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Succession of Resonances to Achieve Internal Wave Turbulence
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We study experimentally the interaction of nonlinear internal waves in a stratified fluid confined in a
trapezoidal tank. The setup has been designed to produce internal wave turbulence from monochromatic
and polychromatic forcing through three processes. The first is a linear transfer in wavelength obtained by
wave reflection on inclined slopes, leading to an internal wave attractor which has a broad wave number
spectrum. Second is the broadbanded time-frequency spectrum of the trapezoidal geometry, as shown by
the impulse response of the system. The third one is a nonlinear transfer in frequencies and wave vectors via
triadic interactions, which results at large forcing amplitudes in a power law decay of the wave number
power spectrum. This first experimental spectrum of internal wave turbulence displays a k= behavior.
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Internal gravity waves propagate within density stratified
fluids moving under the influence of buoyancy forces [1].
Recently, they have been actively studied in particular
because of their importance to mixing and transport in the
ocean. For example, a coordinated observational campaign
has been performed in the South China Sea [2], which is
well known to contain breaking internal waves with
amplitudes up to 200 m. Their generation through the
interaction between tides and bathymetry [3], their propa-
gation and instability [4], and their interaction with oceanic
currents are just some of the outstanding dynamics being
observed. In particular, the study of mixing by breaking
internal waves is relevant for the understanding of bio-
logical processes such as the vertical redistribution of
zooplankton from the deep ocean [5] and the regeneration
of the coral reef of Dongsha Atoll [6].

In the nonlinear regime, stratified fluid systems may
develop turbulence simultaneously due to waves and
vortices [7]. Describing the coexistence of each process
is a challenge in itself. If stratified turbulence has been
actively studied (see Ref. [8], and references therein), wave
turbulence for internal waves is a relatively unexplored
phenomenon. Wave turbulence describes physical systems
with a large number of dispersive and nonlinear interacting
waves [9] and has been applied to gravity [10], capillary
[11] and inertial waves [12,13], as well as waves in
magnetized fluids [14] and in elastic plates [15]. New
applications have recently emerged in condensed matter
(superfluid helium and Bose-Einstein condensates), in
nonlinear optics [16], and, most recently, in the study of
gravitational waves in the early Universe [17]. Internal
waves are distinct from these waves [18], owing to their
unusual dispersion relation. In this Letter, we present an
experimental setup that allows us to observe efficient
nonlinear energy transfers in frequency and wave number
and so determine the signature of internal wave turbulence.
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The experimental setup, sketched in Fig. 1(a), is a confined
trapezoidal domain filled with a linear stratified fluid of
density p(z), in which z is the vertical coordinate. Introducing
the gravity g and a reference density p,, the strength of the
stratification is characterized by the buoyancy frequency

N = \/=(g/pret)Op/ Oz. In all the experiments, this is of the

order 1 rad/s. The energy is injected at large scale by means
of a vertical boundary oscillating horizontally around its
midhorizontal axis, with a half cosine shape a(7) cos (rz/H),
in which a() is the maximum horizontal displacement and H
is the depth. The volume is thus kept constant. The classical
experiments are performed with a quasimonochromatic
forcing, a(t) = ag sin(wt). Here, we also examine impulsive
and polychromatic forcings. The resulting velocity fields are
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FIG. 1. (a) Experimental setup with the generator on the left of
the tank and a slope inclined with an angle @ on the right. An
example of ray tracing from a single point located on the left-hand
wall and corresponding to an oscillation at a given frequency
@ = £Nsin @ is shown in the case of a linearly stratified fluid
with constant N value. (b) Schematic reflection on a slope of an
incident internal gravity beam (blue) with two wavelengths 4 in
the transversal direction. The reflected beam does not follow the
Snell-Descartes prediction (dashed red) but keeps the same angle
with respect to the horizontal, or with the gravity g, as shown by
the green beam.
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measured using the classical particle image velocimetry
method.

The dispersion relation of internal waves, = N sin ||, is
such that the frequency w sets the angle 8 of propagation of
internal wave beams and also the ratio of the horizontal to
vertical wave number. Reflections of internal waves on
vertical or horizontal walls are analogous to optical reflec-
tion, preserving the angle with respect to the normal of the
boundary. On the contrary, reflection on a slope interestingly
leads to a ray with the same angle with the horizontal as the
incident ray (in absolute value); this is a simple consequence
of the preservation of the frequency w after reflection with the
dispersion relation. Figure 1(b) shows that this simple
mechanism is even more interesting when considering a
beam since both its width and its wavelength are reduced
after reflection (notice that, for internal waves, the wave
vector is orthogonal to the ray). As the group velocity is
proportional to the wavelength, energy conservation leads to
efficient energy focusing of the beam.

After multiple reflections, internal waves generated at a
given frequency concentrate on a closed loop [19,20], as
illustrated by a single ray traced in Fig. 1(a). The shape and
rotational direction of the so-called internal wave attractor
(IWA) are independent of the initial emitting point and thus
of the spatial structure of the forcing. The IWA can be seen
as a limit cycle, a prominent word in nonlinear physics,
which arises from linear theory. Different angles of
propagation set by different forcing frequencies lead to
different attractors with simple or more complicated
shapes: the dashed lines in Figs. 2(a)-2(f) present a few
(m, n) theoretical attractors, with m reflections on the top
and n reflections on the slope.

Because of viscosity, IWAs have finite width as a
consequence of the balance between focusing and dissi-
pation as shown in Figs. 2(a)-2(f) [24,25]. The energy
concentration, which is large just after focusing upon
reflection from the slope, is progressively dissipated along
the length of the attractor before being focused again by the
slope. Recent experiments of IWA in two nontrivial three-
dimensional setups [26] have additionally shown that this is
more than a beautiful mathematical curiosity.

It is important to emphasize that this energy focusing
with corresponding transfer to small scales arises from
linear theory. This is the first important ingredient in the
context of wave turbulence as it increases the number of
waves with different wave numbers in interaction.

Owing to energy focusing, the reflected beam has a
larger amplitude and is therefore more prone to reach the
threshold for triadic resonant instability (TRI) [4,27,28]: a
beam with primary frequency w and wave vector k can
excite from background noise two subharmonic waves with
frequencies w,. and wave vectors k,, satisfying the
temporal and spatial resonance conditions @ = o, + @_
and k =k, + k_. Any subharmonic may also become
unstable through TRI and/or interact with another
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FIG. 2. (a)—(f) Spatial patterns obtained after an initial impul-

sive kick when the experimental signal is filtered around different
frequencies shown with symbols in (h). One recovers (1,1)
attractors (a)—(c) and (2,1) attractors (d)—(f). The theoretically
expected attractors for the geometry and corresponding frequen-
cies are depicted with the dashed line. (g) In gray scale, Lyapunov
exponents of the trapezoidal domain in the inviscid limit (from
Ref. [21]) as a function of the geometry [1 — (2H/L) tan a] and
of the forcing [(2H/L)+/(N/w)* — 1] which is decreasing while
increasing the frequency. White regions correspond to strongly
convergent attractors. (h) Energy spectrum measured experimen-
tally via particle image velocimetry after an initial kick of the
generator for a = 15.5° Vertical colored bands emphasize
the theoretical frequency bands of internal wave attractors in
the stationary regime. The same spectra for a = 0° 11.1°, 15.5°,
and 21.4° are superimposed on (f) as colored vertical lines,
from right to left (corresponding graphs are presented in the
Supplemental Material [22])

preexisting wave to generate a third one, the latter process
being without any amplitude threshold. One thus obtains a
necessary ingredient for wave turbulence: a physical
mechanism providing multiple nonlinear interactions
between waves of various wavelengths and frequencies.

Kicked attractor experiment.—Before building on this
method to achieve internal wave turbulence, we consider
the special case of transient impulsive forcing by analogy
with musicians striking a tuning fork that resonates at a
specific constant pitch.

If the internal wave generator is set into motion with
time-dependent amplitude a(¢), which is nonzero in a short
interval 6t < 27/ N, then a broad frequency spectrum will
be simultaneously excited. We then consider the impulse
response of the trapezoidal domain.

Additionally, plotting the Lyapunov exponent quantifies
the exponential divergence of rays issued from close initial
points. Figure 2(g) presents the theoretical prediction [21]
in the inviscid limit. White tongues correspond to domains
of existence of the different (m,n) attractors.
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The impulse response of the different experiments is
analyzed by considering the frequency content of the kinetic
energy, E,(w) = [[|a(x, z, )[> + |W(x, z, ) |*|dxdz, com-
puted from the Fourier transform of the two components of
the velocity field and integrated over the (x, z) plane. Such
energy spectra probe complete vertical lines in Fig. 2(g). In
the absence of any inclined slope (@ = 0), when the geometry
is 1 in Fig. 2(g), one gets a set of well-peaked discrete modes
as shown by the rightmost vertical line (see the energy
spectrum in the Supplemental Material [22]). This is
expected because attractors, which require a sloping boun-
dary, cannot exist in a rectangular domain. One thus recovers
the discrete set of resonance frequencies of the rectangle. The
width of these peaks observed experimentally is due to
viscous effects. On the contrary, for nonzero «a, Fig. 2(g)
shows that discrete modes are replaced by vertical bands
located within the domain of existence of the different IWAs.
These bands of peak energy are plotted in Fig. 2(h) fora given
geometry. Filtering the velocity field at given frequencies
allows us to disentangle the different responses to the initial
impulsive kick. Figures 2(a)-2(f) present different attractors
that appear when the signal is filtered around frequencies
belonging to the (1,1) and (2,1) tongues of Fig. 2(a). Note that
only IWAs with short perimeters (i.e., with small m and n
values) are visible in the presence of damping.

Introducing a slope therefore modifies the usual picture of
a wave operator with discrete eigenmodes to some continu-
ous spectrum, and understanding the linear response of these
systems is a nontrivial question [29]. By taking advantage of
such frequency band within one of the tongues we can
efficiently force the system in a polychromatic way, thus
increasing the number of waves in interaction. As almost
all regions of the physical domain will be covered by an IWA,
this characteristic also allows us to inject energy rather
homogeneously. Both properties are beneficial in the study of
wave turbulence.

Beyond the linear regime.—We first consider the tran-
sition to nonlinear dynamics resulting from monochromatic
forcing a(t) = ay sin(wqt). Inspired by the transition to wave
turbulence observed numerically in harmonically forced
elastic plates [30], the amplitude of the generator a is
gradually (from 2 to 10 mm) and slowly (over 750 oscillating
periods) increased, as shown in Fig. 3(a). The frequency has
been chosen within the (1,1) tongue. The velocity field,
whose horizontal component is presented in Figs. 3(b)-3(d)
at three different times, is analyzed with the time-frequency
function, S,(t, @) = (| [T dfh(t — )e ul? + | [+
dt'h(t — ¢')e w|?), ., which is plotted in Fig. 3(e). The
function 4 is a Hanning window of 807. This time window
is wide enough to resolve subharmonic frequencies and
narrow enough to consider forcing amplitude constant within
its duration (increase of 0.85 mm). The horizontal dark red
line at /N = 0.62 in Fig. 3(e) corresponds to the forcing
frequency. One distinguishes several different regimes: the
linear regime [Fig. 3(b)] with a monochromatic response
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FIG. 3. (a) Amplitude ramp (red) and horizontal velocity
component u(x, z,) measured in a point at the center of the
red square shown in (b). (b)—(d) Three snapshots of the horizontal
velocity fields (in mm/s) measured when a =2.5, 5.1, and
7.8 mm. e) Time-frequency diagram S, (7, ) of the velocity
field of the red square domain (in logarithmic scale). a = 21.4°,
L = 1328 mm, N = 0.7 rad/s, and wy/N = 0.62.

leading to a well-defined single attractor. Figure 3(c) corre-
sponds to a TRI-perturbed IWA: the two subharmonic waves
(around w_/N = 0.25 and w, /N = 0.37) apparent at this
time in Fig. 3(e) clearly satisfy the temporal resonance
condition with w,. We also observe @y + w_ and
w( + w., the signatures of the interaction of these subhar-
monics with the attractor. The third and turbulentlike regime
[Fig. 3(d)] is characterized by a broadband Fourier spectrum
and a spatial pattern in which no single IWA is evident. When
the amplitude is further increased, the enrichment of the
spectrum is progressive, contrary to numerical simulations of
the elastic plates [30]. Although some peaks are still visible at
large forcing (especially at the forcing frequency), a con-
tinuous spectrum is nonetheless established. We estimate
(see Supplemental Material [22]) that the nonlinear inter-
action between waves typically occurs at a timescale 1-10
times larger than the linear one, thus leading to a strong wave
turbulent regime.

Spatial spectra.—Figure 4(a) presents the evolution of
the wave number power spectrum E (k) = k[{|2(k, 0,1)|* +
W(k,0,1)[*)g,]/ A as the forcing amplitude is gradually
increased. Here, k = |Kk| is the wave number, A is the area of
the trapezoidal domain, and # and W are the Fourier trans-
forms of the components of the velocity field. To improve the
signal-to-noise ratio, the spectrum has been averaged over all
angles 6 and over many forcing periods, as indicated by (-),.
The analysis has been performed only on the low frequency
band (i.e., w < N), where propagative waves are predominant
(see Ref. [31] and Fig. 7 in the Supplemental Material [22]).
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In the linear regime, IWAs have been shown to have an
exponential power spectrum Ejexp(—pk), when dissipa-
tion due to the lateral walls dominates that of the bulk [24].
This behavior is indeed observed at small amplitude
(a = 2 mm), as shown by the thick dash-dotted blue line.
When a is slightly increased, the attractor is destabilized by
TRI and a small peak is visible around k = 150 rad/m,
corresponding to a 4 cm wavelength. Such subharmonic
waves have a wavelength smaller than the typical width of
the attractor [4]. Further increasing a, the peak not only
moves toward smaller values of k but also widens.

This first observation can be explained as the coupling
between the spectral energy transfer due to the linear
focusing and the one due to nonlinear interactions. The
energy focusing is now balanced both by dissipation and by
extraction via TRI leading to a wider beam within the IWA.
The primary wave, having a larger wavelength, generates
secondary waves with larger wavelengths as well (see
Supplemental Material [22]). Moreover, because their
group velocity ¢, = Ncos@/k is larger, subharmonic
waves rapidly fill the whole tank.

At large forcing, these different ingredients lead to a
richer spectrum that is compatible with a power law decay
E; ~ k73, as shown in Fig. 4(a). The same exponent has
been obtained in various numerical simulations with differ-
ent forcing mechanisms [32,33].

We have gone on to examine these analyses for experi-
ments with different forcing and geometrical parameters.
We have studied a strongly focused IWA that corresponds
to a larger Lyapunov exponent than for the weakly focused
IWA shown in Fig. 4(a). Taking advantage of the band
structure revealed in the kicked attractor experiment, we
also forced the stratified fluid via a white noise filtered in
the frequency range of the (1,1) attractor shown in Fig. 2(h).
In both cases, the exponent —3 is robust, as shown in
Fig. 4(b).

Conclusion—We have performed the first experimental
measurements of internal wave turbulence. The trapezoidal,
stably stratified domain is a robust experimental setup to
study nonlinearly interacting internal waves. Different
forcings, whether monochromatic or frequency modulated,
lead to a power spectrum with a well-defined power law.

Future work will focus on examination of the frequency
spectra. For frequencies below the buoyancy frequency N,
one expects a w2 spectrum similar to the Garrett and Munk
spectrum of observed oceanic internal waves [34]. This is
often used as a representative statistical description of the
internal wave field in studies of nonlinear interaction,
despite only an approximate description. For frequencies
above N, a steeper @~ spectrum has been recently reported
in numerical simulations [35]. Whether or not both spectra
are manifest in experiments remains an open question. To
be closer to oceanic circumstances, experiments are being
designed with a less constrained geometrical setup that
would allow for three-dimensional dynamics.
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FIG. 4. (a) Power spectral density E,(k) = k[(|@i(k, 0,1)|> +
[W(k,0,1)|*)s,]/A as a function of the wave number k for the
experiment shown in Fig. 3. The spatial Fourier transform of the
components of the velocity field & and W are computed using a
Hanning window. The different curves correspond to an increase
of the amplitude a from 2 to 10 mm (that lasts for 750 periods),
with an average over 35 forcing periods for each curve. The thick
dash-dotted blue line corresponds to a fit, whose exponential
shape is predicted for a linear IWA. (b) Stationary spectrum
averaged over 100 periods for different forcings. The different
experimental parameters are given in the Supplemental Material
[22]. In both panels, the dashed line shows the power law
Ey~k™3. k; ~60 rad/m is taken in the center of the inertial
range.
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