3), where � = arctan(k∕m). Thus, the general solution 
for Eq. (12), in the inviscid limit, is of the form:

where Ψ0 is a constant wave amplitude.

3.3 � Weakly viscous solution

In our experiments, viscous effects are small but not 
entirely negligible. The following derivation takes viscos-
ity into account at first order in 𝜖 = 𝜈k2∕𝜔 ≪ 1. Since v�,  
described at order zero by Eq. (17), appears only at first 
order in Eq. (12), incorporating a viscous correction in v� 
would yield an unnecessary second-order correction. It is 
thus sufficient to keep v� at zero order (without a viscous 
correction) via Eq. (17).

Inserting Eq. (14) into Eq. (12) and using Eq. (17) for v� 
yields the fourth differential equation

Equation (18) is the limiting case (� = 0) of Eq. (21).
For a constant stratification (N(z) = N0) and in the pres-

ence of weak viscosity, the modal solutions have the approx-
imate form

where

m is the inviscid vertical wavenumber given by (19), and m� 
is a weakly viscous correction. The explicit expression for 
this term is

Such a correction of the dispersion relation due to viscosity 
is already known for plane waves (Lighthill 1978). From 

(18)� ��(z)(−�2 + f 2) + �(z)k2(�2 − N(z)2) = 0.

(19)m(k,�) = ± k

(

N2
0
− �2

�2 − f 2

)1∕2

.

(20)Ψ = Ψ0 exp(imz)J1(kr) exp(−i�t),

(21)
� ����(z)i�

[

� −
f 2

�

]

+ �(z)k2[�2 − N(z)2 + i��k2]

+� ��(z)

[

−�2 + f 2 − i�k2
(

2� −
f 2

�

)]

= 0.

(22)Ψ = Ψ0 exp(iz)J1(kr) exp(−i�t),

(23)(k,�) = m(k,�) + �m�(k,�),

(24)m
�(k,�) = ±i

k

2

N2

0
(N2

0
− f 2)

(�2 − f 2)(N2

0
− �2)

√

N2

0
− �2

�2 − f 2
.

4  The choice of the first-order Bessel function, combined with 
expression (14) leads to ΔhΨ = −k2Ψ + �zzΨ.
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expression (24), we can compute that for all the experi-
ments to be compared with the model, the typical viscous 
dissipation length is generally of the order of a few meters, 
therefore we can conclude that viscous effects do not play a 
major role in these experiments. For this reason, we use the 
inviscid model in what follows.

3.4 � General solution

The modal solutions presented in Sect. 3.2 enable a stand-
ard procedure to predict the entire wave field in an experi-
mental domain, using its radial structure at a given depth 
as a boundary condition. From a time series of the verti-
cal velocity at a given depth (which we take to be z = 0), 
one computes the Fourier transform in time and the zeroth-
order Hankel transform in the radial direction; this transform 
gives a measurement of the amplitude of each temporal and 
spatial mode, which we will denote Ψ̃k,𝜔(z = 0). Note that 
we use the time series of the vertical velocity component, 
rather than the radial velocity component, in order to obtain 
a direct measurement of � (see Eq. (16)). One should note 
that such decomposition in axisymmetric modes is mathe-
matically identical to the decomposition of two-dimensional, 
vertically confined internal waves. In the axisymmetric sce-
nario, the confinement is imposed by vr = 0 at r = 0 and 
r = ∞. The radial velocity of a general axisymmetric wave 
field can therefore be decomposed into an infinite sum of 
first-order Bessel functions.

In the case of a constant stratification, which is the sce-
nario we consider in this paper, the solution is given by the 
vertical propagation of each mode Ψ̃k,𝜔 according to Eq. 
(18), yielding

More generally, in an arbitrary stratification, each mode 
Ψ̃k,𝜔(z) propagates according to Eq. (18) and the formal 
solution is:

4 � Results

We investigated two different types of forcing: one with a 
radial profile of a Bessel function, and a second type of forc-
ing mimicking an axisymmetric bump, which we refer to as 
a bourrelet configuration. As we have shown in the previous 
section, the first configuration, that of the Bessel function, 
is a natural mode to describe axisymmetric wave fields. The 
second configuration, i.e., the bourrelet, enables geometric 

(25)

Ψ(z, r, t) = ∫ kdkd𝜔Ψ̃k,𝜔(z = 0) exp[im(k,𝜔)z]J1(kr) exp(−i𝜔t).

(26)Ψ(z, r, t) = ∫ kdkd𝜔Ψ̃k,𝜔(z)J1(kr) exp(−i𝜔t).

focusing which has the propensity to yield intriguing non-
linear effects.

4.1 � Bessel function forcing

This configuration aims at reproducing a zeroth-order Bessel 
function for the vertical velocity, although the finite extent of 
the generator naturally results in a mildly truncated Bessel 
function. To keep the spatial scale large enough that viscous 
effects are weak, we chose to reproduce the Bessel func-
tion over one and a half “wavelengths”; Fig. 5 shows the 
amplitude and phase designated to each ring. The profile 
was scaled with an amplitude of 15 mm for the center ring.

Cross sections of the vertical and radial velocity com-
ponents of the wave field, obtained in the vertical plane 
containing the central axis of the generator (r = 0), are pre-
sented in Fig. 6. The symmetry and antisymmetry of the 
respective vertical and radial velocity fields, with respect to 
the r = 0 centerline, as reflected in Eqs. (15) and (16), can 
be clearly observed. Along the r = 0 centerline, the vertical 
velocity is a decaying sinusoid, as expected for an outward 
propagating Bessel function. Outside of the central region 
of the domain, the wave field is oriented at an angle � with 
respect to the horizontal. This clearly defined angle is a sign 
of temporal monochromaticity, which is further confirmed 
by the frequency spectrum of the wave field (presented in 
Fig. 7a). One must note that, as shown in Fig. 4, the experi-
mental field of view captures only a narrow region near the 
top of the cone. For this reason, the decay in z on the cen-
tral axis, due the spreading of the wave along the cone, is 
barely observable. It can be, however, seen at depths below 
z ≃ −50 cm.

Fig. 5   Amplitudes and phases of the cams for the Bessel func-
tion configuration. The dashed orange line represents the Bessel 
function used to calculate the plate amplitude with a wavenumber 
kgen = 42 m−1
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From snapshots of the wave field, we can confirm the 
expected dispersion relation (3) for the generated waves. 
With N and f known, the angle � can be extracted directly 
from the velocity snapshots by plotting the iso-phase lines, 
while � can be confirmed by obtaining a temporal Fourier 
spectrum from the time histories, such as that presented in 
Fig. 7a. As shown in Fig. 7b, the measured tan � quantity, 
determined using spatial images like those shown in Fig. 6, 
and the expected tan � quantity, determined via the disper-
sion relation given by Eq. (19), are in excellent agreement 
across a wide number of experiments with varying values 
of �∕N and f / N. As such, we conclude that the wave field 
produced by the generator is indeed propagating according 
to the linear inertia-gravity waves dispersion relation. Such 
result was expected since the dispersion relation in rotat-
ing and stratified fluid was previously checked by Peacock 

and Weidman (2005) when studying waves generated by a 
vertically oscillating sphere.

Next we consider the horizontal structure of the wave 
field, with the goal of checking the axisymmetry, as well 
as the existence of an azimuthal velocity component; the 
experimental setup allows for such observations through 
the use of a 45◦ mirror. Figure 8 presents velocity field 
measurements obtained in a horizontal plane 10 cm below 
the generator. As expected, the velocity field is indeed 
quite axisymmetric, although with some minor imperfec-
tions. In the non-rotating case, the azimuthal velocity is 
negligible, whereas in the rotating case it is well estab-
lished, as predicted by Eq. (17). Comparing Fig. 8a, c, 
one can also observe that the radial decay appears stronger 
in the non-rotating case; this is due to the more shallow 
propagation angle of waves in the rotating case, which 

Fig. 6   PIV images of the a 
vertical and b radial velocity 
fields for a wave field radiat-
ing from a generator (located 
at z = 0 and centered at r = 0) 
configured with the Bessel func-
tion form presented in Fig. 5: 
kgen = 42 m−1, a = 15 mm for 
the center ring, �∕N = 0.79 and 
f∕N = 0.2

(a) (b)

(a) (b)

Fig. 7   a Temporal Fourier transform of the radial velocity, meas-
ured in a vertical plane (for the same wave shown in Fig.  6) over 
500 images, corresponding to a 250-s time window. The dashed line 
represents �∕N = f∕N = 0.2. b A comparison of the direct measure-
ment of tan � from spatial images like those shown in Fig. 6, and the 

expected values of tan � using the dispersion relation (19); the value 
of �∕N used for each experiment is indicated next to each data point. 
The solid, dotted and dashed lines plot the dispersion relation (3) for 
�0∕N = 0.48, 0.6 and 0.79, respectively. The larger blue circle in b 
shows the experiment of Figs. 6 and 10
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results in a larger overlap between the intersecting image 
plane and the wave cone.

In further assessing the Bessel-function nature of the radi-
ated wave field, we note that the forcing was actually not a 
true Bessel function, but rather a truncated Bessel function 

due to the absence of experimental forcing for r > 20 cm. 
To investigate the effect of this truncation, we compared the 
zeroth-order Hankel transform of the wave generator profile 
and the radial profile of a typical experiment, the result of 
which is presented in Fig. 9. The zeroth-order Hankel trans-
form of a pure Bessel function is simply an isolated peak 
at kgen, whereas truncation of the Bessel function beyond 
the first couple of wavelengths introduces several secondary 
peaks while maintaining a dominant peak around kgen in the 
corresponding zeroth-order Hankel transform. The zeroth-
order Hankel transform of the experimental radial profile of 
vz at z = −10 cm displays the same characteristics associ-
ated to the truncated Bessel function, with particularly nice 
agreement at the primary peak closest to kgen. The two peaks 
at k < kgen are also present, although with smaller amplitudes 
compared to the theoretical peaks. Interestingly, the trans-
form of the experimental profile does not show any peak 
around k = 500 m−1 (not shown in the figure), which cor-
responds to the thickness of the individual rings that make 
up the wave generator. This confirms that the discretization 
of the forcing profile via plates of finite thickness has neg-
ligible impact on the generated wave field, in line with the 
findings of Mercier et al. (2010). This is also expected, due 
to the fact that the viscous attenuation of high wavenumber 
components of the waves is much stronger.

We now use the procedure described in Sect. 3, in par-
ticular Eq. (25), to make direct comparisons between our 
axisymmetric model and experiments. To begin, we recorded 
a time series of the vertical velocity at a depth 10 cm below 
the generator. This particular depth was chosen because it 
was not too far from the generator while close enough to pro-
vide reliable measurements. Closer to the generator the wave 
cone is not as clean because of the mixing and mean cur-
rent induced by the motion of the generator. For modeling 
purposes, the experimental field at this depth was used as 
boundary condition to solve Eq. (25), giving access the theo-
retical wave field at all depths below this level. Figure 10 
presents a comparison of the experimental and theoretical 
velocity fields in a vertical plane. Overall, the analytical 
solutions compare very favorably to the experimental obser-
vations, except for small-scale features which we attribute to 
measurement noise in the experimental data. More detailed 
comparisons involving velocity field profiles are presented 
in Fig. 11, which plots radial profiles of the radial and verti-
cal velocity envelopes obtained at depths z = −20,−30,−40 
and −50 cm. There is, as expected, a very close match at 
z = −20 cm, which is the profile positioned closest to the 
wave generator. We observe consistently good agreement 
between theory and experiment over the four depths stud-
ied, with one notable difference being the prediction of the 
vertical velocity near the centerline at z = −30 cm. There are 
several possible reasons for this observed difference, includ-
ing a slight non-axisymmetric nature of the experimental 

(a) (b)

(c) (d)

Fig. 8   Wave field velocities in the horizontal plane at z = 10 cm; the 
wave generator, forcing at �∕N = 0.5, is centered at (x, y) = (0, 0) cm. 
The left and right columns depict the radial and azimuthal velocity 
fields, respectively; panels a, b have no rotation, whereas c, d corre-
spond to f∕N = 0.3. The area shaded black is external to the experi-
mental cylinder

Fig. 9   Zeroth-order Hankel transform of the truncated Bessel func-
tion used for the wave generator profile (dashed-dotted blue line), 
and the radial profile of the vertical velocity at z = −10 cm (solid red 
line). The black dotted line shows the value kgen of the Bessel func-
tion used to set the wave generator profile
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wave field due to an offset of the generator or a weak back-
ground flow, whether naturally present in the rotating tank 
or induced by the forcing of the generator.

Lastly, we investigate the efficiency of the wave genera-
tor in transmitting waves to the fluid bulk. This efficiency 
can be defined as the ratio between the induced wave verti-
cal velocity vz(z0), measured at a given depth z0, and the 
imposed generator vertical velocity amplitude a�, where a 
is the generator Bessel amplitude a. In order to neglect vis-
cous damping, measurements were obtained at depth z0 = −

5 cm, the closest position where we could obtain reliable 
PIV data. Based on the computation of the viscous correc-
tion m� expressed in Eq. (24), most data points in this meas-
urement are unaffected by viscous effects, except the points 
at lowest frequency �∕N (below 0.4), which can explain the 
relative decrease of efficiency (compared to the theoretical 
curves) for these data points. Our results are presented in 
Fig. 12 as a function of forcing frequency for three differ-
ent background rotation rates. At constant f, the efficiency 
increases with �, related to the fact that the waves are more 
vertical and therefore more aligned with the motion of the 
generator rings. At constant �, the efficiency decreases with 
background rotation. An increase in the background rotation 

Fig. 10   Experimental measure-
ments of the vertical (a) and 
radial (c) velocities in a vertical 
plane passing through the 
central axis of the generator. 
b, d Corresponding theoreti-
cal predictions using Eq. (25). 
The generator is set as a Bessel 
function, with �∕N = 0.79 
and f∕N = 0.2. Dashed lines 
represent the vertical levels used 
to plot the amplitude envelopes 
presented in Fig. 11. The gen-
erator is located at z = 0

(a) (b)

(c) (d)

Fig. 11   Comparisons of experimental and theoretical velocity ampli-
tude envelopes (defined as v∗ to differentiate them from the veloc-
ity itself) of vertical and radial velocities, at z = −20,−30,−40, and 
−50 cm (for the experiment shown in Fig. 10). Data have been nor-
malized by the peak amplitude at z = −10 cm. Solid and dashed lines 
represent theoretical and experimental velocities, respectively
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rate yields a stronger azimuthal velocity field (as observed in 
Fig. 8d), and the accommodation of v� subsequently weakens 
the other two velocity components, vr and vz, thereby dimin-
ishing the efficiency of the wave generator. We note that the 
azimuthal velocity field is not imposed by the generator, but 
rather is induced by the external rotation. For an imposed 
vertical velocity a�, the maximum vertical velocity compo-
nent as a function of f and � is

From Fig. 12, we see that the measured efficiencies are 
consistently less than the maximum attainable efficiencies 
given by Eq. (27). Moreover, the difference between the two 
increases with growing background rotation, which is to be 
expected given how the experimental velocity field must 
adjust to accommodate an induced azimuthal component.

4.2 � Le bourrelet forcing

For our second experimental study, we considered the con-
figuration of the generator shown in Fig. 13a, in which the 
excitation is localized over four of the outer rings. This 
arrangement was chosen in order to produce a localized 
wave cone focused onto the central axis. Figure 13b shows 
that a generated wave cone will be subject to a large increase 
in intensity thanks to geometric focusing. It thus provides a 
novel way to create a controlled, intense, localized wave field 
that is the axisymmetric analog of the wave fields that have 
been studied by looking at colliding internal wave beams 

(27)Vz,max = a�

√

�2 − f 2

N2 − f 2
. (Teoh et al. 1997; Smith and Crockett 2014). While similar 

experiments have been performed using a vertically oscil-
lating torus (Duran-Matute et al. 2013), our setup allows for 
more controlled wave generation with respect to shape and 
amplitude.

Figure 14a, c presents the vertical and radial velocities 
of the wave cones emitted from the bourrelet arrangement; 
corresponding analytical solutions are presented in Fig. 14b, 
d, respectively, following the same procedure described in 
Sect. 4. The spatial frequencies of the bourrelet is shown 
in Fig. 15. We observe good agreement between the spatial 
frequencies of the bourrelet forcing and the vertical veloc-
ity field transmitted at z = −10 cm. As in the Bessel mode 
case, the wave generator successfully forms and transmits 
the desired wave structure. Because of the bourrelet focus-
ing that takes place, we expect nonlinear effects to appear. 
Indeed, in the highlighted dashed region, the theoretical 
solution, which does not take nonlinear effects into account, 
differs significantly from the experimental wave field (see 
Fig. 14c), where small-scale structures can be observed in 
the focal region. The actual study of this instability is, how-
ever, beyond the scope of this article.

Fig. 12   Measurements of wave generator efficiency vz(z0)∕a� as a 
function of forcing frequency for three different background rotation 
rates. The solid lines represent Vz,max∕(a�)

(a)

(b)

Fig. 13   a Amplitudes and phases of the cams for the wave generator 
set as a bourrelet. b Schematic of the wave emitted from a bourrelet 
and focus area where the amplitude of the wavefield is increased by 
geometric focusing
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5 � Conclusion

Starting with the internal wave generator of Gostiaux et al. 
(2006), we advance the design by converting the plates 
into rings in order to generate axisymmetric inertia-gravity 
waves. Unlike other axisymmetric wave generation stud-
ies (Duran-Matute et al. 2013; Le Dizès 2015), this system 
allows us to generate a controlled wave form by adjusting the 
amplitude and the offset of each cylinders. Starting with the 
decomposition of an axisymmetric internal wave field into 
its constituent Bessel modes, we model the linear propaga-
tion of the waves. We demonstrate the ability of the genera-
tor to produce two qualitatively different types of axisym-
metric waves. The first is a truncated Bessel function for 
which PIV measurements in a horizontal and vertical plane 

were successfully collected. We demonstrate the quality of 
the wave generation in both a rotating and a non-rotating 
case. Moreover, we confirm the dispersion relation for 
various forcing and rotation frequencies, and we compare 
the emitted field with theory. The model and experimental 
wave fields are found to be in excellent agreement with the 
measured velocities. We also investigate the efficiency of the 
wave generator and find it to be operating reasonably close 
to maximum efficiency, with the exact degree of efficiency 
dependent on the external rotation rate.

The second configuration, which we name le bourrelet, 
highlights the possibility of generating unique axisymmetric 
wave structures. One key feature of the bourrelet is wave 
focusing. We show experimentally that, as wave focusing is 
established, the amplitude increase leads to wave instability.

Among the rich wave configurations and interactions 
offered by this new wave generator, some have caught our 
attention. To our knowledge, there is no mathematical 
description of internal wave instabilities in an axisym-
metric context. Notably, the triadic resonant instability 
description would be challenging, as spatial resonance 
conditions are more complex when taking into account 
Bessel functions instead of plane waves. Our device is 
an interesting tool to emit a controlled Bessel mode and 
to study such kind of instability in an axisymmetric con-
text, as was done previously with plane waves (Bourget 
et al. 2013; Ghaemsaidi et al. 2016; Maurer et al. 2016). 
Future work could reproduce an axisymmetric “storm-
like” forcing at the surface, to mimic the action of a storm 
on the ocean, which could subsequently yield experimen-
tal insight into wave propagation and mixing in a highly 
relevant geophysical context. The role of rotation in the 
propagation and mixing processes can also be investigated 
in our setup, leading to geophysically relevant, complex 
experiments. Secondly, the bourrelet configuration shows 

Fig. 14   Experimental measure-
ments of the a vertical and c 
radial velocities in a vertical 
plane passing through the 
central axis of the genera-
tor. The generator is centered 
at (z, r) = (0, 0) and set as a 
bourrelet, with �∕N = 0.85 
and f∕N = 0.2. The dashed 
square highlights the area where 
nonlinear effects are apparent. 
Corresponding linear predic-
tions obtained using Eq. (25) 
are shown in panels b and d 

(a) (b)

(c) (d)

Fig. 15   Hankel transform (zeroth-order) of both the vertical velocity 
profile at z = −10  cm (the location of the radial profile is shown in 
Fig.  14b by a dotted line) and the corresponding theoretical profile 
(derived from the ring arrangement shown in Fig. 13a)
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an interesting geometric focusing of a wave field that can 
be made more intriguing by altering the profile of the 
background stratification. For example, a non-uniform 
stratification can be used, where N changes with z, to tune 
the vertical transport of energy; the group velocity, which 
coincides with energy transmission, vanishes at z0, where 
N(z0) = � (Paoletti and Swinney (2012). If the geometric 
focusing takes place at the same depth z0, we expect a 
significant accumulation of energy and the formation of a 
localized, highly nonlinear phenomenon (Maurer 2017).
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