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Puzzling Bubble Rise Speed Increase in Dense Granular Suspensions
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We present an anomalous experimental observation on the rising speed of air bubbles in a Hele-Shaw
cell containing a suspension of spherical, neutrally buoyant, non-Brownian particles. Strikingly, bubbles
rise faster in suspensions as compared to particle-less liquids of the same effective viscosity. By carefully
measuring this bubble speed increase at various particle volume fraction and via velocity field imaging, we
demonstrate that this strange bubble dynamics is linked to a reduction in the bulk dissipation rate. A good
match between our experimental data and computations based on a Suspension Balance Model (SBM)
illustrates that the underlying mechanism for this dissipation-rate deficit is related to a nonuniform particle
distribution in the direction perpendicular to the channel walls due to shear-induced particle migration.
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Introduction.—From their spontaneous birth, then
throughout their wobbly life and even during their violent
death, bubbles [1] strongly influence mass and heat transfer
in many modern engineering techniques and industrial
processes such as mixing in chemical reactors with bubble
columns and cooling systems, aerosol transfer, contaminant
removal in alloy melts, flows in petroleum industry, carbon
sequestration, ship hydrodynamics, to name just a few [2].
They are also of huge importance in biological and geo-
physical phenomena. Indeed, they have justly occupied a
large body of modern research in fluid mechanics [3-9].
Historically, investigations on bubble dynamics were
primarily focused on the two-phases, namely, bubble
and the surrounding liquid, to understand sound generation,
terminal velocity, wake, shape and path instabilities
of a single bubble at relatively large Reynolds numbers
in an unbounded media [10-15], and/or a Hele-Shaw
cell [16-22].

Nevertheless, solid particles are often present along-
side bubbles in most of the aforementioned applications.
In this context, along with advances in suspensions
rheology [23] and increasing interests on the role of
particles on liquid films [24-26] and bubbles in micro-
channels [27], studies on single bubble dynamics in a
suspension constitute a simple yet important class of
research to understand free boundary problems in multi-
phase fluid dynamics. Surprisingly, only a few works
[27-30] have considered this basic problem. While a
recent work [30] suggests that, in the absence of walls,
particles greatly smaller than bubbles do not influence
bubble dynamics, there are still many open questions:
What is the effect of the bubble and the particle size on
the particle-laden liquid, and vice versa, under strong
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confinement? So, what is the bubble speed? Also, how do
bubbles interact with each other in such flows? In this
Letter, we try to answer the former two questions by
reporting on a novel result from a model experiment to
investigate the rising motion of a single, isolated bubble
through a neutrally buoyant liquid-particle suspension in
a Hele-Shaw cell.

Experimental setup.—It consists of a Hele-Shaw cell
made of two 20 x 25 cm glass plates which are separated
by a small gap of 4=2.3040.05 mm [Figs. 1(a) and 1(b)].
The cell is gently filled from the top with a non-
Brownian suspension composed of spherical, quasimono-
dispersed polystyrene (PS) particles of mean diameter d,
(230 £ 10 gm or 80+ 3 um) and a viscous Newtonian
liquid (UCON™ and water mixture of controllable
dynamic viscosity 7). Special care was taken when each
suspension sample was prepared by properly mixing PS
particles (p = 1057 £ 2 kg m™) with a suspending liquid
of same density in order to obtain a homogeneous mix of
particle volume fraction ¢, (the ratio of the volume of
particles to the total volume). In particular, the suspension
was always left on a roller-mixer setup to avoid particles
from settling or floating in case of a weak density
mismatch, if any. The suspension bulk viscosity 7,(¢g)
is systematically measured using a rheometer (Malvern
Kinexus) at shear rates of 0.1-10 s~! and at 25°C. Two
common rotational geometries, namely, a Taylor-Couette
setup and a parallel-plate rheometer with different gaps
were used to assure repeatability and validity of all
viscosity measurements, avoiding any bias from shear-
induced migration [31]. As seen in Fig. I(c), a good
agreement is obtained with the Maron-Pierce formula
[23,32] (see the Supplemental Material [33]):
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FIG. 1.

Rise of an air bubble in a Hele-Shaw cell filled with a viscous suspension composed of a water and UCON™ mixture and

polystyrene (PS) particles. Schematic of the (a) front view and (b) side view of the setup. (c) Normalized suspension viscosity

7i(¢) = n,(¢ho)/no- Symbols represent experimental data and the green region is Eq. (1) with ¢ €
12,54+ 0.1 mm) in a suspension (d,, = 230 um) for different bulk packing fractions ¢y.

of rising air bubbles (d;, =

i) =" (1-2)7, m

if the random close packing concentration ¢, ranges
between 0.55 and 0.625 following commonly used values
in the literature [23]. Note that the cell gap to particle
diameter ratio is about 10, or higher, and so confinement
effects on suspension rheology are expected to be small for
¢o < 0.3 [36-40].

A single bubble is released from a capillary tube at the
bottom of the cell. The bubble motion is recorded using a
high-resolution CCD camera producing 2048 x 2048 pixel
images at 20 to 80 fps. As sketched in Fig. 1(b), bubbles
extend over almost the full thickness of the Hele-Shaw cell
while a thin liquid layer of an average thickness d is observed.
For particle-free liquids, we measured 6, = 200-400 ym
using a profilometer as in the classical Bretherton’s law
[41]. Bubbles are slightly elongated and are characterized
by two geometrical parameters, namely, the equivalent

diameter d;, = \/4.A,/x with A, the measured area of the
bubbles and the aspect ratio L/ D [Figs. 1(a) and 1(b)]. In all
our experiments, bubbles rise at a steady velocity, denoted v,
just after a few millimeters above the release point.

Bubble rise in Newtonian liquids.—At first, we consider
the evolution of v, as a function of the bubble diameter d,
for four different water and UCON mixtures with distinct
viscosity 7, in the absence of particles. As expected, at a
given d,,, the bubble rise is slower in a much viscous liquid
(see inset, Fig. 2). At a fixed 7, the bubble rising speed
increases as the bubble size increases while inset Fig. 2
further suggests that the bubble speed tends towards a
constant upper bound when d,/h > 6. This is in accor-
dance with classical theoretical works [16—-18], which
predict a maximum speed limit for flat bubbles, say vy,
in Hele-Shaw cell containing Newtonian liquids given by

o) = 225 (%), 2

* —
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[0.55 — 0.62]. (d) Time-lapse imaging

where Ap is the density difference between the surrounding
liquid (here, py) and the gas (air) in the bubble. As clearly
demonstrated by Fig. 2, the Saffman-Taylor-Maxworthy
velocity vj is, within experimental error bars and without
any adjustable parameters, the right velocity scale for all
data in the case of Newtonian liquids without particles.
Indeed, for all bubbles here, v, is inversely proportional to
the liquid viscosity 7.

Bubble rise in suspensions.—Figure 1(d) presents chro-
nophotographs of bubble motion in suspensions of same
UCON and water mixtures but for different bulk packing
fraction ¢,. For all cases, the packing fraction is uniform
in the XZ plane around the bubble while inside the
bubble, particles are clearly visible in the gap between
the bubble and channel walls, as can be expected since
d,<6p [24-27]. At a fixed diameter d,=12.5mm and
no=0.18Pa.s, a bubble rises slower in a denser suspension
since the bulk viscosity 7, (¢, ) increases [Fig. 1(c)] with ¢.
On the other hand, Fig. 3(a) emphasizes that a bubble
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FIG. 2. Raw experimental datasets for different particle-less
water and UCON mixtures (inset) collapse onto a unique master
curve when plotted as normalized bubble rise velocity v,/ v} vs
the normalized diameter d;,/ h. The y axis error bars are computed
through the fluctuations of v, in time.
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FIG. 3. (a) Comparison of bubble rise velocity v, between a liquid with particles and a pure liquid of same bulk viscosity, 0.53 Pa.s

showing that bubble rises faster in the former. Note that a plateau can be observed if the velocity is divided by the aspect ratio L/D
[Eq. (2)]. (b) Normalized bubble velocity v,/v} vs normalized diameter d;,/h illustrates the anomalous bubble rise speed increase at
various ¢y. Empirical fits (dashed-dotted lines) are used to calculate v, /v} when d,, > h, whose value is then plotted in (c) as a function
of suspension volume fraction ¢, for both d,, = 230 and 80 ym. Symbols represent experimental data and the green region Eq. (4) using

a volume fraction profile given by Eq. (5) with ¢. € [0.55 — 0.62].

in a non-Brownian suspension of same bulk viscosity as a
particle-free liquid rises puzzlingly faster. To further
investigate this anomalous behavior in neutrally buoyant
suspension, we measure the bubble rise velocity by sys-
tematically varying the bulk suspension volume fraction ¢,
between 0%—30%. We then take, as before, the correspond-
ing Saffman-Taylor-Maxworthy velocity v} = v*[n,(¢o)]
[Eq. (2)], and plot in Fig. 3(b) the renormalized bubble
velocity v,/ v} against the nondimensional bubble diameter
dy/h. Similar to the case of a Newtonian liquid without
particles [Fig. 2], it increases steadily with the bubble size
and reaches a limiting value when d;, > h. On the contrary,
all data for the renormalized bubble speed in suspensions
(¢po > 0) do not collapse and the maximum bubble speed in
the limit d;, > h increases with particle concentration and
gets as high as ~1.8v} at ¢y = 30% [see Fig. 3(c)]. This not
only confirms that bubble speed augmentation is observed
even when ¢, is small and but also indicates that, for two
particle-laden liquids of same bulk viscosity, the bubble
speed increases with bulk volume fraction ¢.

Figure 3(c) also displays data from experiments with
smaller PS particles (d,, = 80 pm). No dependency with d,
is observed for ¢y < 20%, beyond which the velocity
increase is larger for larger particle mean diameter.

For further insight, the local suspension hydrodynamics
around the bubble is investigated by exploiting the motion
of the suspension texture as captured by the camera
(see Movies in the Supplemental Material [33]). The local
thickness-averaged velocity field of the suspension,
denoted by ¥(r,0), is then computed using a classical
cross-correlation method, implemented in the open-source
software UVMAT with windows of typical size 13 x
13 pixels at a 15% overlap. Thereby, Fig. 4 shows that
the magnitude of the velocity field |V| decreases with the
distance r from the bubble center following a dipolar field
(vpd2/4)r~2. Although, such a potential flow field is

typical for Newtonian liquids in Hele-Shaw cell [42], to
the authors’ knowledge, this is the first experimental
evidence of an incompressible, potential flow around a
bubble in a Hele-Shaw cell containing dense granular
suspensions. Consequently, no matter ¢,, the resulting
dissipation should be predominantly due to friction losses
across the cell thickness. While the packing fraction does
not depend on x and z [see the snapshots, Fig. 1(d) and
Movies in the Supplemental Material [33]], it could be
nonuniform over the thickness of the tank. It is precisely in
this context that we revisit the energetic arguments of
Maxworthy [17] and extend it to account for a possible
nonuniform particle distribution across the Hele-Shaw cell.

The bubble speed results from a balance between Pp,
the injected power due to buoyancy to rise a bubble and
the viscous dissipation rate. For an elliptical bubble rising at
a speed v, in the limit d;, > h, the power due to buoyancy
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FIG. 4. Magnitude of the local velocity around a bubble of size
d, =25 mm for various packing fraction ¢,. Dotted line
represents the theoretical dipolar field, (v,d),/4)r=2. The y axis
error bars are computed from standard error over different
temporal realizations of |V/v,|. Inset: instantaneous velocity
field from PIV measurements (¢, = 0.10, d,, = 230 pm).
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Pg = Apg(eDLh/4)v, is the same with or without par-
ticles. And for the dissipation rate, it is convenient to
distinguish several contributions: (i) Ps due to friction
between the bubble and the channel wall and (ii) P, arising
from the bulk suspension motion set in by the bubble. As
demonstrated in [43] for a pure liquid, since the viscosity of
the gas inside the bubble is negligible when compared with
liquid viscosity, the liquid velocity almost vanishes over the
entire width 6, so that the lubrication film does not play a
significant role. In the presence of particles, the depth-
averaged velocity in the gap between the bubble and the
wall is close to zero as inferred from Fig. 4 in the region
r < d,/2. Therefore, lubrication should be negligibly small
compared to the viscous dissipation rate P, due to
suspension motion across the channel. If d, > #,

re= [l Lol

where the suspension velocity field v(r,0,y) should obey
the incompressible viscous suspension flow VP =
(0/9y)[ns(y)(0v/dy)] since the bubble Reynolds number
Re;, < 1 (about 0.1 or less in all our experiments) [23].
Note that the local suspension viscosity #,(y) is taken to
vary only in the y direction like the local packing fraction
¢(y). By taking a parallel flow assumption across the
cell, we note that the pressure field P depends only

2
dr, (3)

on (r,0) while the thickness-averaged velocity v(r, ) =

(1/h) fj:’/zz v(r,0,y)dy is then simply given by the exper-

imentally illustrated dipolar field. After some algebra (see
the Supplemental Material [33]), the bulk dissipation rate
reads P, = 32Dy (o) v3/a(do)h with

3 1,\2 ﬁ((pO) ~
ds, 4
/_ly = dy (4)

a(po) = B

when dj, > h (here, § = 2y/h). At equilibrium, as for a
Newtonian liquid [17], Py = P,. Thereby, we see that
a(¢y) is precisely the velocity overshoot, v, /vy (dy, > h).
Also, the factor a(g,) is equal to unity for a particle-less
Newtonian liquid [¢($) = ¢pg = 0] or a uniform profile
[#(9) = ¢o # O]

In granular suspensions, particle-particle collisions con-
tribute to nonzero normal stress differences and lead to the
well-known shear-induced particle migration [23,44]. The
so-called Suspension Balance Model (SBM) [45] provides
a reasonably good estimate of the local particle fraction
evolution ¢(x,7) in many experiments [46-49] and
simulations [45,50,51]. For a fully developed channel flow,
SBM with Maron-Pierce viscosity [Eq. (1)] gives

be 0<[3l<p.
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FIG. 5. Local dissipation rate D,($) = #,(3)|0v/0%|> across
the channel for a suspension with (continuous line) and without
(dashed line) particle migration. Here, D)($ = 1) is the dis-
sipation rate at the wall in the case of uniform particle distribution
@(9) = ¢o. Clearly, D,(9) is smaller in the case with shear-
induced migration. Inset: corresponding velocity (red) and
volume fraction (black) profiles.

where \/f=1—+/1—¢y/¢.. For example, this volume

fraction profile and its corresponding channel velocity
along with the local dissipation rate per unit volume
D,($) = n,($)|0v/03|* are provided in Fig. 5, when
¢o = 30%. By comparison with the classical channel flow
profiles when ¢(9) = ¢y (dashed lines) of the same bulk
flow rate, it is evident from Fig. 5 that the local dissipation
rate across the channel is reduced by the presence of this
nonuniform particle distribution. Indeed, the dissipation is
localized in the strong velocity gradient region and thus
mainly in the region where ¢(9) < ¢, and thus leading to a
reduced total dissipation rate. We now proceed to a direct
comparison between the SBM-based a(¢,) [33] and the
experimentally measured velocity overshoot v, /v (d,>h)
in Fig. 3(c) without any adjustable parameters. Indeed, the
results from our simple model match very well with all
experimental data presented here. This result confirms that
dissipation-deficit via particle migration is the principal
mechanism underlying the bubble speed augmentation
when the bulk particle concentration is increased. We point
out, however, that the steady-state SBM solution does not
capture the experimentally observed dependence of a(¢)
on d, in Fig. 3(c) when ¢, > 20%. This could be due to
time-dependent migration dynamics, the exact particle
distribution across the channel, the difference in rheology
due to lateral confinement, the interaction between the
particles and the lubrication film, which are beyond the
scope of the present Letter.

Conclusion.—Unlike the Newtonian case, bubble rise
speed in suspensions contained in a Hele-Shaw cell cannot
simply be inversely proportional to the suspension viscosity
ns(¢ho) alone, even when the bulk volume fraction is as
small as 3%. Indeed, our measurements clearly show that
bubbles rise faster in suspensions than in a pure liquid of
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the same bulk viscosity. We elucidate the key ingredient for
this anomalous bubble speed increase to be the particle
migration, which, when properly incorporated via the well-
known Suspension Balance Model [45], accounts for the
reduced bulk dissipation rate of the suspension flow around
the rising bubble.

These results open multiple paths for further investiga-
tions to understand bubbles in dispersed media. Firstly, our
findings point out that bubbles and particles strongly
interact when bubbles are confined whereas previous
results on unbounded systems [30] suggest that bubbles
are not influenced by the particles. So, we hope that our
work motivates research to elucidate the transition between
these two regimes. Moreover, our work hints that there
could be a rich phenomenology for the case with larger
bubble Reynolds number, for example, by revisiting the
scaling v, « /gd, [22], shape and path instabilities, to
name a few, in the presence of suspension. While, in
perspective, numerical modeling to capture multiscale
interactions between solid particles, suspending liquid,
and fluid-fluid interfaces are difficult due to complex
rheology of suspensions, it is also a challenging endeavor
to experimentally identify the physics of interactions
between multiple bubbles. As suggested by the anomalous
bubble rise speed in our Hele-Shaw setup, Fig. 3(c), both
simulation and experiments to quantitatively estimate the
local packing fraction and the 3D-particle dynamics in the
cell would be crucial. In addition, experiments to explore
confinement effects on bubble and particle interactions
might be of paramount interest for future investigations.
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