
J. Fluid Mech. (2023), vol. 957, A20, doi:10.1017/jfm.2023.58

Triadic resonant instability in confined and
unconfined axisymmetric geometries

S. Boury1,2,3,†, P. Maurer2, S. Joubaud2,4, T. Peacock3 and P. Odier2

1Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
2CNRS, Laboratoire de Physique, ENS de Lyon, F-69342 Lyon, France
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA
4Institut Universitaire de France (IUF), 1 rue Descartes 75005 Paris, France

(Received 30 May 2022; revised 31 October 2022; accepted 11 January 2023)

We present an investigation of the resonance conditions governing triad interactions
of cylindrical internal waves, i.e. Kelvin modes, described by Bessel functions. Our
analytical study, supported by experimental measurements, is performed both in confined
and unconfined axisymmetric domains. We are interested in two conceptual questions:
can we find resonance conditions for a triad of Kelvin modes? What is the impact of the
boundary conditions on such resonances? In both the confined and unconfined cases, we
show that sub-harmonics can be spontaneously generated from a primary wave field if they
satisfy at least a resonance condition on their frequencies of the form ω0 = ±ω1 ± ω2. We
demonstrate that the resulting triad is also spatially resonant, but that the resonance in the
radial direction may not be exact in confined geometries due to the prevalence of boundary
conditions – a key difference compared with Cartesian plane waves.
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1. Introduction

Participating to energy transfers between scales in the oceans, nonlinear interactions of
internal waves have been studied theoretically and experimentally in the case of several
wave fields interacting together (e.g. Husseini et al. 2019) and in the case of self-interacting
wave fields (e.g. Baker & Sutherland 2020). Self-interaction can be categorised into two
separate dual mechanisms (Boury 2020): super-harmonic generation (SHG) (e.g. Baker &
Sutherland 2020; Varma, Chalamalla & Mathur 2020; Boury, Peacock & Odier 2021a);
and generation of sub-harmonics via triadic resonant instability (TRI) (see Dauxois et al.
(2018) for a review). TRI is characterised by the nonlinear generation of two waves
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(the sub-harmonic secondary waves) from a wave of larger frequency (the primary
wave), forming a triad of monochromatic waves. These waves are in resonance, i.e. their
frequencies ω and wave vectors k are linked through linear relations

ω0 = ±ω1 ± ω2 and k0 = ±k1 ± k2, (1.1a,b)

where ω0 and k0 (respectively ω1, ω2 and k1, k2) are related to the primary wave
(respectively the secondary waves). Such nonlinear processes have been mostly studied in
two-dimensional (2-D) Cartesian geometry, for monochromatic propagating plane waves
and modes (i.e. horizontal standing wave propagating vertically, or the contrary; or fully
confined modes, e.g. Yalim, Lopez & Welfert 2018; Grayer II et al. 2021). Recent works
have explored the implications of a three-dimensional (3-D) domain, still with plane wave
forcings (see e.g. Mora et al. 2021).

Recent studies have focused on linear processes and resonance conditions in other
geometries, notably cylindrical (e.g. Lopez et al. 2002; Lopez & Marques 2018).
Experiments conducted with axisymmetric forcings (creating radially decaying wave
fields, described by Bessel functions) have confirmed that changing geometry allows for
a rich dynamics and a wide variety of interesting nonlinear behaviours (Shmakova &
Flór 2019; Boury et al. 2021a,b). For example, Boury et al. (2021a) provided evidence
that super-harmonics can be spontaneously generated through the self-interaction of a
monochromatic axisymmetric wave field, in a non-rotating linearly stably stratified fluid.
Studying an axisymmetric inertial wave attractor, Sibgatullin et al. (2017) and Boury
et al. (2021b) have also shown that orthoradial symmetry breakings are likely to occur
with energetic wave fields. The existence of resonant triads has also been explored in the
case of the elliptic instability triggered by a precessional forcing (e.g. Eloy, Le Gal & Le
Dizés 2003; Albrecht et al. 2015; Lagrange, Meunier & Eloy 2016; Albrecht et al. 2018).
Among recent studies, of particular interest are the focusing experiments performed by
Shmakova & Flór (2019) and by Maurer (2017) with axisymmetric conical wave fields
in stably stratified fluids. Using a vertically oscillating torus, Shmakova & Flór (2019)
provided experimental evidence of localised TRI triggered at the apex of the internal
wave cone (the focusing region). With a similar set-up of an annular wave generator in
non-uniform stratification, Maurer (2017) also observed the generation of sub-harmonics
at the convergence point of the 3-D wave field, this time accompanied by axisymmetry
breaking. While in both cases, frequencies and vertical wavenumbers were found to be
resonant, observations differed on the radial resonance condition, seen to be satisfied
locally in the case of Shmakova & Flór (2019) but not in the experiments of Maurer (2017)
(in which axisymmetry breaking is incompatible with trivial resonance conditions within
a triad of monochromatic waves).

Conceptually, the description of the wave field in terms of monochromatic Bessel
functions, imposed by the geometry of the forcing, presents two major difficulties
compared with Cartesian plane waves: first, a product of two Bessel functions cannot be
expressed as a single Bessel function (unlike for exponential functions describing plane
waves), meaning that the nonlinear terms do not produce a priori a monochromatic wave;
second, as the zeros of the Bessel functions are not regularly distributed (unlike for sines
and cosines), the allowed radial wavenumbers set by the boundary conditions in a confined
domain are not evenly spaced, preventing a priori simple algebraic resonances to exist.

The present article delves into these difficulties by investigating analytically the
resonance conditions of axisymmetric internal wave triads in confined and unconfined
domains, with the support of experimental observations. The domains considered, and
the experimental apparatus, are described in § 2 with two configurations: (1) a domain
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larger than the wave source, in which experiments are stopped before reflected waves
play a role so that no boundary conditions apply (‘unconfined’ geometry); and (2) a
doubly confined domain, both vertically and radially, in which boundary conditions
matter (‘confined’ geometry). The internal wave governing equations and their linear
solutions in cylindrical coordinates are derived and discussed in § 3. Sections 4 and 5
then explore theoretically and experimentally the possible resonances for the wave triads
in the unconfined and confined domains, respectively. Our conclusions and discussion on
the problem are presented in § 6.

2. Methods

2.1. Geometries
We consider two set-ups: the ‘unconfined’ case, in which waves can propagate freely in
an infinitely large domain; and the ‘confined’ case, in which the accessible domain is
restricted to a vertical cylinder with lateral, top and bottom boundaries. If these ideal
domains can easily be considered theoretically, it is important to note that experimentally
(with the set-up described below), both the wave generator and the domain have a finite
size. If the size of the domain is large enough compared with the size of the wave generator,
the boundaries are located sufficiently far from the source and have no impact on the local
nonlinear behaviour of the waves within the experimental measuring time, leading to the
configuration that we call ‘unconfined’; in contrast, if the size of the domain matches the
size of the generator, internal wave modes (‘box modes’) are generated, with the waves
constantly reflecting back on the cylindrical boundaries, leading to the configuration we
call ‘confined’.

2.2. Numerical tools
For the numerical computations, Bessel functions, Bessel integrals and Fresnel integrals
were evaluated using Matlab’s functions and integration scheme, providing good estimates
of these different quantities. When studying the dependence of Bessel function integrals
on radial wave numbers, a resolution of 10−2 m−1 was used.

2.3. Experimental apparatus
Experiments were conducted using the apparatus described by Boury, Peacock & Odier
(2019) and presented in figure 1. A cylindrical tank, enclosed in a 600 L square-base
acrylic tank, mounted on a rotating table, is filled with salt stratified water by using the
double-bucket method to obtain a linear stratification (constant vertical density gradient)
(Fortuin 1960; Oster & Yamamoto 1963). This allows us to consider both the gravity wave
case (as in § 5) and the gravito-inertial case (as in § 4). Internal wave fields were produced
thanks to an axisymmetric wave generator (Maurer et al. 2017) located at the top of the
tank. This device, adapted from 2-D wave makers (Gostiaux et al. 2006), is constituted
of 16 concentric cylinders oscillating vertically at the same tunable frequency and whose
amplitudes can be set separately. Its reliability in producing axisymmetric wave fields such
as Bessel modes or conical beams has been discussed in previous studies (Maurer et al.
2017; Boury et al. 2019; Boury, Odier & Peacock 2020; Boury et al. 2021a). An additional
acrylic cylinder of the same diameter as the generator is used to confine the wave field, and
hence two different sets of experiments were conducted: a first set without this cylindrical
boundary (‘unconfined’ case); and a second set with it (‘confined’ case).
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Figure 1. (a) Schematic of the experimental apparatus in the ‘confined’ configuration. The inner cylinder can
be removed to perform experiments in an ‘unconfined’ domain. Here, Ω is the rotation vector. (b) Example of
a linear stratification, from the confined experiments.

Velocity fields were visualised thanks to the particle image velocimetry (PIV) technique.
The fluid was seeded with hollow glass spheres and silver coated spheres, both of 10 μm
diameter. Vertical and horizontal laser sheets were generated with a 2 W Ti:Sapphire
laser (wavelength 532 nm) and a cylindrical lens. Particle displacements were recorded
at 4 Hz using a camera located either on the side of the tank (visualisation in the vertical
cross-section) or facing a 45◦ mirror placed under the tank (visualisation in the horizontal
cross-section). PIV raw images were processed thanks to the CIVx algorithm (Fincham &
Delerce 2000) to extract the velocity fields.

3. Theory

3.1. Governing equations
In the Boussinesq approximation, the Euler and conservation equations governing an
incompressible inviscid rotating (angular velocity Ω) stratified fluid (density ρ = ρ̄ + ρ′,
with background density ρ̄ and fluctuations ρ′) read, in cylindrical coordinates

∂tv + (v · ∇)v = −f ez × v − 1
ρ0

∇P + b, (3.1)

∂tb + (v · ∇)b = −N2vzez, (3.2)

∇ · v = 0 (3.3)

with v = (vr, vθ , vz), b = bez and P the velocity, buoyancy and pressure fields,
respectively. Here we define the buoyancy b and the buoyancy frequency N as

b = −g
ρ′

ρ0
and N(z) =

√
− g

ρ0

∂ρ̄

∂z

∣∣∣∣
z
, (3.4a,b)
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with ρ0 the mean density and the Coriolis frequency f as f = 2Ω . Introducing the vorticity
ξ = ∇ × v, (3.1) and (3.2) yield, after some algebra,

∂2
t ∇ × ξ + ∇ × N (v, b) = f ∂t∂zξ − N2∇ × [∇ × (vzez)] (3.5)

with the nonlinear terms

N (v, b) = ∇ × [∂t ((v · ∇)v) + (v · ∇)b]. (3.6)

3.2. Solutions of the linear problem
We first consider low amplitude waves, for which nonlinear effects can be neglected.
Hence, the linearised equations are obtained by setting the nonlinear term N in (3.5) to
zero, leading to the following time evolution equation:

∂2
t ∇ × ξ = f ∂t∂zξ − N2∇ × [∇ × (vzez)]. (3.7)

Using the volume conservation equation (3.3), the curl of the vorticity simply writes in
terms of the Laplacian of the velocity. Equation (3.7) writes

∂2
t Δ�v = −f ∂t∂zξ + N2∇ × [∇ × (vzez)], (3.8)

in terms of the velocities vr, vθ and vz. The vectorial cylindrical Laplacian Δ� is defined
involving a coupling between the radial and orthoradial velocities vr and vθ as

Δ�v =

⎡
⎢⎢⎢⎣

�vr − 1
r2 (vr + 2∂θvθ )

�vθ − 1
r2 (vθ − 2∂θvr)

�vz

⎤
⎥⎥⎥⎦ , with �v = 1

r
∂r (r∂rv) + 1

r2 ∂2
θ v + ∂2

z v. (3.9)

Therefore, the linearisation of (3.5) yields

∂2
t �vz + f 2∂2

z vz + N2
(

1
r
∂r(r∂rvz) + 1

r2 ∂2
θ vz

)
= 0, (3.10)

∂2
t �vr − 1

r2 ∂2
t (vr + 2∂θvθ ) + f ∂t∂z

(
1
r
∂θvz − ∂zvθ

)
− N2∂r∂zvz = 0, (3.11)

∂2
t �vθ − 1

r2 ∂2
t (vθ − 2∂θvr) + f ∂t∂z (∂zvr − ∂rvz) − N2 1

r
∂θ∂zvz = 0. (3.12)

The analytical solutions of this system are called Kelvin modes, and are explicitly

vr(r, θ, z, t) = i
mv0

z

4 lω

[
( f − 2ω)Jp−1(lr) + ( f + 2ω)Jp+1(lr)

]
× exp(i(ωt − mz − pθ)) + c.c., (3.13)

vθ (r, θ, z, t) = mv0
z

2 lω

[
(2f − ω)Jp−1(lr) − (2f + ω)Jp+1(lr)

]
× exp(i(ωt − mz − pθ)) + c.c., (3.14)
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vz(r, θ, z, t) = v0
z Jp(lr) exp(i(ωt − mz − pθ)) + c.c., (3.15)

b(r, θ, z, t) = i
N2v0

z

ω
Jp(lr) exp(i(ωt − mz − pθ)) + c.c., (3.16)

P(r, θ, z, t) = =ρ0 m( f 2 − ω2)v0
z

l2ω
Jp(lr) exp(i(ωt − mz − pθ)) + c.c., (3.17)

with Jj a Bessel function of order j ∈ Z, and with ω the wave frequency, and l ∈ R, m ∈ R

and p ∈ Z the radial, vertical and azimuthal wavenumbers, respectively. Note that l and
m are spatial wavenumbers (m−1), whereas p is an angular wavenumber (rad−1). Other
functions also satisfy (3.10), (3.11) and (3.12), but have divergences either for r → 0 or
r → +∞ (Olver et al. 2010), and are thus disregarded. A more thorough description of
these modes is provided by Guimbard (2008) and Boury (2020).

In the case of non-rotating flows (f = 0) that, for the sake of simplicity, will be
considered in the analytical discussion from now on, the system (3.13)–(3.17) can be
further simplified and we deduce the polarisation relations

vr = −i
m
l2

∂rvz, vθ = −mp
l2r

vz, b = i
N2

ω
vz and P = ρ0(N2 − ω2)

ωm
vz. (3.18a–d)

3.3. Nonlinearities and sub-harmonics generation
To investigate internal wave resonant triads, we now discuss the fully nonlinear equations
and compute explicitly the nonlinear terms in the case of three monochromatic Kelvin
modes. Theoretical derivations are now conducted in the non-rotating case to make
the calculus more tractable and pedagogical; note that the subsequent discussion is
not changed if we consider rotating flows. Setting f = 0, the system of (3.1)–(3.3) is
equivalent, once expanded, to

∂tvr + 1
ρ0

∂rP = −(v · ∇)vr, (3.19)

∂tvθ + 1
rρ0

∂θP = −(v · ∇)vθ , (3.20)

∂tvz + 1
ρ0

∂zP − b = −(v · ∇)vz, (3.21)

∂tb + N2vz = −(v · ∇)b, (3.22)

∇ · v = 0. (3.23)

In the general case, the triadic wave field can be decomposed into

vr =
3∑

j=1

vr,j, vθ =
3∑

j=1

vθ,j, vz =
3∑

j=1

vz,j, b =
3∑

j=1

bj and P =
3∑

j=1

Pj,

(3.24a–e)
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where a canonical Kelvin mode, labelled j, is defined as

vr,j(r, θ, z, t) = v0
r,j(t)J

′
pj
(ljr) exp(i(ωjt − mjz − pjθ)) + c.c., (3.25)

vθ,j(r, θ, z, t) = v0
θ,j(t)

Jpj(ljr)

ljr
exp(i(ωjt − mjz − pjθ)) + c.c., (3.26)

vz,j(r, θ, z, t) = v0
z,j(t)Jpj(ljr) exp(i(ωjt − mjz − pjθ)) + c.c., (3.27)

bj(r, θ, z, t) = b0
j (t)Jpj(ljr) exp(i(ωjt − mjz − pjθ)) + c.c., (3.28)

Pj(r, θ, z, t) = P0
j (t)Jpj(ljr) exp(i(ωjt − mjz − pjθ)) + c.c., (3.29)

where, to allow energetic exchanges between the modes, the amplitudes v0
r,j, v0

θ,j, v0
z,j, b0

j

and P0
j are slowly varying in time, yet still uniform in space. Equations (3.19)–(3.23) then

constitute a system with four nonlinear equations where, introducing the triad (3.24a–e)
and the explicit writing of the fields (3.25)–(3.29), the linear left-hand side can be written
as

∂tvr + 1
ρ0

∂rP =
3∑

j=1

[
∂tv

0
r,j + iωjv

0
r,j + lj

ρ0
P0

j

]
J′

pj
(ljr) exp(i(ωjt − mjz − pjθ)) + c.c.,

(3.30)

∂tvθ + 1
rρ0

∂θP =
3∑

j=1

[
∂tv

0
θ,j + iωjv

0
θ,j − i

pjlj
ρ0

P0
j

]
Jpj(ljr)

ljr

× exp(i(ωjt − mjz − pjθ)) + c.c., (3.31)

∂tvz + 1
ρ0

∂zP − b =
3∑

i=j

[
∂tv

0
z,j + iωjv

0
z,j − i

mj

ρ0
P0

j

]
Jpj(ljr)

× exp(i(ωjt − mjz − pjθ)) + c.c., (3.32)

∂tb + N2vz =
3∑

i=j

[
∂tb0

j + iωjb0
j + N2v0

z,j

]
Jpj(ljr) exp(i(ωjt − mjz − pjθ)) + c.c. (3.33)

At this point, it is worth noting that (3.30)–(3.33) show a well-established structure for
the radial dependence (namely (3.30) ∝ J′

pj
(r), (3.31) ∝ Jpj(r)/r, and (3.32) and (3.33) ∝

Jpj(r)). To be able to compute scalar products involving Bessel functions (see next section),
we write the radial dependences from (3.30) and (3.31) only in terms of a single Bessel
function ∝ Jpj(r) as in (3.32) and (3.33) by integrating (3.30) and by multiplying (3.31) by
r; the linear terms are then written as

∫ (
∂tvr + 1

ρ0
∂rP

)
dr =

3∑
j=1

[
∂tv

0
r,j + i

ωj

lj
v0

r,j + 1
ρ0

P0
j

]
Jpj(ljr)

× exp(i(ωjt − mjz − pjθ)) + c.c., (3.34)

957 A20-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.58


S. Boury, P. Maurer, S. Joubaud, T. Peacock and P. Odier

r
(

∂tvθ + 1
rρ0

∂θP
)

=
3∑

j=1

[
∂tv

0
θ,j + i

ωj

lj
v0
θ,j − i

pj

ρ0
P0

j

]
Jpj(ljr)

× exp(i(ωjt − mjz − pjθ)) + c.c., (3.35)

∂tvz + 1
ρ0

∂zP − b =
3∑

i=j

[
∂tv

0
z,j + iωjv

0
z,j − i

mj

ρ0
P0

j

]
Jpj(ljr)

× exp(i(ωjt − mjz − pjθ)) + c.c., (3.36)

∂tb + N2vz =
3∑

i=j

[
∂tb0

j + iωjb0
j + N2v0

z,j

]
Jpj(ljr) exp(i(ωjt − mjz − pjθ)) + c.c. (3.37)

Following the same techniques that have been used to investigate Cartesian TRI, we
consider a time scale separation in which the amplitude variations have a different
temporal scale than the wave field itself, i.e. ∂tv

0
z 	 ωv0

z . At first order, we recover
the polarisation relations and the linear solution, whereas at second order, we obtain
equations on the amplitudes involving the nonlinear (second order) interaction terms
of (3.19)–(3.23). This scale separation also imposes that all amplitudes have the same
temporal variation, i.e. ∂tv

0
z,j ∝ ∂tv

0
r,j ∝ ∂tv

0
θ,j ∝ ∂tb0

j . The study of the nonlinear terms
can therefore be reduced to the sole investigation of the effect of the nonlinear terms on
v0

z,j. To compute the nonlinear terms, we consider a triad of Kelvin modes, defined through
the vertical velocity as follows:

vz(r, θ, z, t) =
3∑

i=1

vz,i(r, θ, z, t) =
3∑

i=1

v0
z,i(t)Jpi(lir) exp(i(ωit − miz − piθ) + c.c.

(3.38)

Using the polarisation relations, the choice of vertical velocity is sufficient to describe the
whole velocity and buoyancy fields. As detailed in Appendix A, the computation of the
nonlinear terms shows that (v · ∇)vz determines the structure of the sub-harmonics, and
we will therefore restrict our study to this term. We will write

− (v · ∇)vz =
3∑

i=1

3∑
j=1

−i
v0

z,iv
0
z,j

lj

[
Mij

2

(
J

pj+1
pi−1 + J

pj−1
pi+1

)
− MjiJ

pj
pi

]
Φij, (3.39)

where the azimuthal, vertical and temporal dependences are included in

Φij ≡ Φij(θ, z, t) = exp(i
[
(ωi ± ωj)t − (mi ± mj)z − ( pi ± pj)θ

]
), (3.40)

and where, for the sake of clarity, we have defined the wavenumber product Mij = milj and
introduced the radially dependent quantity

J
pj
pi ≡ J

pj
pi(r) = Jpi(lir)Jpj(ljr). (3.41)

To summarise, the linear left-hand side is a sum of three monochromatic waves,
corresponding to a single frequency and a single spatial configuration, whereas the
nonlinear right-hand side is a sum of interacting waves. In general, these terms are
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Accessible domain Scalar product

Temporal (t) t ∈] − ∞; +∞[ 〈vz,i | vz,j〉t = 1
2π

∫ +∞

−∞
exp(i(ωi − ωj)t) dt = δ(ωi − ωj)

ω ∈ [0; +∞[

Radial (r) r ∈ [0; +∞[ 〈vz,i | vz,j〉r =
∫ +∞

0
Jpi (lir)Jpj (ljr)r dr = δ(li − lj)

li
l ∈] − ∞; +∞[

for pi = pj

Vertical (z) z ∈] − ∞; +∞[ 〈vz,i | vz,j〉z = 1
2π

∫ +∞

−∞
exp(−i(mi − mj)z) dz = δ(mi − mj)

m ∈] − ∞; +∞[

Azimuthal (θ ) θ ∈ [0; 2π[ 〈vz,i | vz,j〉θ = 1
2π

∫ 2π

0
exp(−i( pi − pj)θ) dθ = δ( pi − pj)

p ∈ Z

Table 1. Scalar products to consider in an unconfined domain.

non-zero even for the self-interaction term, and thus can act as a second-order forcing
term on the linear part of the equations (similarly to what has been discussed in Boury
et al. 2020, 2021a). This is relevant to triad formation: two sub-harmonic wave fields can
grow out of noise with energy input from a monochromatic forcing, potentially leading to
TRI or parametric sub-harmonic instability (PSI). A more thorough discussion is provided
in the next sections.

4. Unconfined domains: triadic resonant instability

4.1. Physical domain and projection
To investigate the forcing term created by the nonlinear interactions, we generalise the
projection method used to derive resonance relations in 2-D Cartesian TRI (Bourget 2014;
Maurer 2017). We have shown previously that, in the linear theory, Kelvin modes (i.e. the
velocity, buoyancy and pressure fields solutions of the linear equations) can be entirely
determined by the vertical velocity field, vz. Given different 4-uplets {ωi, li, pi, mi} of
frequencies and wavenumbers, the corresponding vertical velocity fields {vz,i} (defined
by (3.38)) form a family of mutually orthogonal functions with the spatio-temporal
Fourier–Hankel scalar product defined in table 1. We note 〈vz,i | vz,j〉 the complete scalar
product of two fields (operated for (t, r, θ, z) ∈ R × R

+ × [0; 2π] × R).
Here, we should point out an additional difficulty compared with the Cartesian case:

the projections are different for the temporal and vertical variables (integrals over R), the
azimuthal variable (integral on [0; 2π] due to the 2π-periodicity) and the radial coordinate
(integral on R

+, with orthogonality of Bessel functions). Note that to compute the radial
scalar product of the vr, vθ and vz equations, we have to write their r-dependence in terms
of Bessel functions only. Considering (3.21) on vz, its projection onto a monochromatic
solution of norm 1, v∗

z,j, defined by (3.27) as

v∗
z,j(r, θ, z, t) = Jpj(ljr) exp(i(ωjt − mjz − pjθ)), (4.1)

leads to 〈
∂tvz + 1

ρ0
∂zP − b

∣∣∣∣ v∗
z,j

〉
= ∂tv

0
z,j = 〈− (v · ∇) vz| v∗

z,j〉. (4.2)
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Since the temporal variations of the amplitudes present in the linear terms are at a different
time scale than the oscillatory part, they appear as uncoupled and the scalar product does
not affect their derivatives. We conclude, from (4.2), that the slow-varying amplitude terms
can be fed by nonlinear processes if and only if the scalar product of the corresponding
nonlinear left-hand side is non-zero.

4.2. Frequency resonance
Performing the temporal scalar product on the nonlinear terms, we obtain a delta function
whose argument is a linear combination of three frequencies. As the frequencies are
non-zero, the only resonant term (i.e. non-zero) is obtained when the resonance condition
in frequency is satisfied, meaning

ω0 = ±ω1 ± ω2. (4.3)

For sub-harmonics, both ω1 and ω2 are smaller than ω0; but the existence of triads
involving super-harmonics are also allowed by this relation. A particular case exists when
ω1 = ω2 = ω0/2, called PSI, with several experimental and in situ oceanic observations.

4.3. Vertical and azimuthal resonances
Similarly, the vertical and azimuthal scalar products yield resonance conditions in vertical
and azimuthal wavenumbers, namely

m0 = ±m1 ± m2, (4.4)

p0 = ±p1 ± p2. (4.5)

There is, however, an important difference between m and p: the vertical wavenumber m is
a continuous parameter that can take any value in R, whereas the azimuthal wavenumber
p is, because of the 2π-periodicity, a discrete parameter taken in Z.

4.4. Radial resonance
The radial scalar products are more difficult to evaluate, as they involve integrals over a
product of three Bessel functions of different orders and different arguments. To simplify
the discussion, we define the following integral:

∀ (h, i, j) ∈ N
3, Ξhij =

∫ +∞

0
Jh(l0r)Ji(l1r)Jj(l2r)r dr. (4.6)

Before delving into the general case, we will study two peculiar examples. The first
case is the triadic interaction of three axisymmetric modes; the second case involves a
symmetry breaking and leads to two cylindrical modes that are counter-rotating in the
horizontal plane, forced by an axisymmetric primary wave. In both cases, one of the
secondary waves (labelled 2) is computed using the nonlinear interaction of the primary
wave (labelled 0) with the other secondary wave (labelled 1), which naturally breaks the
symmetry between them; the calculus, however, gives the same results when switching the
secondary waves 1 and 2.
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Figure 2. Colourmaps of the logarithm of the coefficients |Ξhij| as a function of wavenumber ratios l1/l0 and
l2/l0, in the case p0 = p1 = p2 = 0, with (a) log(|Ξ110|), (b) log(|Ξ000|) and (c) logarithm of the product of
these two coefficients. Dashed lines show the locations of l0 ± l1 ± l2 = 0. (d) Profile of |Ξ110Ξ000| along the
first bissectrix (dotted line in panel (c)).

4.4.1. Radial resonance: axisymmetric case p0 = p1 = p2 = 0
We first consider the case of a triad with p0 = p1 = p2 = 0, i.e. where the axisymmetric
primary wave is in resonance with two axisymmetric secondary waves. Introducing a
constant coefficient Az, the radial scalar product of the nonlinear term is

〈−(v · ∇)vz〉r = Az [M01Ξ110 + M10Ξ000] . (4.7)

The coefficients Ξhij involved in (4.7) can be numerically investigated. Figure 2 presents
colourmaps of the logarithm of the absolute value of these coefficients |Ξhij| for Rl0
between 0 and 1900 with (a) |Ξ110|; (b) |Ξ000|; and (c) the product |Ξ110Ξ000|. All
quantities are plotted as a function of l1/l0 and l2/l0, with l1/l0 and l2/l0 going from 0
to 2, and the colourbar saturates at 1. The plots can be extended by symmetry to obtain the
complete diagram for negative values of l1/l0 and l2/l0. Note that these quadrants are, in
general, not symmetrical with respect to the bissectrix: switching the wavenumbers l1 and
l2 yields the same plot if and only if the corresponding indices of the associated Bessel
functions in Ξhij are the same, i.e. if we can write Ξhhj as in figures 2(a) and 2(b) with Ξ000
and Ξ110. As clearly identified in figure 2(c) (and less clearly in figure 2(a,b)), the only
cases for which the Ξhij integrals are non-zero correspond to the lines l0 ± l1 ± l2 = 0, i.e.
along the possible radial resonance relations. Figure 2(d) shows the value of |Ξ000Ξ110|
along the first bissectrix (dotted line in figure 2c) and illustrates that a maximum is reached
when the resonance relation is reached, i.e. l1/l0 = l2/l0 = 0.5.
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Figure 3. Colourmaps of the logarithm of the coefficients |Ξhij| as a function of wavenumber ratios l1/l0 and
l2/l0, in the case of p0 = 0, p1 = 1 and p2 = −1, with (a) log(|Ξ011|), (b) log(|Ξ101|), (c) log(|Ξ121|) and
(d) logarithm of the product of the three coefficients. Dashed lines show the locations of l0 ± l1 ± l2 = 0.
(e) Schematic representation of the triad. ( f ) Profile of the product |Ξ011Ξ101Ξ121| along the first bissectrix
(dotted line in panel (d)).

4.4.2. Radial resonance: non-axisymmetric case p0 = 0, p1 = 1 and p2 = −1
We now consider a second case study involving a symmetry breaking, with p0 = 0, p1 = 1
and p2 = −1. This triad corresponds to an axisymmetric primary wave in resonance with
two non-axisymmetric (i.e. cylindrical) secondary waves. In the horizontal plane, one of
the secondary waves is rotating clockwise while the other one is rotating anti-clockwise.
Following the same reasoning as previously, the radial scalar product of the nonlinear term
is written as

〈−(v · ∇)vz〉r = Az

[
M01

2
(Ξ101 − Ξ121) − M10Ξ011

]
. (4.8)

As for the previous case study, we conduct a numerical investigation of the different
terms |Ξhij| involved in (4.8). Figure 3 presents colourmaps of the logarithm of the
absolute value of these coefficients for (a) |Ξ011|; (b) |Ξ101|; (c) |Ξ121|; and (d) the product
|Ξ011Ξ101Ξ121|. Again, the numerical integration is performed for Rl0 between 0 and 1900,
and all quantities are plotted as a function of l1/l0 and l2/l0, with l1/l0 and l2/l0 going from
0 to 2. As in the fully axisymmetric case, the coefficients (and their product) are maximal
along the lines corresponding to the radial resonance relation, and almost zero everywhere
else.

4.4.3. Asymptotics
From the two numerical case studies of sub-harmonics, we empirically conjecture that the
existence of non-vanishing Ξhij coefficients in the nonlinear part of the wave equations
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Figure 4. Plots of the functions (a) J0 and (b) J1 (solid lines) with the asymptotic approximation J̃0 and J̃1
(dashed lines).

leads to a radial resonance condition of the form l0 = ±l1 ± l2. A possible way to
investigate this further is to use an asymptotic development of the Bessel functions. At
a given radial wavenumber l, for large values of lr, the functions Jn can be approximated
by the functions J̃n defined as follows (Olver et al. 2010):

∀ n ∈ N, ∀ r ∈ R
∗, J̃n(lr) =

√
2

πlr
cos

(
lr − π

2

(
n + 1

2

))
, (4.9)

from which we deduce, notably, for the zeroth- and first-order Bessel functions describing
the axisymmetric wave field

∀ r ∈ R
∗, J̃0(lr) =

√
2

πlr
cos

(
lr − π

4

)
and J̃1(lr) =

√
2

πlr
sin

(
lr − π

4

)
.

(4.10a,b)

These approximations are presented in figures 4(a) and 4(b), respectively. As can be seen
in these two plots, the values of lr for which the approximation (4.9) is valid (less than
4 % difference) is lr > 1 for J0 and lr > 2 for J1. Compared with our experimental
configuration of a radial mode 1 with l = 19 m−1, this means that the profile is very well
approximated by this decaying cosine for r > 15 cm, and sooner for higher order radial
modes.

The coefficients Ξhij previously defined in (4.6) can be rewritten, using this asymptotic
formulation, as an improper integral

∀ (h, i, j) ∈ N
3, Ξhij � lim

ε→0

∫ +∞

ε

J̃h(l0r)J̃i(l1r)J̃j(l2r)r dr, (4.11)

whose integrands are diverging in 0 (see dotted curves in figure 4), while remaining
integrable (which is why, formally, the limit ε approaching 0 is needed). Using the
definition from (4.9) and trigonometric relations, we find that the coefficients Ξhij can
be expressed as a sum of integrals over approximated Bessel functions

∀ (h, i, j) ∈ N
3,

Ξhij � Γ (1, h, i, j) + Γ (0, h, i, −j) + Γ (0, h, −i, j) + Γ (−1, h, −i, −j),
(4.12)

957 A20-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.58


S. Boury, P. Maurer, S. Joubaud, T. Peacock and P. Odier

where, given (a, b, c, d) ∈ Z
4, we write

Γ (a, b, c, d) = lim
ε→0

∫ +∞

ε

1
2π

√
lbcd

l0l1l2
J̃a+b+c+d(lbcdr) dr, (4.13)

with, using the sign function, the radial interaction wavenumber lbcd, i.e.

lbcd = sign(b)l0 + sign(c)l1 + sign(d)l2. (4.14)

Note that, thanks to the symmetric writing of Γ , the four Γ integrals involved in (4.12)
are linked to four different radial interaction wavenumbers labc. Interestingly, the cases
lbcd = 0 correspond to the four possible triads that can be obtained through the formula
l0 ± l1 ± l2 = 0.

Thanks to trigonometric relations and change of variables, these Γ integrals can
be explicitly described by a sum of Fresnel integrals x �→ C(x) and x �→ S(x) (see
Appendix B and Olver et al. 2010), whose values in x = 0 are 1 and 0, respectively, and
whose limit when x approaches +∞ is 0. We deduce that the value of Γ only depends on
the cosine Fresnel integral and we can therefore write

Γ (a, b, c, d) = Γ C(a, b, c, d), (4.15)

with

Γ C(a, b, c, d) =
√

2
π3l0l1l2

cos
(

π

2

(
a + b + c + d + 1

2

))
δ(lbcd). (4.16)

If l0, l1 and l2 are linked by a triadic relation so that lbcd = 0 for a given (b, c, d) ∈ Z
3,

then one (and only one) of the four Γ integrals has a reduced interaction radial
wavenumber lbcd equal to zero whereas the three others have non-zero reduced interaction
radial wavenumbers. The corresponding disjunctive case study is presented in table 2. We
conclude that one (and only one) of the four Γ integrals is non-zero, and we have

|Ξhij| = 1√
π3l0l1l2

with l0 ± l1 ± l2 = 0. (4.17)

This is true, for example, for (hij) = (000), (110), (011), (101) and (121) (that correspond
to Ξhij involved in (4.7) and (4.8)), consistent with the two case studies. The five Ξ

integrals are therefore non-zero, and have approximatively the same norm. It can also
be shown that they are maximal since d[C(x)/x]/dx = 0 for x = 0. In this case, when the
three radial wavenumbers are linked by a linear relation of the form l0 = ±l1 ± l2, the
nonlinear system of internal wave equations reduces to a system that no longer involves
neither Ξhij nor Bessel integrals, allowing for the same resolution method as in Cartesian
geometry. Although the result is not exact (since it is derived from asymptotic expressions
of the Bessel functions), this is an interesting finding that may contribute to the derivation
of the resonance relation.

4.5. Degrees of freedom versus constraints
Let us now discuss the degrees of freedom of such a triadic interaction. The primary
wave field being set, the triad is determined by the frequencies and wavenumbers of
the sub-harmonic secondary waves, which means 8 parameters (2 × 1 frequencies and
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Triadic relations: If. . . l0 + l1 + l2 = 0 l0 + l1 − l2 = 0 l0 − l1 + l2 = 0 l0 − l1 − l2 = 0

Then l0 + l1 + l2 = 0 2l2 2l1 2l0
Then l0 + l1 − l2 = −2l2 0 2l0 2l1
Then l0 − l1 + l2 = −2l1 2l0 0 2l2
Then l0 − l1 − l2 = 2l0 −2l1 −2l2 0

Table 2. Disjunctive case study showing the values of l0 ± l1 ± l2 when a triadic relation between the radial
wavenumbers is satisfied.

2 × 3 wavenumbers). The constraints can be listed as 2 dispersion relations and 4
resonance conditions. Therefore, the system has two degrees of freedom, which also means
that it has a degeneracy in its solutions. The triad satisfies the following relations:

ω0 = ±ω1 ± ω2, (4.18)

m0 = ±m1 ± m2, (4.19)

p0 = ±p1 ± p2, (4.20)

l0 � ±l1 ± l2, (4.21)

in which we remind that the approximate equality for the radial wavenumbers l0, l1
and l2, comes from the geometry itself and properties of the Bessel functions (see
figures 2 and 3, showing a finite (but non-zero) width peak for the resonance condition).
Although, to our knowledge, no such observation has been reported, the triadic resonant
relations should be similar for 3-D Cartesian wave fields. Note that, for (quasi) 2-D
wave fields (i.e. Cartesian 2-D or axisymmetric), there are only 6 free parameters (2 × 1
frequencies and 2 × 2 wavenumbers) for 5 constraints (2 dispersion relations and 3
resonance conditions), which means that the triadic system is mono-valued and only
admits a unique solution once one of the free parameters is fixed. For example, in 2-D,
setting one of the sub-harmonic frequencies is enough to characterise the whole wave
field and the sub-harmonic wavenumbers. Conversely, in 3-D, the frequency and one of
the wavenumbers of a sub-harmonic can be chosen independently to determine the whole
wave field.

The present analysis has been performed for internal waves in a stratified, non-rotating
fluid (f = 0), but a similar study can be undertaken in the rotating case (f /= 0). We
speculate that the coupling equations would then be modified with additional cross-terms
adding more complexity to the nonlinear resonant forcing, but the resonance conditions
would still be the same. In other words, since the base flow equations are identical in the
rotating and in the non-rotating cases, the resonance conditions will be the same; however,
the different coefficients, related to the growth rates, would likely be modified. The major
differences would thus be on the selection of the modes (i.e. which modes would be the
most unstable) rather than on the resonance conditions per se. We also note that adding
rotation increases the wave instability and the 3-D effects, and is more likely to create
symmetry breakings (such as, in our case, the creation of pure cylindrical modes with an
azimuthal wavenumber p /= 0 out of an axisymmetric forcing wave field) (Maurer, Joubaud
& Odier 2016; Ha, Chomaz & Ortiz 2021; Mora et al. 2021).
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Figure 5. Fourier transform performed approximately 300 s after starting the experiment. The buoyancy
frequency is N = 0.97 rad s−1 and the Coriolis frequency f = 0.294 rad s−1. Forcing was imposed at a
frequency ω0 = 0.80 rad s−1.

4.6. Experimental observation
We conducted experiments in which we generated axisymmetric inertia-gravity waves in
an unconfined domain with a density stratified and rotating fluid. The primary aim of
these experiments is to trigger TRI with high sensitivity in the regime (ω/f , ω/N) in
which it is the most likely to occur (Maurer et al. 2016). Some of these experiments show
resonant triads in cylindrical geometry, with a symmetry breaking, as previously described
in our study case 2. This subsection focuses on the analysis of one of these experiments,
run at buoyancy frequency N = 0.97 rad s−1 and Coriolis frequency f = 0.294 rad s−1.
The forcing imposed at frequency ω0 = 0.80 rad s−1 is a truncated Bessel function with a
wavenumber l0 = 42 m−1 and an amplitude a = 15 mm.

On the Fourier transform computed approximately 300 s after the beginning of the
experiment, presented in figure 5, we can see a peak at the forcing frequency ω0 =
0.80 rad s−1 accompanied by two peaks at smaller frequencies at ω1 = 0.30 and ω2 =
0.50 rad s−1. These three frequencies satisfy the triadic resonant condition ω0 = ω1 + ω2.
Velocity fields filtered at the frequencies associated with the observed TRI satisfying the
resonance condition are presented in figure 6. In the vertical cross-section, we can estimate
the vertical wavelength and associated wavenumber mj for j ∈ {0, 1, 2}. These values are
presented in table 3. From our estimates, we verify the resonance condition on the vertical
wavenumber as we have m0 � m1 − m2.

The radial wave fields are described by Bessel functions of the first kind J1 and are
therefore of the form J1(ljr) for j ∈ {0, 1, 2}. The first zero of this Bessel function is
approximately equal to 3.83 (Beattie 1958). For each value of j, the location rj of the
first zero can be identified in these velocity fields (figure 6g–i), and the corresponding
wavenumber lj can then be deduced (lj = 3.83/rj). These numbers are presented in table 3
for the three frequencies identified in figure 5. The radial wavenumber l0 = 42 m−1

obtained for the primary wave is consistent with the imposed forcing. The two radial
wavenumbers for the secondary waves are close to satisfy the resonance relation l0 �
l1 + l2.

Furthermore, there is a clear symmetry breaking as the velocity fields for the secondary
waves at ω1 and ω2 start rotating clockwise and anti-clockwise, respectively, meaning
that there is an azimuthal wavenumber p1 = +1 and p2 = −1 (see table 3). This verifies
the orthoradial resonance condition as the excitation field has an azimuthal wavenumber
p0 = 0 = p1 + p2. This is also consistent with the fact that the primary wave is
axisymmetric, i.e. can be described by vz ∝ J0(l0r) and vr ∝ J1(l0r) with non-zero vertical
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Figure 6. Radial velocity fields, with no confining cylinder, buoyancy frequency N = 0.97 rad s−1 and
Coriolis frequency f = 0.294 rad s−1. From panels (a–i): primary forcing wave at ω0 = 0.80 rad s−1, and
secondary waves at ω1 = 0.50 and ω2 = 0.30 rad s−1. The first two rows show the vertical and the radial
velocities in the vertical cross-section, and the third row shows the radial velocity in the horizontal
cross-section.

Field at frequency ωj ω0 ω1 ω2

Vertical wavelength (m) 0.40 ± 0.04 0.10 ± 0.02 0.13 ± 0.02
Corresponding wavenumber mj (m−1) 16 ± 2 63 ± 8 48 ± 9
First radial zero identified rj (m) 0.09 ± 0.01 0.12 ± 0.01 0.33 ± 0.03
Corresponding wavenumber lj (m−1) 42 ± 5 32 ± 3 12 ± 1
Identified orthoradial periodicity pj 0 +1 −1

Table 3. Wavenumbers extracted from the experiment for the radial velocity fields filtered at ωj, with j ∈
{0, 1, 2}, showing from top to bottom: the vertical wavelengths and their corresponding vertical wavenumbers;
the first zeros rj measured in the experiment and their corresponding radial wavenumber lj; the identified
orthoradial periodicity pj.

velocity and zero radial velocity at r = 0, whereas the two secondary waves are cylindrical
and non-axisymmetric, for example with non-zero radial velocity at r = 0, as allowed for
Kelvin modes.
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Accessible domain Scalar product

Temporal (t) t ∈ ] − ∞;+∞[ 〈vz,i | vz,j〉t = 1
2π

∫ +∞

−∞
exp(i(ωi − ωj)t) dt = δ(ωi − ωj)

ω ∈ [0; +∞[

Radial (r) r ∈ [0; R] 〈vz,i | vz,j〉r =
∫ R

0
Jpi (lir)Jpj (ljr)r dr = δ(li − lj)

li
lR a Bessel zero

for pi = pj

Vertical (z) z ∈ [0; H] 〈vz,i | vz,j〉z = 1
2π

∫ H

0
exp(−i(mi − mj)z) dz = δ(mi − mj)

m = nπ/(2H), n ∈ Z

Azimuthal (θ ) θ ∈ [0; 2π[ 〈vz,i | vz,j〉θ = 1
2π

∫ 2π

0
exp(−i( pi − pj)θ) dθ = δ( pi − pj)

p ∈ Z

Table 4. Scalar product to consider in a confined domain.

5. Confined domains: coercion by boundary conditions

5.1. Boundary conditions and structure of the solutions
As detailed in table 4 (left column), confining the wave field in a cylinder of radius R and
height H reduces the accessible spatial domain, from R

+ to [0; R] in the radial direction,
and from R to [0; H] in the vertical direction. Such a change of geometry imposes a
new set of constraints: in contrast to infinite domains, the wave field now has to satisfy
boundary conditions, namely zero orthogonal velocity on top and bottom at depth H,

vz(z = 0) = 0 and vz(z = H) = 0, (5.1a,b)

as well as on the lateral cylindrical wall located at a radius R,

vr(r = R) = 0. (5.2)

As opposed to the unbounded scenario detailed in the previous section, the full
confinement induced by the lateral and horizontal boundary conditions leads to de-coupled
vertical and horizontal dependence of the wave field as well as to a larger wave–wave
interaction volume. The wavenumbers and, consequently, the modes allowed in such a
confined geometry are now quantified: only a discrete collection of radial and vertical
wavenumbers can be selected.

The first condition of (5.1a,b) is automatically fulfilled when writing the vertical
dependence of the mode as a sine function with no phase shift, as previously assumed;
the second condition can be solved analytically and, introducing z� = mH, it leads to

mH = z�=nπ

2
with n ∈ N. (5.3)

As discussed by Boury et al. (2019), this vertical confinement and the condition stated
by (5.3) produce a wave resonator through constructive and destructive interference,
depending on the forcing wave frequency. While the forcing wave field might not fulfil
this condition per se, additional wave fields generated through nonlinear interactions are
compelled to satisfy it as soon as they fill the entire domain (see, e.g. generation of
super-harmonics; Boury et al. 2021a).

957 A20-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.58


TRI in confined and unconfined axisymmetric geometries

The cylindrical boundary also constrains the allowed values of horizontal wavenumbers
through the non-penetration condition (5.2) that can be written more explicitly as

( f − 2ω)Jp−1(lR) + ( f + 2ω)Jp+1(lR) = 0. (5.4)

In contrast to the vertical condition (5.3), this equation shows that the horizontal
description of the wave field, contained in the wavenumbers l and p, depends on the
frequency for inertia-gravity waves. In the peculiar case of stratified non-rotating fluids,
this relation no longer depends on ω and simply writes

Jp−1(lR) − Jp+1(lR) = 0. (5.5)

Note that, for axisymmetric modes (p = 0), this condition reduces to

J1(lR) = 0 (5.6)

for both gravity and inertial waves. In a more general case, the zeros lR = r� of (5.4) can
be determined numerically. We present, in figure 7, plots of the left-hand side of (5.4) for
p = 0 (a) and p = 2 (b), both for f = 0, and the three first non-zeros solutions r� as a
function of f /ω (c). The colours stand for the value of p from 0 through 4, and the solid,
dashed and dotted styles correspond to the first, second and third solutions, respectively.
A vertical dashed line at f /ω = 1 indicates the cut-off between the gravity-dominated
region (f < ω < N) and the inertia-dominated region (N < ω < f ). As expected from the
calculus performed with the axisymmetric assumption, for p = 0, the solutions of (5.5) do
not depend on the frequency, but this is no longer the case as soon as p /= 0.

From now on, we should therefore consider box solutions, that we call modes, i.e. wave
fields that comply both with the symmetry (2π-periodicity) and the geometry ((r, z) ∈
[0; R] × [0; H]) of the system, leading to a discretisation of the allowed wavenumbers. As
shown before, defining the vertical velocity field is sufficient to describe these modes, and
we write again

vz,j(r, θ, z, t) = v0
v,jJpj(ljr) exp(i(ωjt − mjz − pjθ)), (5.7)

where the values taken by lj, mj and pj are now discrete. The scalar products on the radial
and vertical coordinates defined in the previous section do not apply any longer for we
have to take into account the finiteness of the domain and the discrete nature of the
wavenumbers. We present in table 4 (right column) the relevant scalar products that we
will use to discuss the resonance conditions of these modes.

5.2. Resonance in frequency
Similarly to the unconfined case, the temporal scalar product gives a resonance condition
on the three wave frequencies that form a triad. In the absence of any additional constraint,
this condition is always fulfilled and leads to the selection of two sub-harmonics of
frequencies ω1 and ω2 such that ω0 = ±ω1 ± ω2. Note that this process is similar to the
generation of super-harmonics in confined domains (Boury et al. 2021a).

5.3. Azimuthal resonance
The scalar product on θ is the same as in the unconfined case, and leads to the same
resonance condition on the azimuthal wavenumbers p0 = ±p1 ± p2. As in the unconfined
case, the values of p are integers, to comply with the 2π-periodicity of the system.
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Figure 7. Illustration of condition (5.4) imposed by the cylindrical boundary condition. (a,b) Plots of (5.4) for
f = 0 with p = 0 (a) and p = 2 (b). (c) Locations r� of the first (solid line), second (dashed line) and third
(dotted line) non-zero nodes of (5.5), for p from 1 through 4. The vertical dashed line helps distinguish the
domains f < ω < N and N < ω < f .

5.4. Vertical resonance
Due to the confinement, all of the vertical wavenumbers m can be expressed as
m = nπ/(2H) with n ∈ N. Recasting the scalar product from z ∈ R with m ∈ R into
z ∈ [0; H], with m defined through integers, leads to the same resonance condition
m0 = ±m1 ± m2. Interestingly, although the vertical confinement of the wave field
imposes a discrete set of vertical wavenumbers, the vertical resonance condition can still
be exact: this is due to the constant discrete spacing between two consecutive vertical
wavenumbers for modes in the confined domain, always distant of π/(2H) (see (5.3)),
that allows for vertical wavenumbers that satisfy both the boundary conditions and the
resonance relation.

5.5. Radial resonance: asymptotic study
Along the radial direction, however, the difference is more significant. To discuss it, we
will use a similar asymptotic study as we did in the unconfined case. The scalar product
performed on the linear part of the system of equations is now reduced to an integral from
0 to R (instead of 0 to +∞) where the wavenumbers l are discrete (instead of continuous).
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This imposes a rewriting of the integral over three Bessel functions, now radially limited
in space, as

∀ (h, i, j) ∈ N
3, Ξhij � 1

R2

∫ R

0
J̃h(l0r)J̃i(l1r)J̃j(l2r)r dr, (5.8)

leading to a redefinition of the Γ functions, given (a, b, c, d) ∈ Z
4 and the radial

interaction wavenumber lbcd defined in (4.14), as

Γ (a, b, c, d) = 1
R2

∫ R

0

1
2π

√
lbcd

l0l1l2
J̃a+b+c+d(lbcdr) dr. (5.9)

As for the unconfined case, these functions can be written as a sum

Γ (a, b, c, d) = Γ C(a, b, c, d) + Γ S(a, b, c, d), (5.10)

with

Γ C(a, b, c, d) =
√

2
π3l0l1l2

cos
(

π

2

(
a + b + c + d + 1

2

))
C
(
l∗bcd

)
l∗bcd

(5.11)

and

Γ S(a, b, c, d) =
√

2
π3l0l1l2

sin
(

π

2

(
a + b + c + d + 1

2

))
S
(
l∗bcd

)
l∗bcd

, (5.12)

where, for the sake of clarity, we use the notation

l∗bcd=
√

2R|lbcd|
π

(5.13)

for the reduced interaction radial wavenumber. In contrast to the unconfined case, in which
the reduced sine and cosine Fresnel integrals are only evaluated in 0 (if the resonance
relation on l is satisfied) or in +∞ (if they are not), now they can be evaluated from 0
to l∗, due to the finite size of the domain. Incidently, they are no longer equal to 0 or
to 1, but to values that are continuously distributed in [0; 1]. This allows for the radial
resonance to be ‘approximate’, i.e. lbcd � 0, without preventing the nonlinear terms to be
a second-order forcing of the system.

5.6. Radial resonance: case studies in confined domain
We now consider the same two case studies as in the unconfined geometry, i.e. (1) a fully
axisymmetric case p0 = p1 = p2 = 0, and (2) a non-axisymmetric case p0 = 0, p1 = 1
and p2 = −1. The numerical investigation presented here will help discuss the impact of
the finite size of the domain, or confinement of the wave fields, on the resonance.

5.6.1. Axisymmetric case p0 = p1 = p2 = 0
As already discussed, in the fully axisymmetric case p0 = p1 = p2 = 0, the radial scalar
products of the nonlinear term are written as

〈−(v · ∇)vz〉r = Az [M01Ξ110 + M10Ξ000] . (5.14)

The normalised absolute values of the corresponding coefficients Ξhij are numerically
computed and presented in figure 8 as a function of l1/l0 and l2/l0, with l1/l0 and
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Figure 8. Colourmaps of the normalised coefficients |Ξhij| as a function of wavenumber ratios l1/l0 and l2/l0,
in the case p0 = p1 = p2 = 0, with (a) |Ξ110|, (b) |Ξ000| and (c) product of the two previous quantities. Dashed
lines show the locations of l0 ± l1 ± l2 = 0. (d) Profile along the dotted line in panel (c).

l2/l0 going from 0 to 2. We can see that although |Ξ110| and |Ξ000| have different
behaviours at a random location in the parameter space (l1/l0, l2/l0), they generally
show maximum values on the diagonals such that ±l1 ± l2 = l0, shown by white dashed
lines in figure 2. Their product is even more eloquent, as there is a clear maximum
for ±l1 ± l2 = l0, whereas the product is almost zero everywhere else. From these
observations, we conjecture that the most likely values for radial wavenumbers in TRI,
for which relation (4.7) has a non-zero right-hand side, satisfy the relation l0 = l1 + l2, as
shown experimentally by Shmakova & Flór (2019) and as already observed for Cartesian
plane waves where it can be analytically demonstrated that ±l1 ± l2 = l0 is a necessary
condition (Joubaud et al. 2012).

For the sake of the demonstration, we shall clarify that having a non-zero product
|Ξ110Ξ000| is neither the only way for (4.7) to be resonant (for example, it is resonant if
Ξ000 is null and if Ξ110 is not), nor does it ensure that this equation is resonant (depending
on the values of M01 and M10, this equation can be non-resonant even if the product
|Ξ110Ξ000| is not null). Our reasoning nonetheless points towards a high probability of
the system to select ‘preferential’ configurations that correspond to the case of a high
value of |Ξ110Ξ000|, equivalent to large resonant terms and therefore large and efficient
energy transfer. We note that for the sub-harmonics to exist, the nonlinear characteristic
time (related to the growth of the instability) should overcome the viscous characteristic
time (related to dissipative effects and therefore preventing the growth of sub-harmonics).
This condition depends on the signs and values of the coefficients M01 and M10 that set the
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growth rate of the sub-harmonics, but the cases for which such a condition is not satisfied
are highly unlikely.

For a comparison, similar colourmaps to these presented in figure 8 could be plotted
for the nonlinear terms in 2-D Cartesian geometry. In this case, the corresponding spatial
integrals are associated to a product of three complex exponential functions (i.e. plane
waves) instead of Bessel functions and, due to the properties of their scalar product, the
colourmaps are exactly 1 over the diagonals ±l1 ± l2 = l0 and 0 everywhere else. Here,
the finite size effect and approximate radial resonance (that can be seen through the more
‘diffuse’ branches in the product in figure 8(c), compared with the unconfined case in
figure 2), is due to the geometry of the wave field.

5.6.2. Non-axisymmetric case p0 = 0, p1 = 1 and p2 = −1
In the second case study with p0 = 0, p1 = 1 and p2 = −1, we have seen that the radial
scalar product of the nonlinear term is written as

〈−(v · ∇)vz〉r = Az

[
M01

2
(Ξ101 − Ξ121) − M10Ξ011

]
. (5.15)

Figure 9 presents colourmaps of the normalised absolute value of the coefficients Ξhij,
plotted as a function of l1/l0 and l2/l0, with l1/l0 and l2/l0 going from 0 to 2. These
coefficients have, in general, maximum values on the diagonals given by ±l1 ± l2 = l0
and there is a clear maximum for ±l1 ± l2 = l0 for their product whereas it is almost
zero everywhere else, leading to the same conclusion as in the fully axisymmetric case.
We perform the same measure on the mid-height width of the branches to quantify the
equality of the resonance relation. The profile presented in figure 9( f ) is taken along the
bissectrix shown by the dotted line in the product plot 9(d).

5.7. Approximated triadic resonance
We have seen, with the two case studies, that the radial resonance is not exact since the
branches corresponding to exact resonant triads l0 ± l1 ± l2 = 0 have a given spectral
extension that we could quantify as a relative mid-height width �l/l0. This can be
transduced as

l0 ± l1 ± l2 = ε (5.16)

when the triad is radially resonant, with ε 	 �l. The remaining question is to quantify this
‘approximate’ resonance. To do so, we focus on the first bissectrix, i.e. the case l1 = l2,
and we introduce a common variable l̃ = l1 = l2 to describe it. With this notation, we can
define a renormalised variable l� as

l�=
√√√√2l0R

π

∣∣∣∣∣1 − 2l̃
l0

∣∣∣∣∣. (5.17)

According to our model, close to the radial resonance (i.e. for l� close to 0), the
integrals Ξhij are determined only by the reduced cosine Fresnel integral C(l�)/l�, which
should therefore fix the relative mid-height width �l/l0. To confirm the validity of
our development, we present in figure 10 the colourmaps of the product Ξ110Ξ000,
corresponding to the first case study aforementioned, in three different cases: (a) l0 =
19 m−1 (mode 1); (b) l0 = 51 m−1 (mode 3); and (c) l0 = 82 m−1 (mode 5). We also
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Figure 9. Colourmaps of the normalised coefficients |Ξhij| as a function of wavenumber ratios l1/l0 and l2/l0,
in the case p0 = 0, p1 = 1 and p2 = −1, with (a) |Ξ011|, (b) |Ξ101|, (c) |Ξ121| and (d) the product of the three
previous quantities. Dashed lines show the locations of l0 ± l1 ± l2 = 0. (e) Schematic representation of the
triad. ( f ) Profile along the dotted line in panel (d).

present a comparison between the normalised profiles measured along the bissectrix
(dotted line in panels (a) to (c)) and the cosine Fresnel integral C(l�)/l� predicted by
the theory, for the three different values of l0, in panels (c,d, f ), respectively. Since we
are considering the product of two integrals Ξ110Ξ000, both behaving asymptotically as
C(l�)/l�, we plot the quadratic quantity (C(l�)/l�)2. Thanks to figure 10(d–f ), we note the
very good agreement between the numerically computed profiles (blue solid lines) and the
theory (orange dashed lines) to describe the behaviour close to the resonance located at
l1/l0 = l2/l0 = 0.5. The mid-depth width, �l/l0, that can be extracted from the asymptotic
theory is exactly the same as the one obtained from the numerics. As already discussed,
these results can be extended to other configurations (e.g. second case study) and will lead
to the same conclusions.

Our asymptotic theory predicts, in agreement with the exact computation of the resonant
terms, that the radial resonance in such a cylindrical geometry is not exact and that we can
quantitatively bound this approximativeness ε of the resonance by a known �l. For the
cosine Fresnel integral, the relative mid-depth width is obtained when l� = 1, so

�l
l0

= π

2l0R
. (5.18)

Therefore, the relative mid-height width evolves as (Rl0)−1, i.e. a higher mode results in
a thinner peak, exactly as observed in figure 10(d–f ). The relative mid-height width goes
to zero as the order of the mode goes to infinity, corresponding to an exact resonance. By
comparison, horizontal resonances for Cartesian plane waves are always exact; this result
is recovered when considering high order radial modes in cylindrical geometry, when the
area close to r = 0 can be neglected and when the wave field can therefore be approximated
by radially decreasing plane waves (such as r �→ cos(r)/r).
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Figure 10. (a–c) Colourmaps of the normalised coefficients |Ξ110Ξ000| as a function of wavenumber ratios
l1/l0 and l2/l0, with (a) l0 = 19 m−1 (mode 1), (b) l0 = 51 m−1 (mode 3) and (c) l0 = 82 m−1 (mode 5).
(d–f ) Measured profiles along the bissectrix corresponding to the white dashed line in the top row (blue solid
curve) and prediction by the asymptotic theory (orange dashed line), for the same modes in panels (a–c),
respectively.

5.8. Degrees of freedom versus constraints
We proceed to a similar analysis as the one performed in unconfined domains. The
sub-harmonics are, again, defined through 8 parameters (2 × 1 frequencies and 2 × 3
wavenumbers). The constraints, however, are more numerous: 2 dispersion relations;
4 resonance conditions (TRI); and now 4 additional constraints linked to boundary
conditions (2 for each sub-harmonic). By analogy to the observations presented by Boury
et al. (2021a) for super-harmonics, we postulate that the constraints set by the boundary
conditions prevail, and that the wave field always satisfies (5.3) and (5.4), preferably to
forming an exact triad. The reason for that is still the topic of ongoing research. As a result,
in addition to the internal wave dispersion relation, the frequencies and wavenumbers are
defined through

ω0 = ±ω1 ± ω2, (5.19)

Jp1−1(l1R) = Jp1+1(l1R) and Jp2−1(l2R) = Jp2+1(l2R), (5.20a,b)

2m1H = n1π and 2m2H = n2π. (5.21a,b)

5.9. Experimental observation
We performed experiments for values of ω/N from 0.82 to 0.92, with a low amplitude
(a = 2.5 mm) mode 1 configuration at the generator (Boury et al. 2019). In several
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Figure 11. Fourier transform performed over the last two minutes of the experiment with a forcing at
ω/N = 0.91. From left to right: the dash–dotted line shows ω1, the dotted line shows ω2, both sub-harmonics,
the dashed line shows the forcing frequency ω0 and the solid line shows the buoyancy frequency N.

experiments, towards the end of the 10 minute forcing, one can observe the creation of
sub-harmonics as presented in the spectrum in figure 11 computed using the last two
minutes of the acquisition. Two secondary waves are created at frequencies smaller than
the imposed forcing (ω1/N = 0.36 and ω2/N = 0.55) that satisfy the triadic resonant
condition ω1 + ω2 = ω0, as ω1 = 0.4ω0 and ω2 = 0.6ω0.

Filtered wave fields at the three frequencies ω0, ω1 and ω2, are presented in figure 12,
with the vertical velocity on top of the radial velocity. On the left, the primary wave shows
a high amplitude of approximately 4 mm s−1, and is close to be a cavity mode (1, 2).
The centre and left columns are the two secondary waves identified from the spectrum
in figure 11, at ω1 and ω2, respectively. We identify 1 vertical wavelength in the fields at
ω0, 5 in the fields at ω1, and 5 or 6 in the fields at ω2; and hence the resonance condition
may not be satisfied for the vertical wavenumbers, as we could have m0 ± m2 ± m1 /= 0.
Nevertheless, this is not observed in all our experiments with sub-harmonic generation as
sometimes we clearly have m0 = m1 + m2, consistent with the vertical resonance relation
(5.3). With regards to the radial direction, we see different patterns in the filtered wave
fields: the fields at ω0 and ω1 look like a radial mode 1, but the field at ω2 looks like
a radial mode 2. This behaviour, however, is not a strong feature of the sub-harmonics
generation via TRI, as some experiments only show radial mode 1 patterns.

In general, we observe that in this confined configuration, the resonant conditions
are not satisfied. As explained previously, the reason is that the selected frequencies
and wavelengths are constrained by the boundary conditions. This is supported by
our experimental observations, as can be seen in figure 12, in the vertical plane, the
sub-harmonics can be identified as cavity modes. Using the cavity mode formalism
detailed by Boury et al. (2021a), we see that, for example, in figure 12, the field at ω1
is a mode (1, 10) and the field at ω2 is a mode (2, 10). Results already derived by Boury
et al. (2021a) on super-harmonic generation can be extended to this problem: the predicted
frequencies associated with these cavity modes (1, 10) and (2, 10) are ω1,10/N = 0.34 and
ω2,12/N = 0.56, close to the experimental values of ω1/N = 0.36 and ω2/N = 0.55.

In contrast to the observations of Maurer (2017) in his focusing experiments, but in
agreement with Shmakova & Flór (2019), we did not see any axisymmetry breaking in our
experimental wave fields. Due to the poor visualisation in the horizontal plane, however,
this statement could not be further explored. Our conjecture is that the presence of a
cylindrical boundary at fixed radius might prevent the secondary waves from breaking
the symmetry, in contrast to Maurer’s observations in wave focusing experiments in which
non-zero radial velocity was detected (Maurer 2017): such velocities, indeed, could not be
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Figure 12. (a–c) Vertical velocity and (d–f ) radial velocity after 9 minutes of forcing in the experiment. From
left to right, fields are filtered at ω0, ω1 = 0.4ω0 and ω2 = 0.6ω0.

described by the Bessel functions we used and could be contradictory to the condition of
zero radial velocity at the cylindrical bound.

The primary and secondary waves are not always satisfying the TRI relations on
the wavenumbers, particularly the radial wavenumber, which means that the boundary
conditions that set the cavity mode are, in that sense, ‘stronger’ than the resonance
conditions. In addition, part of the velocity fields are blurred, for example, the vertical
velocity at ω1 and ω2 close to r = 0 cm at the top and at the bottom of the tank (figure 12).
This is likely due to the presence of other modes or to exchanges between the cavity mode
and another wave field set by the TRI conditions. Similarly to super-harmonic generation,
the existence of resonance conditions in TRI may prescribe the cavity modes allowed for
nonlinear interaction.

6. Conclusions and discussion

The present study delves into the problematic triadic resonant instability (TRI) in the
specific context of internal waves described by Kelvin modes. More precisely, we address
the following questions: can we find resonance conditions for a triad of Kelvin modes?
And what is the impact of the boundary conditions on such resonances?

By studying two specific configurations (‘unconfined’ and ‘confined’, as defined by the
physical domain accessible to the waves, see table 5), we demonstrated that, in both cases,
the sub-harmonic frequencies satisfy a resonance condition

ω0 = ±ω1 ± ω2. (6.1)

The investigation of the spatial structure, however, yields different results depending on
the confinement of the wave field. In the unconfined case, the 3-D spatial structure is
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Temporal (t) Radial (r) Vertical (z) Azimuthal (θ )

Unconfined case −∞ to +∞ 0 to +∞ −∞ to +∞ 0 to 2π

Confined case −∞ to +∞ 0 to R 0 to L 0 to 2π

Table 5. Comparison of the physical domains between the unconfined and the confined cases.

prescribed by resonance conditions on the wavenumbers, as follows:

l0 = ±l1 ± l2, (6.2)

p0 = ±p1 ± p2, (6.3)

m0 = ±m1 ± m2. (6.4)

Conversely, in the confined case, the spatial structure is primarily constrained by boundary
conditions, meaning that the wave numbers satisfy

Jp1−1(l1R) = Jp1+1(l1R) and Jp2−1(l2R) = Jp2+1(l2R), (6.5a,b)

2m1H = n1π and 2m2H = n2π. (6.6a,b)

The confined triad is therefore not necessarily spatially resonant. The existence of such
triads may be related to quasi-resonances and viscous effects that allow for a larger
resonance bandwidth (see, e.g. the case of capillary waves of Cazaubiel et al. 2019). A
similar discrimination between confined and unconfined domains is expected for 2-D and
3-D spatially resonant triads or cavity modes in Cartesian geometry (and could be related
to Cartesian studies such as Yalim et al. 2018; Grayer II et al. 2021). Nonetheless, the
reason why boundary conditions prevail over triadic equations, and the exact process of
modal selection within the cavity, remain unknown. A possible explanation is that TRI
remains a local process occurring at the most energetic locations but, as the sub-harmonic
field develops and fills the finite domain, it adjusts to the boundary conditions.

The difference between the confined and unconfined domain lies in the radial and
vertical spatial directions, as stated in table 5. The boundary conditions on these two
directions have very different implications. On the one hand, for vertical confinement,
the resulting discretisation does not prevent the vertical wavenumbers to be resonant: if
there exists an integer n0 such that 2m0H = n0π, one can always find two integers n1
and n2 such that 2m1H = n1π and 2m2H = n2π (i.e. all vertical wavenumbers satisfy
the boundary conditions) while fulfilling the resonance condition m0 = ±m1 ± m2. On
the other hand, for radial confinement, the discrete selection of wavenumbers is usually
incompatible with an exact radial resonance: in a confined domain, it is unlikely to find
radial wavenumbers satisfying both the boundary conditions (i.e. liR is a zero of a Bessel
function) and the resonance l0 = ±l1 ± l2. As shown in § 5.5, mathematically, this issue
arises while integrating the Ξhij functions previously defined, since the upper integral
bound is R × lbcd. In the unconfined case (domain size R infinite), the product R × lbcd is
equal to 0 only if lbcd = 0 (i.e. exact resonance is reached) and equal to +∞ otherwise;
this leads to integrated quantities (the Fresnel integrals, which are a proxy to quantify the
nonlinear interaction between the waves) that are evaluated exactly in 0 for resonant triads
and in +∞ for non-resonant triads. In confined domains (R finite), the quantity R × lbcd
is close to 0 if a quasi-resonance lbcd � 0 is reached, and takes high values otherwise;
this allows for quasi-resonances, as the integrated quantities are evaluated close to 0 for
such triads – a situation not allowed in the case of an unconfined domain. We note that
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the bandwidth allowing for quasi-resonances goes as 1/R: at fixed radial wavenumbers, a
larger domain results in more exact resonances.

An important finding is the possibility of symmetry breaking: the secondary waves
can have non-zero orthoradial wavenumbers although the primary wave is axisymmetric,
leading to the generation of counter-rotating wave fields. These wavenumbers still
have to satisfy a resonance condition. Our experiment shows 2π-periodic cylindrical
sub-harmonics, but higher periodicities could exist in such a nonlinear process.

Due to mathematical complexities, the cylindrical radial resonance condition is not
analytically demonstrated over the whole domain, but only verified asymptotically, but
it is consistent with our experimental data. A rigorous proof of the exact equality of this
resonance condition is still a challenge for future research. In addition, we should point
out that the explanation of symmetry breakings, such as identified by Maurer (2017) in the
case of high amplitude nonlinear interactions, could lie in the calculus of the growth rates
of the triadic instability, which is beyond the scope of the present study.
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Appendix A. Nonlinear terms

We present here the computation of the nonlinear advection terms. First of all, we perform
a direct calculation of the advection term along z, as follows:

− (v · ∇) vz = −
3∑

i=1

3∑
j=1

(vi · ∇) vz,j = −
3∑

i=1

3∑
j=1

[
vr,i∂rvz,j + vθ,i

r
∂θvz,j + vz,i∂zvz,j

]
(A1)

= −
3∑

i=1

3∑
j=1

iv0
z,iv

0
z,j

[
−mjli

lj
J′

pj
J′

pi
+ mjpjpi

l2j r2
JpjJpi − miJpiJpj

]
Φij (A2)

= −
3∑

i=1

3∑
j=1

i
v0

z,iv
0
z,j

lj

[
Mij

2

(
J

pj+1
pi−1 + J

pj−1
pi+1

)
− MjiJ

pj
pi

]
Φij. (A3)

We now compute the advection terms for the other components of the velocity field, and
for the buoyancy. The radial velocity term needs to be integrated to recover the projection
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along z of the advection term, with an additional εi,j term that we will neglect,

−
∫

(v · ∇) vr = −
3∑

i=1

3∑
j=1

∫ [
vr,i∂rvr,j + vθ,i

r
∂θvr,j + vz,i∂zvr,j − vθ,ivθ,j

r

]
dr (A4)

= −
3∑

i=1

3∑
j=1

−i
mj

l2j

∫ [
vr,i∂

2
r vz,j + vz,i∂z∂rvz,j

+ vθ,i

r
∂r∂θvz,j − vθ,i∂θvz,j

r2

]
dr (A5)

= −
3∑

i=1

3∑
j=1

−i
mj

l2j
(vi · ∇) vz,j − 1

2

(
vr,ivr,j + vθ,ivθ,j

)

+ i
mj

l2j

∫
∂rvz,i∂zvz,j dr (A6)

= −
3∑

i=1

3∑
j=1

−i
mj

l2j
(vi · ∇) vz,j + εi,j. (A7)

The azimuthal velocity term has to be multiplied by r to cancel out the dependence in
1/r, giving

−r (v · ∇) vθ = −
3∑

i=1

3∑
j=1

r
[
vr,i∂rvθ,j + vθ,i

r
∂θvθ,j + vj,i∂zvθ,j + vr,ivθ,j

r

]
(A8)

= −
3∑

i=1

3∑
j=1

[
vr,i∂r

(
rvθ,j

)+ vθ,i

r
∂θ

(
rvθ,j

)+ vz,i∂z
(
rvθ,j

)]
(A9)

= −
3∑

i=1

3∑
j=1

mjpj

l2j

[
vr,i∂rvz,j + vθ,i

r
∂θvz,j + vz,i∂zvz,j

]
(A10)

= −
3∑

i=1

3∑
j=1

mjpj

l2j
(vi · ∇) vz,j. (A11)

Finally, the buoyancy term is directly proportional to the vertical velocity, so that

− (v · ∇) b = −
3∑

i=1

3∑
j=1

(vi · ∇)

(
i
N2

ωj
vz,j

)
= −

3∑
i=1

3∑
j=1

i
N2

ωj
(vi · ∇) vz,j. (A10)

Appendix B. Fresnel integrals

For the sake of the discussion, we recall the definition of the cosine and sine Fresnel
integrals, x �→ C(x) and x �→ S(x), respectively, for x ∈ R (Olver et al. 2010),

C(x) =
∫ x

0
cos

(
1
2
πt2

)
dt and S(x) =

∫ x

0
sin

(
1
2
πt2

)
dt. (B1a,b)
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Figure 13. Plots of the modified cosine and sine Fresnel integrals.

The ‘modified’ cosine and sine Fresnel integrals, defined by x �→ C(x)/x and x �→ S(x)/x,
respectively, for x ∈ R, and used in the asymptotic developments aforementioned, are
plotted in figure 13(a) for x ∈ [0; 30] with a zoomed-in version in figure 13(b) for
x ∈ [0; 5]. The values at x = 0 (0 and 1 for the modified cosine and sine Fresnel integrals)
can be seen, as well as the rapid decay towards zero for larger values of x.
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