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Abstract 
The shear resulting from internal wave reflections can play a crucial role in the transport and resuspension of sediments in 
oceanic conditions. In particular, when these waves undergo a critical reflection phenomenon, the reflected wave can pro-
duce a very large shear. Separating the reflected wave from the incident wave is a technical challenge since the two waves 
share the same temporal frequency. In our study, we present a series of experimental measurements of internal waves in 
critical reflection configuration and we analyze them using the 2D-VMD-prox decomposition method. This decomposition 
method was adapted to specifically decompose waves in an internal wave critical reflection, showing an improvement in its 
performance with respect to preexisting internal wave decomposition methods. Being able to confidently isolate the reflected 
wave allowed us to compare our results to a viscous and nonlinear model for critical reflection that correctly describes the 
dependence of the shear rate produced in the boundary as a function of the experimental parameters.

Graphic abstract

1  Introduction

Internal gravity waves are omnipresent in stratified fluids 
such as seas and oceans, atmosphere or planetary interiors. 
The primary mechanism leading to the generation of internal 
waves in the ocean interior is the interaction of global tides 

with the bottom topography. In such stratified fluids with an 
initially constant buoyancy frequency N =

[
−g𝜕z𝜌0(z)∕𝜌̄

]1∕2 , 
where g is the acceleration of gravity, �0(z) is the density 
of the fluid at rest and 𝜌̄ is a reference background density, 
internal waves propagate obliquely at an angle � with respect 
to the horizontal according to the dispersion relation

where � is the forcing frequency. This peculiar dispersion 
relation requires the preservation of the angle � upon reflec-
tion on a rigid boundary. In the case of a boundary tilted at 
an angle � with respect to the horizontal, this purely geo-
metric property can lead to strong variations of the width 
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and amplitude of the wave (focusing or defocusing) upon 
reflection as illustrated in Fig. 1 (Phillips 1966).

Internal wave focusing leads to large shear, bottom layer 
instabilities and in some cases overturning (Bühler and 
Muller 2007; Zhang et al. 2008; Gayen and Sarkar 2010; 
Chalamalla et al. 2013; Sarkar and Scotti 2017). In addi-
tion, a transfer of energy through scales develops as a con-
sequence of nonlinearities (Brouzet et al. 2017a; Dauxois 
et al. 2018) producing vertical mixing and mean flows. From 
a geophysical point of view, a precise description of inter-
nal wave reflections is key for understanding the vertical 
mixing in the ocean (Ivey et al. 2008) and its effect as a 
mechanism for sediment transport and resuspension (Cac-
chione et al. 2002). The latter has been reported in many 
observational studies (Bogucki et al. 1997; Quaresma et al. 
2007; Hosegood et al. 2004; Butman et al. 2006), showing 
that internal gravity waves are a first-order mechanism for 
sediment resuspension.

Of special interest is the case of the critical reflection, 
occurring when the angle of the slope is equal to the angle 
of propagation of the internal wave, i.e., � = � . This par-
ticular reflection occurs as a transition between the state for 
which the reflected wave propagates up the slope ( 𝛽 > 𝛾 ) 
and the state for which the wave propagates down the slope 
( 𝛽 < 𝛾 ). A linear theory developed by Phillips (1966) was 
the first intent to describe internal wave reflections; never-
theless, it predicts a divergence of the energy of the reflected 
wave when reaching critical angle ( � = �) . This is con-
trasted with what has been recognized in experiments and 
observations (Cacchione and Wunsch 1974; DeSilva et al. 
1997; Cacchione et al. 2002; Gostiaux et al. 2006), indicat-
ing the existence of a mechanism that prevents the singu-
larity from developing. A balance between nonlinearities 
and dissipation appears as the most complete description 
for the underlying mechanism preventing the singularity. 

Several theoretical models have been proposed. Wunsch 
(1969) added a friction term to the linear inviscid solution 
allowing the singularity to heal thanks to viscous effects in 
a boundary layer in the surrounding of the slope. Thorpe 
(1987) suggested that the spatial overlap between the linear 
inviscid solution of the incident and reflected waves gen-
erates resonance of higher harmonics that heal the singu-
larity. Kistovich and Chashechkin (1995) proposed that, in 
the linearized equations, viscosity and diffusion restrict the 
limiting value of the geometrical compression coefficient of 
the reflected beam. Dauxois and Young (1999) developed 
a solution taking into account nonlinearities and viscosity 
for the critical reflection, while developing an inviscid solu-
tion for near-critical reflection. They were able to heal the 
singularity by using a temporal description of the wave field 
and, thanks to a matched asymptotic expansion, to solve the 
nonlinear equation. Scotti (2011) also computed a solution 
for which the nonlinearities heal the singularity of Phillips 
linear solution. Nevertheless, his solution is presented only 
for inviscid fluids, whereas, in contrast to oceanic condi-
tions, viscosity plays an important role for internal waves 
studied in the laboratory. In this work, our results are com-
pared with the solution of Dauxois and Young (1999). This 
theoretical model presents the most complete solution for the 
critical reflection, as viscous dissipation and nonlinearities 
are included.

With the development of experimental techniques to gen-
erate well-defined internal waves and of observation meth-
ods in the laboratory, some of these theoretical predictions 
have been confronted with experimental data. Dauxois et al. 
(2004) measured the density profile close to the slope using 
synthetic Schlieren technique finding a qualitative agree-
ment with the theoretical predictions of Dauxois and Young 
(1999). With the same measurement technique, Peacock and 
Tabaei (2005) evidenced second harmonic generation in the 
reflection, due to nonlinear processes, and Gostiaux et al. 
(2006) confirmed this observation with quantitative velocity 
measurements using PIV. The wavelength selection taking 
place in the reflection process is analyzed in Tabaei et al. 
(2005) and in Dauxois et al. (2018), showing that the spatial 
overlap between the incident and the reflected wave and the 
geometrical configuration of the reflection process strongly 
influence the waves produced through nonlinearities. Zhang 
et al. (2008) have experimentally studied wave generation 
over an oscillating topography, observing that the waves are 
generated in a near critical region. These waves produce very 
strong shear near the boundary and therefore can become 
unstable and break. Using two fitting parameters, they have 
shown a good agreement between their measurements and 
the viscous solution of Dauxois and Young (1999).

To go beyond the previous results and investigate wave 
reflection at criticality, it is important to characterize inde-
pendently the reflected wave as well as the incident wave. 

Fig. 1   Schematic view of an internal wave reflection. The angle 
between the bottom slope and the horizontal is � ; the angle between 
the incident group velocity and the horizontal is � , and � = � + � . �g 
indicates the group velocity and � is the acceleration of gravity. The 
horizontal and vertical coordinates (x,  z), as well as the coordinates 
attached to the slope, (xs, zs) , are indicated
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However, close to criticality, the separation through Hilbert 
transform, as proposed in Mercier et al. (2008), struggles 
to fully separate the incident and the reflected wave as a 
consequence of the overlap that these two waves present in 
their spatial spectrum. Several methods have been recently 
introduced to properly deal with mode decomposition. 
For example, the Radon transform, based on selecting the 
waves using their propagation angle and distance to the 
shore, has been used successfully to identify overlapping 
plane waves with different propagation angles in the con-
text of nearshore wave dynamics (Almar et al. 2014) and 
strato-rotational instability (Meletti et al. 2020). Neverthe-
less, when waves that are not identified as plane waves are 
involved, the Radon transform cannot always identify both 
waves separately. Other methods can be mentioned, such as 
Empirical Mode Decomposition (EMD) (Huang et al. 1998; 
Rilling et al. 2003) and synchrosqueezing (Daubechies et al. 
2011). If the first class of approach performs well with very 
few prior information, except the number of modes, it lacks 
a theoretical point of view and has no convergence guar-
antee. Thus, the decomposition steps are very sensitive to 
noise and to sampling (Pustelnik et al. 2014). On the other 
hand, synchrosqueezing has a strong theoretical framework 
based on wavelets, but it requires strong prior on the loca-
tion of the modes. A good compromise between the two 
approaches, named variational mode decomposition (VMD), 
is developed in Dragomiretskiy and Zosso (2014); Zosso 
et al. (2017). The objective of this work is to improve over 
this recent and efficient mode decomposition in order to deal 
with the PIV data for internal waves measured near a critical 
or close to critical slope.

In the next section, we present the experimental setup 
and describe the classical data processing method used to 
extract the reflected wave from the measured velocity field, 
commenting on its limitations near criticality. VMD and the 
proposed adaptations to study critically reflected internal 

waves are presented in Sect. 3. In Sect. 4, the application of 
the proposed 2D-VMD-prox method over a synthetic critical 
reflection is used to optimize the parameters and highlight 
the benefits and limitations of the method. The results of 
the decomposition over our internal wave critical reflection 
data and their comparison with the theoretical predictions 
are then exposed. Conclusions are drawn in the last section.

2 � Experimental setup

2.1 � General setting

Experiments are performed in a tank 160  cm long, 
17 cm wide and 42 cm deep, filled with 36 cm of salt 
water as sketched in Fig. 2 (left). Using the two-bucket 
method (Fortuin 1960; Oster and Yamamoto 1963), the 
fluid is linearly stratified in density in order to produce 
a constant buoyancy frequency N. Density vertical pro-
file measurements are taken with a conductivity probe. 
An example of experimental measurement of density as 
a function of height is plotted on the right side of Fig. 2. 
A transparent acrylic slope with variable inclination 
is inserted in the tank before the filling procedure. The 
presence of a sloped boundary in a stratified fluid, associ-
ated with the no flux contraint for salt out of the bound-
ary implies a local curvature of the isopycnals at this 
boundary. The thickness of this boundary region is of the 
order of 5 × 10−2 cm (Phillips 1970), which is beneath the 
experimental spatial resolution of the velocity field, and 
we therefore neglect this effect in this study. The angle of 
the slope � can vary between 0◦ and 35◦ , and the plate is 
16 cm wide. The velocity of the fluid is measured using 
particle image velocimetry (PIV). A vertical laser sheet is 
produced by combining a laser and a rapidly oscillating 
mirror. Hollow glass spheres (10 μ m diameter and 1.1 g 

Fig. 2   (Left) Sketch of the experimental setup. The plane wave gen-
erator is on the left of the tank. The internal waves propagate from 
up left to down right and reflect on the inclined slope. The field of 

view is represented with a rectangle parallel to the slope. The control 
parameters are indicated in the sketch: A, �g , �0 and � . (Right) Exper-
imental measurement of the density as a function of height
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cm−3 density) used as passive tracers are seeded in the 
fluid. Images of 2452 × 1452 pixels are taken represent-
ing a real size of 11.3 × 6.7 cm2 for the experiment with 
large spatial resolution. The image processing analysis is 
performed by comparing two successive images, with a 
temporal resolution of 0.25 s. Each image is divided in 
boxes of 25 × 25 pixels that browse in an 80 × 80 pixel size 
box researching the maximum cross-correlation for two 
successive images, which is used to compute the velocity 
vector in the xz plane.

The wave generator (Gostiaux et al. 2007; Mercier et al. 
2010), consisting of stacked moving plates, is set vertically 
at the left side of the tank such that the plates move hori-
zontally generating plane waves. The displacement profile 
producing plane waves is

where �0 is the forcing frequency, kgz the vertical wave num-
ber of the generator and A its displacement amplitude. For 
the experiments presented in this work, the amplitude of the 
plane wave generator varies between 0.25 and 1.5 cm, and 
the vertical wavelength �g = 2�∕k

g
z  between ∼ 4 and ∼ 8 cm.

The configuration used to study the reflection process 
is schematized in Fig. 1. The incoming wave propagates 
from up left to down right at an angle � with respect to the 
horizontal, imposed by the frequency of the wave genera-
tor �0 . It reflects on the oblique slope tilted at an angle � 
with respect to the horizontal and propagates away from 
the slope. Two coordinate systems are used, x and z are 
the coordinates, respectively, perpendicular and parallel 
to gravity, and xs and zs are the coordinates, respectively, 
along and normal to the slope. In the coordinates attached 
to the slope, the velocity field is � = (us,ws) correspond-
ing, respectively, to the velocity component along the 
slope and normal to the slope. Such a two-dimensional 
representation is an accurate description of the wave field 
in all the tank with the exception of the region in the vicin-
ity of the lateral walls where a boundary layer is produced, 
but we will neglect this effect in this study. The width of 
the boundary layer at the lateral walls is indeed very small 
( ∼ 0.7 cm) with respect to the width of the tank (17 cm) for 
our experimental conditions. For a more complete descrip-
tion of the wave field profile in the y direction and in the 
proximity of the lateral walls, see Brouzet et al. (2017b), 
Horne et al. (2019).

Since theoretical results (Dauxois and Young 1999) pro-
pose an analytical expression of the along-slope component 
of the velocity field, in this study, we focus on this com-
ponent: We aim to approximate the field us at the position 
(xs, zs) and time t with a signal uM(xs, zs, t) expressed as a sum 
of J modes. This model considers that, within experimental 
errors, the internal wave field in the tank can be written as:

(2)X(z, t) = A sin
(
�0t − kg

z
z
)
,

with the J modes mj written as

where aj models the amplitude changes, the mean value of 
kxi,j is close to the experimental wave numbers, and � is a 
phase term. The model is valid near the generator where 
only the incident wave is present J = 1 or near the slope 
with at least the incident and the reflected wave, J = 2 . In 
this study, we focus on the region near the slope and on the 
stationary regime (several wave periods after the moment 
in which the incident wave first reflects from the slope) in 
order to insure the presence of both waves in the field of 
view. We therefore assume that the observation is a sum of 
the incident and of the reflected wave. We study different 
experimental configurations, where the characteristics of the 
incident wave, intensity, wavelength and angle of propaga-
tion are controlled by the experimental parameters A, �g and 
� = sin−1(�0∕N) . The characteristics of the reflected wave 
depend on the characteristics of the incident wave and on 
the control parameter � − � which is a measure of the depar-
ture from criticality ( � = � ). The parameters specific to each 
experiment are summarized in Table 1.

2.2 � Description of a typical experiment

From the set of near-critical reflection experiments listed in 
Table 1, we use “exp3” as an example to describe the criti-
cal reflection behavior. The uncertainty on the departure from 
criticality is directly related to the uncertainty on |� − �| . The 
geometrical error related to � is small compared to the error on 
� and therefore is neglected. The error on � = sin−1(�0∕N) is 
dominated by the intrinsic variations of the forcing �0 and is 
of O(1◦) for all experiments.

A snapshot of the velocity field is shown in Fig. 3 (left), 
obtained 15 periods after the wave generator was started. 
The incoming plane wave reflects at the sloped boundary (at 
zs = 0 ) and propagates along the slope in a narrow region 
producing an increase in the intensity of the velocity field, 
as a consequence of focusing. After a transient regime ( ∼ 10 
periods), the reflection process reaches a stationary regime. 
One can also observe a decay of the amplitude of the incoming 
waves as they propagate away from their source as a conse-
quence of viscous dissipation.

(3)uM(xs, zs, t) =

J∑
j=1

mj(xs, zs, t) ,

(4)
mj(xs, zs, t) = aj(xs, zs, t) cos

(
kxs,j(xs, zs, t)xs

+ kzs,j(xs, zs, t)zs + �(t)
)
,
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2.3 � Temporal filtering

To investigate the reflection mechanism, it is important to 
separate the different waves involved in the process. To do 
so, the first step is to perform a temporal band-pass filter 
centered on the forcing frequency of the incident wave. 
Figure 3(Right) shows the frequency power spectrum for 
the experiment corresponding to the snapshot presented in 
Fig. 3 (left). The largest contribution is associated with the 
frequency �0∕N = 0.26 , which comes from the incident and 
the reflected wave. As expected and already studied (Tabaei 
et al. 2005; Rodenborn et al. 2011; Kataoka and Akylas 
2020), one can observe higher-order frequencies ( 2�0 , 3�0 , 
etc.) with lower magnitude and a nonvanishing contribution 
to the signal at �∕N = 0 . The latter corresponds to a mean 
flow. All these frequencies are generated through nonlinear 

interactions between the incident and reflected waves. By 
applying a temporal band-pass filter centered on the fre-
quency �0∕N = 0.26 ± 0.01 , the components related to the 
higher harmonics or the mean flow are removed, and the 
velocity field obtained will be solely associated with the 
incident and the reflected wave with frequency �0 . In the 
remainder of the article, we therefore drop the temporal 
dependency of the different quantities to indicate that a tem-
poral filtering has been previously performed. A given tem-
poral phase is selected for the velocity field filtered in time.

2.4 � Spatial filtering

Although the incident and reflected wave oscillate in time at 
the same frequency, they do not propagate in the same direc-
tion and they do not have the same wave number. To be more 

Table 1   Experimental control 
parameters

N is the buoyancy frequency, � the angle of the slope, A and �g = 2�∕k
g
z are the amplitude and the verti-

cal wavelength of the wave generator, � indicates the explored range of angles of propagation of the inci-
dent wave given by the dispersion relation �0 = N sin � , where �0 is the forcing frequency of the gen-
erator. The critical reflection corresponds to |� − �| = 0 ± 1◦ . Re = U�g∕� is the Reynolds number, and 
Fr = U∕(�0�

g) is the Froude number, where U is the maximum velocity in the direction of propagation of 
the incident wave. The Reynolds and Froude numbers are calculated for the cases of critical reflection

Case N (rad/s) � (◦) A (cm) �g (cm) � (◦) ( ±1◦) Re Fr

Exp1 1.15 16.5 0.25 4 12–25 6 0.011
Exp2 1.14 15 0.25 8 12–26 31 0.016
Exp3 1.22 15 1 4 8–22 21 0.044
Exp4 1.1 16 1 4 7–33 22 0.05
Exp5 1.1 16 1.5 4 7–34 28 0.06
Exp6 1.13 16 0.5 8 7–32 46 0.03
Exp7 1.02 17 1 8 11–40 106 0.065

Fig. 3   (Left) Snapshot of the velocity field at t∕T0 = 15 where 
T0 = 2�∕�0 . The background color indicates the along-slope com-
ponent of the velocity us , and the arrows represent the velocity field. 
xs and zs coordinates are indicated. The slope boundary is located at 
zs = 0 . The incident wave is propagating from up left to down right, 
and the generator is located ∼ 30 cm from the center of the image. 
The measurements correspond to “exp3.” (Right) Associated power 

spectrum density P(�∕N) . The spectrum is computed from a set of 
points located on the left side of the field of view at approximately 
8 cm from the slope. The width of the peaks is related to the finite 
time span of the experiment, while the variations of the forcing fre-
quency due to experimental limitations of the wave generator are 
much smaller
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precise the absolute value of the along-slope component of 
the wave number is conserved for all xs , but not the normal 
to the slope component of the wave number, i.e.,

The separation between incident and reflected wave through 
the spatial spectrum is therefore based on the discrimination 
between kzs,j={inc} and kzs,j={refl}.

A classical way to apply a spatial spectrum separation is 
to use the technique based on the Hilbert transform (Mer-
cier et al. 2008), commonly used in previous studies where 
several waves are entangled (Bourget et al. 2013). However, 
in a near-critical case, since the reflected wave is only pre-
sent in a narrow region very close to the inclined plane, the 
spectrum of kzs is substantially wide, making the filtering 
operation delicate. All attempts at such filtering result in a 
pollution of the filtered reflected wave by a nonnegligible 
residue of the incident wave as illustrated in Schmitt et al. 
(2015). In order to limit these effects, we propose to analyze 
the data with more specific signal processing tools.

3 � Variational mode decomposition method

3.1 � Mathematical framework

When dealing with the Hilbert transforms as in Mercier 
et al. (2008), the first limitation comes from the necessity 
to handle manually the selection of the spatial frequency 
range used to identify one of the modes, complicating an 
automatic procedure. The remaining mode is then deduced 
by subtracting the extracted mode to the original image. A 
second drawback is thus a sensitivity to noise, preventing the 
decomposition of modes having close spatial frequencies. 
Finally, the Hilbert transform operation is based on spatial 
Fourier transformation that strongly reduces the spatial reso-
lution at the boundaries which are specifically the regions 
we are interested in studying.

In this study, we propose to adapt the 2D-variational 
mode decomposition (2D-VMD) (Zosso et al. 2017) method 
to perform mode decomposition. This problem can be for-
mulated as an inverse problem which consists in extracting 
J oscillating components (modes), denoted (mj)1≤j≤J with 
mj ∈ ℝ

Nxs
×Nzs , where Nxs

× Nzs
 is the number of points of the 

grid, from the observed data d such that

where � ∼ N(0, �2
n
I) models an additive Gaussian noise such 

as measurement noise.

{
∣ kxs,j={refl} ∣ (xs, zs = 0) = ∣ kxs,j={inc} ∣ (xs, zs = 0)

∣ kzs,j={refl} ∣ (xs, zs = 0) ≠ ∣ kzs,j={inc} ∣ (xs, zs = 0).

(5)d =

J∑
j=1

mj + �,

In order to fit VMD formalism to our specific case, the 
expression of mj provided in Eq. (5) for the study of internal 
wave reflection corresponds to the specific case J = 2 , even 
if the 2D-VMD approach is developed for a general J ∈ ℕ∗ 
value. For all the modes mj , the spatial wave components, 
kxs,j(xs, zs) and kzs,j(xs, zs) , are centered around the unknown 
spatial frequencies (vxs,j, vzs,j) that are independent of the spa-
tial coordinates. The values of (vxs,j, vzs,j) are thus close to the 
spatial average of the spectral content kxs,j ∈ ℝ

Nxs
×Nzs (resp. 

kzs,j ). At every location, (xs, zs) ∈ {1, ...,Nxs
} × {1, ...,Nzs

} , 
the velocity field of the mode j for the temporally filtered 
field can be estimated:

where aj ∈ ℝ
Nxs

×Nzs models the amplitude changes in space 
and � is a phase term.

The 2D-VMD aims at estimating jointly (mj)1≤j≤J  , 
(vxs,j)1≤j≤J and (vzs,j)1≤j≤J by solving

where D(xs,zs)
 models the spatial discrete gradient operator 

and the coefficient 𝛼 > 0 denotes a regularization parameter 
allowing to adjust the bandwidth size of the filter. The 2D 
analytic signal mAS

j
 is the inverse Fourier transform of m̂AS

j
 , 

which is defined in the Fourier domain as

where m̂j is the Fourier transform of mj . Note that the 2D 
analytic signal is chosen to set to zero one half plane of 
the spatial frequency domain relatively to (vxs,j)1≤j≤J and 
(vzs,j)1≤j≤J.

3.2 � Specificities to internal wave reflections

We improved this model considering the specific properties 
of internal wave reflections:

•	 first, incident and reflected waves have different spectral 
behaviors. In particular, due to the focalization effect 
close to criticality, the spectrum of the reflected wave is 
very compact horizontally but not vertically. Parameters 
�j,xs and �j,zs depending on the mode j and the axis direc-
tion have been introduced, in order to separately adjust 
the along-slope and normal spectral compactness of each 
mode.

(6)mj(xs, zs) = aj(xs, zs) cos
(
vxs,jxs + vzs,jzs + �

)
,

(7)

minimize
(mj,vxs ,j,vzs ,j)1≤j≤J

⎧
⎪⎨⎪⎩

������
d −

J�
j=1

mj

������

2

+�

J�
j=1

���D(xs,zs)

�
mAS

j
(xs, zs)e

−i(vxs xs+vzs zs)
����

2

�
,

(8)m̂AS
j
(�xs , �zs) =

(
1 + sign(vxs,j�xs + vzs,j�zs)

)
m̂j(�xs , �zs),
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•	 Second, for the critical and near critical reflec-
tions, the reflected wave will stay in the proxim-
ity of the boundary. For this case, we expect that the 
mode associated with the reflected wave will van-
ish far away from the slope. This information can be 
introduced through a penalty term fj(mj) , which acts 
as an indicator function iC(mj) whose value is 0 if 
mj ∈ C = {� ∈ ℝ

Nxs
×Nzs |(∀(xs, zs) ∈ 𝕊) v(xs, zs) = 0} 

and +∞ otherwise. For such a choice of the penalty fj , we 
impose the component mj to be zero in the set of indexes 
� , which is a chosen subset of ℝNxs

×Nzs.

According to these remarks, we aim to solve:

where Dxs
 and Dzs

 denote, respectively, the discrete gradient 
operator along the xs and zs component. The parameters �xs,j 
and �zs,j which allow for the adjustment of the selectivity for 
each mode and component are chosen positive. The param-
eter � permits to adjust the attachment of the decomposi-
tion to the data d. In Schmitt et al. (2015), we proposed an 
efficient algorithmic scheme based on alternating proximal 
algorithm to provide a local minimizer of this minimization 
problem. One could note that such alternating minimiza-
tion strategies are applied for various fields in inverse prob-
lems: Attouch et al. (2010), Bolte et al. (2010), Foare et al. 
(2019). For a further and detailed discussion of the impact 
of the parameters and their choice, see Schmitt et al. (2015). 
In addition, in this same reference the authors perform a 
comparison between the Hilbert classical decomposition 
method, the basic 2D-VMD model (Eq. 7) and the proposed 
2D-VMD-prox decomposition model (Eq. 9), the latter, 
developed for internal wave near critical reflections, showing 
a better performance to accurately isolate both wave modes 
and resolve the wave at the boundaries of the field of view.

4 � Application of VMD to internal wave 
reflection

In this work, the observed data d is the along-slope compo-
nent of the velocity. In a first step in order to adjust the regu-
larization parameters of the method, we will use synthetic 
data before applying these adjusted parameters to decom-
pose into modes the experimentally measured quantity. We 

(9)

minimize
(mj,vxs ,j,vzs ,j)1≤j≤J

{ J∑
j=1

fj(mj) + �

‖‖‖‖‖‖

J∑
j=1

mj − d

‖‖‖‖‖‖

2

+

J∑
j=1

�xs,j
‖‖‖Dxs

(
uAS
j
(xs, zs)e

−ivxs ,jxs
)
(xs,zs)

‖‖‖
2

+

J∑
j=1

�zs,j
‖‖‖Dzs

(
uAS
j
(xs, zs)e

−ivzs ,jzs
)
(xs,zs)

‖‖‖
2
}
,

will use, respectively, the terms mode 1 and mode 2 for the 
field associated with the incident and the reflected wave.

4.1 � Synthetic field of an internal wave critical 
reflection

The validation of the decomposition method is performed 
using a synthetic image of an internal wave critical reflec-
tion. The synthetic image of the along-slope component of 
the velocity is built by adding an incident synthetic wave, a 
reflected synthetic wave and superimposed additive noise, 
formally d = Usyn = Uinc

syn
+ Urefl

syn
+ � . For each experiment, 

we produced a synthetic image that is constructed using the 
physical parameters of the experiment. The incident wave is 
a plane wave with a known velocity and angle of propaga-
tion: Uinc

syn
(xs, zs, t) = U cos(kinc

xs
xs + kinc

zs
zs − �0t) . U is the 

maximum velocity of the incident wave and the phase is 
taken equal to zero without loss of generality. For the 
reflected wave, we use the solution derived by Dauxois and 
Young (1999), referred to as the D–Y model in the follow-
ing. The viscous expression for the along-slope component 
of the reflected wave at criticality is given by:

where Re is the Reynolds number associated with the inci-
dent wave and a is a characteristic length given by

where � is the kinematic viscosity, � the salt diffusivity and 
kinc = ‖‖�inc‖‖ . One can observe in Eq. (10) that the magni-
tude of the reflected wave is related to the magnitude of the 
incident wave. For the experimental parameters explored in 
this work, the amplitude of the reflected wave is of the order 
of magnitude of the amplitude of the incident wave. The 
velocity of the incident wave is obtained from the experi-
mental observations and is computed in the region far from 
the slope to avoid the component related with the reflected 
wave which is confined to the surrounding of the slope. The 
angle of propagation of the incident wave is inferred through 
the relation �0∕N = sin � . The added noise has the form 
� ∼ N(0, �2

n
I) where �n = Cnstd(Usyn) and Cn is a multipli-

cative coefficient that modulates the intensity of the noise. 
In Fig. 4, we show a snapshot of an experimental measure-
ment of the along-slope component of the velocity (top), 

(10)

Urefl
syn

(xs, zs, t)

=
Re1∕3U

2
√
3
√
(N∕�0)

2 − 1
e−zs∕(2a) cos(kinc

xs
xs − �0t)

�
sin

�√
3zs

2a
+ �∕3

�
−

√
3 cos

�√
3zs

2a
+ �∕3

��
,

(11)a =

(
� + �

(4�0k
inc
[
1 − (�0∕N)

2
]
)1∕3

,
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a synthetic image based on the same experiment (center) 
and at the bottom the synthetic image with added noise 
( Cn = 0.3 ). The main features of the experimental obser-
vations are captured in the synthetic image: The incident 
wave angle of propagation, wavelength and magnitude are 
in agreement; the reflected wave is located in the surround-
ings of the slope; and spatial patterns of the variations of 
intensity are well represented. The lower-order decay of the 
intensity of the wave as it distances from its source is not 
contained in the synthetic field.

4.2 � VMD parameters selection

The 2D-VMD-prox decomposition method is applied to 
the synthetic image of the along-slope component of the 
velocity field Usyn described in Sect. 4.1 for a given tem-
poral phase choice. The two output modes are compared 
with the components of the synthetic image Uinc

syn
 and Urefl

syn
 . 

In order to better assess the result of the 2D-VMD-prox 
decomposition method, we use vertical profiles of the 2D 
images. To do that, we compute the along-slope spatial 
average (direction xs ) of the absolute value of the along-
slope component of the velocity field  ⟨�us�⟩xs . In Fig. 5 
(top) (resp. bottom), ⟨�us�⟩xs as a function of zs is shown for 
the mode associated with the incident and reflected wave, 
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Fig. 4   Field of view of the along-slope component of the velocity for 
a critical reflection corresponding to “exp3” (top). A synthetic image 
Usyn , based on experimental parameters of “exp3” without ( Cn = 0 ) 
(center) and with added noise ( Cn = 0.3 ) (bottom). The axes are the 
same as in Fig.  3 (left) yet they are not represented for the sake of 
clarity since the main message here is the general aspect of the veloc-
ity field
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respectively. Both the incident and reflected modes are 
well differentiated showing no overlap of one mode over 
the other. In addition, they are in good agreement with the 
synthetic image. For the mode corresponding to the inci-
dent wave, the profile reproduces perfectly the synthetic 
profile some distance away from the slope. The small 
oscillations of the amplitude of the profile are a conse-
quence of performing an average in the direction of xs over 
a distance that is not an entire multiple of the wavelength 
of the wave. For the mode corresponding to the reflected 
wave, the profile shows that the strong increase and 
decrease of the amplitude in the surroundings of the slope 
( zs ≃ 0 ) are captured, as well as the width of these peaks. 
For values larger than zs = 6.8 cm, the penalization acts 
over the reflected mode and the amplitude of the profile is 
imposed to be equal to zero. Between the peaks near the 
slope and the penalization region, the amplitude of the 
profile is steady and even though it struggles to go strictly 
to zero, its amplitude is fairly small.

There are, however, some discrepancies between the 
decomposed modes and the synthetic images. They are found 
in the region near the slope, where the overlap of the two 
modes is major. To minimize these differences we optimize 
the relation between the parameters �x,j and �z,j . These param-
eters permit to take into account the spectral compactness of 
each mode in each direction.

Near the critical angle, a small departure from criticality 
corresponds to a large variation of krefl

zs
 . The conservation of kxs 

and �0 in the reflection leads indeed, in the linear theory of 
internal wave reflections, to the following relation between the 
incident and ref lected ver tical wave numbers: 
krefl
zs

= kinc
zs

tan(� + �)∕ tan(� − �) . Therefore, a small deviation 
of |� − �| from 0 implies a large variation of krefl

zs
 . On the other 

hand, for the angles � and � explored in this work 
O(kinc

xs
) = O(kinc

zs
 ). Therefore, we set the parameters 

�x,1 = �x,2 = �z,1 to a given value of �0 = 100 , and we use the 
parameter �z,2 associated with the wave number krefl

zs
 as a selec-

tivity parameter to optimize the outcoming modes. In Fig. 5 
the profiles of the incident and reflected modes are plotted for 
several values of �z,2∕�0 . The variation of the selectivity 
parameter �z,2 modifies primarily the profile of the decom-
posed modes in the region near the slope where deviations 
between the synthetic image and the decomposed modes can 
be the largest. To select the optimal ratio between �z,2 and �0 
we use the signal-to-noise ratio defined as

The SNR provides a quantitative evaluation of the similitude 
of each mode with the synthetic data when varying �z,2 and 
Cn . It is shown in Fig. 6 the plot of ŜNR = SNR∕max(SNR) 

(12)SNR(utrue, uestimated) = 20 log10

(
utrue

uestimated − utrue

)
.

as a function of �z,2∕�0 for each value of Cn explored. ŜNR 
is obtained by comparing between Urefl

syn
 and the mode associ-

ated with the reflected wave recovered from the 2D-VMD-
prox decomposition. This procedure is performed for differ-
ent degrees of noise standard deviation Cn in order to 
measure the robustness of the results. The highest value of 
ŜNR corresponds to the value of �z,2∕�0 = 0.1 , for a noise 
coefficient between 0 and 0.3. For a Cn equal to 0.5 or higher 
(not shown), we observe that the method struggles to cor-
rectly identify the two modes.

The selectivity parameter �z,2 that maximizes the ŜNR 
when applied to the synthetic images is then used for the 
decomposition of the associated experimental images.

4.3 � Decomposition of experimental measurements

Figure 7 displays the image of the 2D-VMD-prox decompo-
sition modes obtained when applied over the synthetic field 
associated with “exp3,” d = Usyn (first row) and the corre-
sponding experimental measurements d = input, (bottom 
row). The first column shows the mode 1 associated with the 
incident wave, the second column shows the mode 2 associ-
ated with the reflected wave and the third column shows the 
spectral profile at kxs = kinc

xs
 of the vertical spectral content 

showing the relative contributions of each mode. The overlap 
between the reflected and the incident wave in the spatial 
spectrum is observed in both the experimental and in the 
synthetic results and is predominant for the values around 
kzs ∼ 2 cm−1 . The spectral overlap of these two waves is an 
indication of the intrinsic difficulty that the critical reflection 
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thetic reflected wave constructed following experimental parameters 
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presents to isolate incident and reflected wave. For the 
experimental results, the mode decomposition is well 
achieved and there is practically no overlap between the inci-
dent and the reflected waves on each mode obtained by the 
2D-VMD-prox decomposition. The mode 1 associated with 
the incident wave and the synthetic incident wave present 
very similar features which is not a surprise as the synthetic 
image is constructed using measurements of the experimen-
tal incident wave. In the case of the reflected wave, the oscil-
lations of the pattern in the region near the slope are well 
captured for the synthetic reflected wave, both in wavelength 
and in width ( zs direction). The intensity of the oscillations 
of the experimental reflected wave are weaker than for the 
synthetic reflected wave, which could be a consequence of 
the experimental limitations to achieve the exact critical 
reflection ( � = �).

For a quantitative comparison of the reflected wave 
extracted from the decomposition with the D–Y theory, we 
use the profile ⟨�us�⟩xs . In Fig. 8, the profile ⟨�us�⟩xs as a func-
tion of zs is shown for the input data field and for the two 
modes obtained by the 2D-VMD-prox method of “exp3.” 
The input profile is fully represented by the mode 1 associ-
ated with the incident wave far from the slope. Near the 
slope, the profile of the incident wave presents a decrease in 

its amplitude. This could be partially related to the fact that 
the slope is on average further away from the wave source 
than the rest of the field of view, and therefore, the viscous 

-5 0 5

k
z

s

 [cm -1]

0

200

400

600

800

lo
g(

P
(k

in
c

x
s

,k
z

s)

-0.1

-0.05

0

0.05

0.1

u
s
[cm/s] -5 0 5

k
z

s

 [cm -1]

0

200

400

600

800

lo
g(

P
(k

in
c

x
s

,k
z

s)

artcepS2edoM1edoM
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The experiment corresponds to case “exp3.” For the 2D images the 
axes are the same as in Fig. 3 (left) yet they are not represented for 
the sake of clarity
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decay of the incident wave is larger near the slope. Note that 
we performed the decomposition over the temporally filtered 
experimental velocity field at different instants, i.e., different 
temporal phase term and we observed that the results shown 
in Fig. 8 are not affected by the selection of the phase. In 
black dashed line, the profile of the D–Y model is shown 
for the reflected wave, corresponding to the expression of 
Eq. (10). The D–Y model describes successfully the width 
of the amplitude oscillations of the reflected wave near the 
slope, however, the relative amplitude of these oscillations 
is not completely captured by the model. In particular for 
the first amplitude peak (starting from the slope, zs = 0 ), the 
model overestimates by almost a factor 2 the amplitude of 
the first peak of the reflected wave. This overestimation may 
be related to the fact that this model represents the singular 
case of � ≡ � , which is extremely complicated to achieve 
(or even get very close) when performing experiments. We 
observed that the overestimation of the first peak by the 
model is present in all the experiments performed in this 
work, which would tend to support this explanation.

In Fig. 9 (top), the maximum value of the reflected wave 
is shown as a function of the Reynolds number for all experi-
ments (see Table 1). The maximum value of the velocity 
of the reflected wave, as expected, increases as the value 
of the velocity of the incident wave increases. Using the 
value of the maximum velocity at the first peak max(us) and 
the half width of this peak (defined as the distance � of the 
maximum from the slope, since the peak falls off to zero 
at the slope) we can give a first-order estimate of the shear 
rate S = max(us)∕� produced near the slope. The first-order 
estimate of the shear rate S using the D–Y model through 
Eq. (10) shows that the shear is proportional to the param-
eter � = U(�g∕N)1∕3�−2∕3 where U is the maximum veloc-
ity of the incident wave. In Fig. 9 (bottom), S is shown as a 
function of this parameter � . A linear fit (dotted line) helps 
to identify the linear relation between S and � . This is an 
indication that regardless of discrepancies between the D–Y 
model and the experimental data in the prediction of the 
maximum value of the reflected wave (either by an overes-
timation of the model or due to the difficulty to achieve an 
experimental critical reflection), the behavior of the first-
order shear rate S can be collapsed to a predictable behavior 
as a function of a combination of the experimental param-
eters U, �g , N and � suggested by the D–Y theory.

5 � Conclusions

In this study, we present high-resolution observations of 
internal waves critical reflection and a method that suc-
cessfully achieves to isolate the incident and the reflected 
wave involved in the process. We present a mode decom-
position method adapted specially for internal wave 

critical reflection which is tested over synthetic and exper-
imental images. This method has been developed to handle 
the failure of other methods to correctly isolate the inci-
dent and reflected waves involved in the physical process. 
The technical challenges presented by a critical reflection 
have been taken into account in the development of the 
decomposition method 2D-VMD-prox: Both waves have 
the same temporal frequency �0 ; both waves have the same 
spatial frequency component along the slope coordinate 
kinc
xs

= krefl
xs

 ; the reflected wave is confined in a narrow 
region of the field of view; the wavelengths of the waves 
are only one order of magnitude smaller than the size of 
the image; and finally, the region of most physical interest 
is located at the boundary of the images.

The synthetic images of a critical reflection allowed for 
testing and tuning of the decomposition method in order 
to apply the method to our experimental measurement and 
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optimize the decomposition of the incident and reflected 
wave. The reflected wave is compared with the D–Y model 
for critical reflections (Dauxois and Young 1999), which 
takes into account nonlinearities and viscosity in the 
process. The latter is of dominant importance for experi-
mental conditions and is not taken into account by most 
models. The D–Y model correctly describes the pattern of 
velocity intensity of the reflected wave in the region near 
the slope in both wavelength and width; nevertheless, the 
predicted amplitude of the velocity for the first peak of 
the reflected wave is higher than observed. This quantita-
tive discrepancy can be associated with the experimental 
limitation to achieve exact critical reflection, for which 
case the amplification of the velocity of the reflected wave 
is the largest.

A range of experimental parameters is covered in the 
experiments presented in this work, and for all these experi-
ments, the D–Y model correctly describes the tendency of 
the first-order shear rate S, produced by the reflected wave 
near the slope. The shear produced by internal wave criti-
cal reflections is tightly related to the resuspension and 
transport of sediment in oceanic conditions. The sediment 
transport is modeled using the Shield dimensionless number 
Θ = S�∕((�p − �)gdp) where � and �p are, respectively, the 
density of the fluid and of the sediment, dp is the typical size 
of the sediment and � is the dynamic viscosity. Although 
the range of Re number explored in this work is only of 
two decades, obtaining a tendency of the shear rate S with 
respect to the measurable observation parameters U, �g , N 
and � may allow to identify the conditions for which bedload 
transport of particles in the ocean is achieved. The erosion 
and transport of particles occurs when the threshold Shields 
number Θth ≈ 0.12 is exceeded (Ouriemi et al. 2007).

The Miles–Howard stability condition indicates that a 
stratified flow is stable if the Richardson number Ri < 1∕4 , 
where Ri= N2∕S2 ; therefore, for a shear stress large enough 
instabilities in the flow can occur. Using the first-order 
approximation that the shear stress of the incident wave is 
equal to the ratio between its amplitude and half its wave-
length, Sinc ≈ 2U∕�g , we conclude that the incident wave 
is stable for the experimental parameters explored in this 
work. The critical shear stress for which the reflected wave 
becomes unstable for a given stratification can be computed 
using the values of S shown in Fig. 9. For values of S ≳ 0.32 , 
i.e., 𝜁 ≳ 3 we expect the reflected wave to be unstable. In 
some experiments corresponding to large values of � , we 
did actually observe Kelvin–Helmholtz billows, but a more 
detailed study of this instability seemed beyond the scope of 
this work. In oceanic conditions, the stability condition of 
the reflected wave could have effects over the particles ero-
sion/deposition pattern given that large shear stress stimu-
lates erosion yet it also produces instabilities changing the 
flow conditions near the boundary.

The critical reflection is produced when � = � , never-
theless, if � = �+ the reflected wave propagates upslope 
and if � = �− the reflected wave propagates downslope. For 
a well-defined angle of propagation of the incident wave 
� , this upward or downward propagation of the reflected 
wave does not prevent the 2D-VMD-prox method to suc-
cessfully isolate incident and reflected waves. Neverthe-
less, for some experimental conditions and almost always 
in oceanic conditions, the spectral content of the inter-
nal waves involves a range of frequencies and therefore 
of angles of propagation. In these cases, it is possible to 
produce two reflected waves simultaneously (upward and 
downward). We have tested that the 2D-VMD-prox decom-
position method can be used for separating more than two 
modes. In the present study, however, we chose to use only 
the two mode decomposition given the difficulties to set 
the experimental conditions close enough to the critical 
configuration (within less than 1◦ ). In addition, we wanted 
to reduce as much as possible the number of parameters 
involved in the decomposition. We therefore leave the 
3-mode decomposition to future studies.

The 2D-VMD-prox method was tested in the most chal-
lenging conditions. For experiments involving a larger num-
ber of wavelengths within the field of view and a higher res-
olution of the velocity near the slope, an improvement of the 
performance of the decomposition method can be expected.

Finally, the 2D-VMD-prox method is adapted to decom-
pose waves for internal critical reflections in the Hilbert 
space. Nevertheless, a variational mode decomposition 
method could be adapted to separate the incident and the 
reflected wave in the Radon space, which presents good 
characteristics to identify both waves despite the superposi-
tion between incident and reflected waves in such a param-
eter space.

The MATLAB toolbox containing the 2D-VMD-prox 
algorithm and examples of experimental measurements 
and simulated images of internal wave critical reflection 
are made publicly available at: https://​github.​com/​npust​eln/​
vmd-​prox-​inter​nal-​waves.

Acknowledgements   We thank T. Dauxois for insightful discussions. 
This work has been partially supported by the ONLITUR Grant ANR-
2011-BS04-006-01 and achieved thanks to the resources of PSMN 
from ENS de Lyon.

References

Almar R, Michallet H, Cienfuegos R, Bonneton P, Tissier M, Ruessink 
G (2014) On the use of the radon transform in studying nearshore 
wave dynamics. Coast Eng 92:24–30

Attouch H, Bolte J, Redont P, Soubeyran A (2010) An approach 
based on the Kurdyka–Lojasiewicz inequality. Math Oper Res 
35:438–457

https://github.com/npusteln/vmd-prox-internal-waves
https://github.com/npusteln/vmd-prox-internal-waves


Experiments in Fluids          (2021) 62:110 	

1 3

Page 13 of 13    110 

Bogucki D, Dickey T, Redekopp LG (1997) Sediment resuspension 
and mixing by resonantly generated internal solitary waves. J Phys 
Oceanogr 27(7):1181–1196

Bolte J, Combettes PL, Pesquet JC (2010) Alternating proximal algo-
rithm for blind image recovery. In: Proceedings international 
conference on image processing, China, Hong Kong, pp 26–29

Bourget B, Dauxois T, Joubaud S, Odier P (2013) Experimental study 
of parametric subharmonic instability for internal plane waves. J 
Fluid Mech 723:1–20

Brouzet C, Ermanyuk E, Joubaud S, Pillet G, Dauxois T (2017a) Inter-
nal wave attractors: different scenarios of instability. J Fluid Mech 
811:544–568

Brouzet C, Sibgatullin IN, Ermanyuk EV, Joubaud S, Dauxois T 
(2017b) Scale effects in internal wave attractors. Phys Rev Fluids 
2:114803

Bühler O, Muller C (2007) Instability and focusing of internal tides in 
the deep ocean. J Fluid Mech 588:1–28

Butman B, Alexander P, Scotti A, Beardsley R, Anderson S (2006) 
Large internal waves in massachusetts bay transport sediments 
offshore. Cont Shelf Res 26(17):2029–2049

Cacchione D, Wunsch C (1974) Experimental study of internal waves 
over a slope. J Fluid Mech 66:223–239

Cacchione D, Pratson L, Ogston A (2002) The shaping of continental 
slopes by internal tides. Science 296:724–727

Chalamalla V, Gayen B, Scotti A, Sarkar S (2013) Turbulence during 
the reflection of internalgravity waves at critical and near-critical 
slopes. J Fluid Mech 729:47–68

Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet trans-
forms: an empirical mode decomposition-like tool. Appl Comput 
Harmonic Anal 30(2):243–261

Dauxois T, Young W (1999) Near-critical reflection of internal waves. 
J Fluid Mech 390:271–295

Dauxois T, Didier A, Falcon E (2004) Observation of near-critical 
reflection of internal waves in a stably stratified fluid. Phys Fluids 
16(6):1936–1941

Dauxois T, Joubaud S, Odier P, Venaille A (2018) Instabilities of inter-
nal gravity wave beams. Annu Rev Fluid Mech 50:1–28

DeSilva I, Imberger J, Ivey G (1997) Localized mixing due to a break-
ing internal wave ray at a sloping bed. J Fluid Mech 350:1–27

Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. 
IEEE Trans Signal Process 62(3):531–544

Foare M, Pustelnik N, Condat L (2019) Semi-linearized proximal alter-
nating minimization for a discrete Mumford-Shah model. IEEE 
Trans Image Process 29:2176–2189

Fortuin JMH (1960) Theory and application of two supplementary 
methods of constructing density gradient columns. J Polym Sci 
44(144):505–515

Gayen B, Sarkar S (2010) Turbulence during the generation of internal 
tide on a critical slope. Phys Rev Lett 104:218502

Gostiaux L, Dauxois T, Didelle H, Sommeria J, Viboud S (2006) 
Quantitative laboratory observations of internal wave reflection 
on ascending slopes. Phys Fluids 18(5):056602

Gostiaux L, Didelle H, Mercier S, Dauxois T (2007) A novel internal 
waves generator. Exp Fluids 42(1):123–130

Horne E, Beckebanze F, Micard D, Odier P, Maas LRM, Joubaud S 
(2019) Particle transport induced by internal wave beam streaming 
in lateral boundary layers. J Fluid Mech 870:848–869

Hosegood P, Bonnin J, van Haren H (2004) Solibore-induced sediment 
resuspension in the Faeroe-Shetland channel. Geophys Res Lett 
31(9):L09301.  https://​doi.​org/​10.​1029/​2004G​L0195​44

Huang NE, Shen Z, Long SR, Wu MC, Shih H, Zheng Q, Yen NC, 
Tung CC, Liu HH (1998) The Empirical Mode Decomposition 
and the Hilbert spectrum for nonlinear and nonstationary time 
series analysis. Proc R Soc 454:903–995

Ivey GN, Winters KB, Koseff JR (2008) Density stratification, turbu-
lence, but how much mixing? Annu Rev Fluid Mech 40:169–184

Kataoka T, Akylas T (2020) Viscous reflection of internal waves from 
a slope. Phys Rev Fluids 5:014803

Kistovich Y, Chashechkin Y (1995) The reflection of beams of inter-
nal gravity waves at a flat rigid surface. J Appl Math Mech 
59(4):579–585

Meletti G, Abide S, Viazzo S, Krebs A, Harlander U (2020) Experi-
ments and long-term high-performance computations on ampli-
tude modulations of strato-rotational flows. Geophys Astrophys 
Fluid Dyn 10:1–25. https://​doi.​org/​10.​1080/​03091​929.​2020.​17956​
47

Mercier MJ, Garnier NB, Dauxois T (2008) Reflection and diffraction 
of internal waves analyzed with the Hilbert transform. Phys Fluids 
20(8):086601

Mercier MJ, Martinand D, Mathur M, Gostiaux L, Peacock T, Dauxois 
T (2010) New wave generation. J Fluid Mech 657:308–334

Oster G, Yamamoto M (1963) Density gradient techniques. Chem Rev 
63(3):257–268

Ouriemi M, Aussillous P, Medale M, Peysson Y, Guazzelli E (2007) 
Determination of the critical shields number for particle erosion 
in laminar flow. Phys Fluids 19(6):061706

Peacock T, Tabaei A (2005) Visualization of nonlinear effects in 
reflecting internal wave beams. Phys Fluids 17(6):061702. https://​
doi.​org/​10.​1063/1.​19323​09

Phillips OM (1966) The dynamics of the upper ocean. Cambridge Uni-
versity Press, Cambridge

Phillips OM (1970) On flows induced by diffusion in stably stratified 
fluids. Deep Sea Res 17(3):435–443

Pustelnik N, Borgnat P, Flandrin P (2014) Empirical mode decomposi-
tion revisited by multicomponent non smooth convex optimiza-
tion. Sig Process 102:313–331

Quaresma L, Vitorino J, Oliveira A, da Silva JCB (2007) Evidence of 
sediment resuspension by nonlinear internal waves on the western 
Portuguese mid-shelf. Mar Geol 246(2–4):123–143

Rilling G, Flandrin P, Gonçalvès P (2003) On Empirical Mode Decom-
position and its algorithms. In: IEEE-EURASIP workshop on non-
linear signal and image processing (NSIP-03)

Rodenborn B, Kiefer H, Zhang H, Swinney H (2011) Harmonic genera-
tion by reflecting internal waves. Phys Fluids 23:026601

Sarkar S, Scotti A (2017) From topographic internal gravity waves to 
turbulence. Annu Rev Fluid Mech 49:195–220

Schmitt J, Horne E, Pustelnik N, Joubaud S, Odier P (2015) An 
improved variational mode decomposition method for internal 
waves separation. In: Signal processing conference (EUSIPCO), 
2015 23rd European, pp 1935–1939

Scotti A (2011) Inviscid critical and near-critical reflection of internal 
waves in the time domain. J Fluid Mech 674:464–488

Tabaei A, Akylas T, Lamb K (2005) Nonlinear effects in reflecting and 
colliding internal wave beams. J Fluid Mech 526:217–243

Thorpe SA (1987) On the reflection of a strain of finite-amplitude 
internal waves from a uniform slope. J Fluid Mech 178:279–302

Wunsch C (1969) Progressive internal waves on slopes. J Fluid Mech 
35(1):131–144

Zhang HP, King B, Swinney HL (2008) Resonant generation of 
internal waves on a model continental slope. Phys Rev Lett 
100(24):244504

Zosso D, Dragomiretskiy K, Bertozzi A, Weiss P (2017) Two-dimen-
sional compact variational mode decomposition spatially compact 
and spectrally sparse image decomposition and segmentation. J 
Math Imaging Vis 58:294–320

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1029/2004GL019544
https://doi.org/10.1080/03091929.2020.1795647
https://doi.org/10.1080/03091929.2020.1795647
https://doi.org/10.1063/1.1932309
https://doi.org/10.1063/1.1932309

	Variational mode decomposition for estimating critical reflected internal wave in stratified fluid
	Abstract 
	Graphic abstract
	1 Introduction
	2 Experimental setup
	2.1 General setting
	2.2 Description of a typical experiment
	2.3 Temporal filtering
	2.4 Spatial filtering

	3 Variational mode decomposition method
	3.1 Mathematical framework
	3.2 Specificities to internal wave reflections

	4 Application of VMD to internal wave reflection
	4.1 Synthetic field of an internal wave critical reflection
	4.2 VMD parameters selection
	4.3 Decomposition of experimental measurements

	5 Conclusions
	Acknowledgements 
	References




