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ABSTRACT: A gradient-wind balanced flow with an elliptic streamline parametrically excites internal inertia-gravity
waves through ageostrophic anticyclonic instability (AAI). This study numerically investigates the breaking of internal
waves and the following turbulence generation resulting from the AAI. In our simulation, we periodically distort the calcu-
lation domain following the streamlines of an elliptic vortex and integrate the equations of motion using a Fourier spectral
method. This technique enables us to exclude the overall structure of the large-scale vortex from the computation and con-
centrate on resolving the small-scale waves and turbulence. From a series of experiments, we identify two different scenar-
ios of wave breaking conditioned on the magnitude of the instability growth rate scaled by the buoyancy frequency l/N.
First, when l/N�0:008, the primary wave amplitude excited by AAI quickly goes far beyond the overturning threshold
and directly breaks. The resulting state is thus strongly nonlinear turbulence. Second, if l/N � 0:008, weak wave–wave
interactions begin to redistribute energy across frequency space before the primary wave reaches a breaking limit. Then,
after a sufficiently long time, the system approaches a Garrett–Munk-like stationary spectrum, in which wave breaking
occurs at finer vertical scales. Throughout the experimental conditions, the growth and decay time scales of the primary
wave energy are well correlated. However, since the primary wave amplitude reaches a prescribed limit in one scenario but
not in the other, the energy dissipation rates exhibit two types of scaling properties. This scaling classification has similari-
ties and differences with D’Asaro and Lien’s wave–turbulence transition model.

SIGNIFICANCE STATEMENT: Due to the gradients in buoyancy and pressure, density-stratified seawater supports
oscillatory vertical motion called internal waves. When waves significantly skew a density isosurface, dense water lifts
over lighter water resulting in gravitational instability and high energy dissipation. In this wave-breaking process, sea-
water is vertically mixed, transporting heat and nutrients essential to maintain Earth’s climate and ecosystems. This
study investigates the generation and breaking of ocean internal waves in a novel numerical simulation setup; we tem-
porally distort the model shape to emulate the wave excitation forced by a larger-size horizontal eddy, a ubiquitous situ-
ation atO(1–10) km scales in the upper ocean. The simulation results exhibit two unique wave-breaking scenarios with
distinct scaling features in turbulence energy dissipation rates.

KEYWORDS: Inertia-gravity waves; Instability; Numerical analysis/modeling; Spectral analysis/models/distribution

1. Introduction

Motions of stably stratified and rotating fluid are largely
classified into two categories; a slowly evolving horizontal flow
and a rapidly oscillating three-dimensional flow (Yasuda et al.
2015a,b; Chouksey et al. 2018). In the former part, the pres-
sure gradient is almost equilibrated with gravity and the Corio-
lis or centrifugal force, which is why this part is occasionally
called the balanced mode (BM). The latter, imbalanced mode
identified as the residual of the total flow subtracted by the
BM contains internal inertia-gravity waves}internal gravity
waves affected by the Coriolis force}that we simply call
inertia-gravity waves (IGWs).

Although the large-scale circulation of the atmosphere and
ocean are dominated by the BM, IGWs play some auxiliary
but important roles. A representative one is to enhance the
dissipation of energy. In the ocean, kinetic energy originally
injected by winds or tides is eliminated by molecular viscosity
at the Kolmogorov scale, which is no more than 1 cm in length
(Thorpe 2005). The scales at which the BMs dominate the
flow energy are, on the other hand, larger than tens of kilo-
meters. In addition, energy of the BM tends to be transferred
toward larger scales through the inverse cascade (Scott and
Wang 2005). Therefore, the small-scale turbulence energy
apart from the boundary layers may not be supplied directly
from the BM but from IGWs. Indeed, observational studies
have revealed that the energy spectrum with a horizontal
scale less than tens of kilometers is dominated by IGWs (Lien
and Sanford 2019). The transition from the large-scale BM to
the smaller-scale IGWs has also been detected in the global-
scale ocean models (Qiu et al. 2018; Torres et al. 2018).

The rate of energy transfer between the BM and IGWs
depends on the Rossby number, Ro5 U/(fL), where f is the
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Coriolis parameter and U and L are the typical velocity and a
length scale of the fluid motion. When Ro ,, 1, the BM and
IGWs behave almost independently. When Ro is comparable
to or greater than unity, nonlinear coupling between the BM
and IGWs takes place. In the ocean, Ro increases as a spatial
scale is reduced and reaches unity at a horizontal length of
O(1)–O(10) km named the submesoscales (McWilliams
2016). Interaction between the BM and IGWs at the subme-
soscales crucially influences the ocean energy budget yet re-
mains poorly quantified.

A difficulty in understanding submesoscale wave–flow cou-
pling is the presence of external forces. For example, heating/
cooling and precipitation/evaporation at the ocean surface
change the density of seawater, which induces convective mo-
tions in the mixed layer. Horizontal density gradients in the
mixed layer are further intensified by the horizontal velocity
shear, creating a sharp density front and the associated
thermal-wind-balanced flow (McWilliams et al. 2009). Wind
forcing at the sea surface drives near-inertial waves in the
mixed layer, which subsequently exchange energy with the am-
bient frontal motion (Thomas 2017). Many high-resolution nu-
merical experiments have demonstrated complication of these
entangled processes (e.g., Mahadevan and Tandon 2006; Capet
et al. 2008a,b,c; Molemaker et al. 2005; Barkan et al. 2017).

To gain a better insight into the highly complicated subme-
soscale dynamics, isolating a particular phenomenon excluding
external forces and boundary effects is effective. Following
this direction, this study investigates a process named ageo-
strophic anticyclonic instability (AAI) in an idealized setting.
In AAI, IGW disturbances are exponentially amplified from a
fully balanced anticyclonic flow field. AAI looks similar to
other submesoscale instabilities, specifically symmetric insta-
bility (SI) and centrifugal instability (CI), but they are distin-
guished in terms of the instability criterion. In order for CI or
SI to occur, the sign of the Ertel’s potential vorticity must be
reversed. Since the potential vorticity is adiabatically con-
served along a stream, this condition is met only when a strong
external force or a viscous drag at a boundary layer is present
(e.g., Thomas and Taylor 2010; Gula et al. 2016). For AAI,
there is not such a clear threshold; i.e., almost any kind of BM
can generate IGWs, but its intensity sharply depends on the
Rossby number. An asymptotic analysis proves that the ampli-
tude of the IGWs generated from a geostrophically balanced
flow involves a factor e2C/Ro, where C is some constant inde-
pendent of Ro (Vanneste and Yavneh 2004; Vanneste 2008,
2013). This property makes AAI insignificant at the meso-
scales or larger where Ro is small. At submesoscales where
Ro ; O(1), it is expected that AAI ubiquitously occurs to as-
sist energy transfer from the BM to IGWs.

The onset of AAI is controlled not only by Ro but also by the
flow geometry. When one writes the absolute vorticity and the
strain rate associated with the BM asA and S, respectively, AAI
becomes significant when A–S � 0. In light of this condition,
AAI has been analyzed in a variety of situations. McWilliams
and Yavneh (1998) reported that a barotropic anticyclonic vor-
tex with its streamline an elliptic shape parametrically excites
IGWs. McWilliams et al. (2004) found that ageostrophic instabil-
ity arises at a coastal boundary current via resonant interaction

between an IGW and a coastal Kelvin wave. Molemaker et al.
(2005) and Wang et al. (2014) investigated ageostrophic insta-
bilities of geostrophically balanced vertically sheared flow and
compared them with the usual geostrophic baroclinic instabi-
lity. Ménesguen et al. (2012) explored ageostrophic instability
of a localized interior jet. Among these, this study considers
the first case, instability of an elliptic vortex, the simplest con-
figuration that may commonly apply to a wide area of the
World Ocean.

Classically, it has been known that three-dimensional oscillat-
ing disturbances are amplified within a two-dimensional elliptic
vortex (Kerswell 2002). This type of instability, particularly
named the elliptic instability, is a ubiquitous process in turbulent
energy cascade (McKeown et al. 2020). Although a stability
analysis of a finite-size elliptic vortex is possible, an assumption
that the size of the vortex is very large and the velocity gradient
is locally homogeneous makes the problem much simpler. In
that case, the local stability analysis approach can be employed
(e.g., Bayly 1986; Lifschitz and Hameiri 1991; Waleffe 1990;
Landman and Saffman 1987; Craik and Criminale 1986; Craik
1989; Craik and Allen 1992; Leblanc 1997; Ghaemsaidi and
Mathur 2019). In this approach, a sinusoidal ansatz whose
wavenumber rapidly changes is assumed. The temporal evolu-
tion of the amplitude and wavenumber of this ansatz is de-
scribed by a small set of ordinary differential equations. Once
the wavenumber is obtained as a function of time, the stability
of the amplitude equation is analyzed based on the Floquet
theorem. Using this method, Miyazaki (1993), Miyazaki and
Fukumoto (1992), and McWilliams and Yavneh (1998) inves-
tigated the stability of an elliptic vortex in a stably stratified
fluid with and without rotation. Later, Aspden and Vanneste
(2009) presented a rigorous asymptotic consideration for the
small Ro regime and found the aforementioned exponentially
small instability growth rate.

To the authors’ knowledge, studies of elliptic instability or
AAI arising in the ocean or atmosphere are scarce and mostly
limited to linear stability analysis. Linear theory is inherently
incapable of addressing turbulent dissipation resulting from
instability. Furthermore, the instability growth rate derived
from linear analysis is not necessarily a good indicator even
for the basic energy supply to unstable disturbances (Onuki
and Hibiya 2018). Nonlinear analysis is thus essential to reveal
the roles of AAI on ocean energetics.

In this study, we explore long-term behaviors of IGWs para-
metrically excited by AAI within an elliptic vortex using fully
nonlinear numerical simulations. To resolve the breaking of
IGWs and the following turbulence generation most precisely
while incorporating energy supply from a much larger-scale vor-
tex, we utilize the domain distortion technique combined with
Fourier-spectral discretization. This technique was applied for
rotating or stratified fluid by Le Reun et al. (2017, 2018). Since
the scope of these past studies was the parametric wave excita-
tion due to tidal deformation in planetary cores, the distortion
was so small that the resulting state is weak turbulence in which
waves do not break. This study, on the other hand, deals with
the breaking processes of internal gravity waves that occur in
oceanic conditions. The methodology is common with that of
the work recently presented by the authors, Onuki et al. (2021),
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that investigated breaking of small-scale internal waves para-
metrically excited by a larger-scale internal wave.

The plan of this paper is as follows. The model formulations
and some fundamentals of the elliptic instability are described
in section 2. We carry out fully nonlinear numerical simulations
and demonstrate the wave breaking mechanisms in section 3.
The parameter dependence of the energy budgets is discussed
in section 4. Section 5 presents the conclusions.

2. The model equation and its linear stability

We consider a density stratified fluid in a rotating frame,
governed by a set of equations,

tu 1 u ? =u 1 fez 3 u 5
2=p 2 grez

rref
1 nu=

2u, (1a)

tr 1 u ? =r 5 nr=
2r, (1b)

= ? u 5 0, (1c)

where u 5 (u, y , w) is the velocity vector; r is the density; p is
the pressure; rref is a constant reference density; f is the Corio-
lis parameter assumed to be a positive constant; nu and nr are
kinematic viscosity and diffusivity, respectively; and ez is the
upward unit vector. The spatial coordinates are defined as
x 5 (x, y, z) with x and y specifying the horizontal directions
and z the vertical direction. We have used the Boussinesq ap-
proximation to exclude the variations in inertia originating
from density differences.

The interest of this study is directed to the behavior of
small-scale disturbances within a vertically homogenous bal-
anced motion. The scale-separation assumption and a proper
coordinate change simplify such a reference state to be repre-
sented by a linear stratification, namely, a constant Brunt–
Väisälä frequency N, and a quadratic form of the streamfunc-
tion, a common model with that of McWilliams and Yavneh
(1998), as

c 52
ax2 1 by2

2
, b $ a: (2)

It is verified that

u 5 U(x, y) 5 (U, V, 0), r 5 r(z), and p 5 P(x, y, z),
(3)

with (U, V) ; (2yc, xc) 5 (by, 2ax), r ; rref(12N2z/g),
and P ; rref[2a(f 2 b)x2/2 2 b(f 2 a)y2/2 2 (gz 2 N2z2/2)],
compose a gradient-wind balanced stationary solution of the
original set of governing equations (1). In order for the
streamline to close, a and b should have a same sign. Then,
we suppose that b $ a . 0, which corresponds to a zonally
elongated anticyclonic vortex. Although the following discus-
sion also applies to a cyclonic vortex, a, b , 0, the instability
is much weaker in that case.

When one considers a finite-size vortex, the relative vorticity
well represents the typical velocity U divided by a characteristic
length scale L. From this reason, we identify the Rossby number

in the present model as the absolute value of the relative vortic-
ity in a reference state, xV 2 yU 5 2a 2 b, divided by the
planetary vorticity (Barkan et al. 2017), i.e.,

Ro ;
a 1 b

f
: (4)

If Ro . 1, the sign of the absolute vorticity is opposite to that
of the planetary vorticity. To exclude the centrifugal instabil-
ity from the consideration, we further impose a restriction of
Ro # 1. Next, we specify the geometrical character of the
flow field using the ellipticity,

e 5 1 2

��
a

b

√
: (5)

The range of this parameter is 0 # e , 1. A circular vortex
corresponds to e 5 0. In the limit of e " 1, the stream geome-
try approaches to a parallel shear flow.

To investigate the stability of the system, we superimpose
three-dimensional disturbances on the reference stream. In-
serting u5U1 u′ 5 (U 1 u′, V 1 y ′, w′), r 5 r 2 rrefNu′/g,
p5 P1 rrefp

′ into (1), we derive the governing equations for
the disturbance components as

Dtu
′ 1 u′ ? =U 1 u′ ? =u′ 1 fez 3 u′ 52=p′ 1 Nu′ez 1 nu=

2u′,

(6a)

Dtu
′ 1 u′ ? =u′ 1 Nw′ 5 nr=

2u′, (6b)

= ? u′ 5 0, (6c)

where Dt ; t 1 U ? = represents the temporal differentiation
along the reference stream, the perturbation pressure p′ is
scaled by rref to make the expression concise, and u′ is the
buoyancy perturbation of the velocity unit. We regard the set
of equations, (6), as the basic model of the study and, in the
remaining of this section, analyze its energetics, kinematic
character, and linear stability.

The kinetic energy and the available potential energy of the
disturbance components integrated over the whole volume
are now Eu ; (1/2)� |u′|2dx and Eu ; (1/2)�u′2dx, respectively.
Neglecting energy flux passing through the boundary, we de-
scribe the budgets of energy by

dEu

dt
5 P 2 C 2 eu, (7a)

dEu

dt
5 C 2 eu, (7b)

where P is the lateral shear production rate, C is the energy
conversion rate from the kinetic energy to available potential
energy, and eu and eu are the dissipation rates of kinetic en-
ergy and available potential energy, respectively. They are
specifically represented as

P ;
�
(a 2 b)u′y ′dx, (8a)
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C ; 2

�
Nw′u′dx, (8b)

eu ;
�
nu(|=u′|2 1 |=y ′|2 1 |=w′|2)dx, (8c)

eu ;
�
nr|=u′|2dx: (8d)

Since the budget of the total energy is d(Eu 1 Eu)/dt5
P2 eu 2 eu, and eu and eu are both positive, energy injected
into the system via P should be compensated by the dissipa-
tion through eu and eu in a stationary state.

a. Fourier analysis

Now, for an initial condition of the variables (u′, u′, p′), let
us decompose it into a Fourier integral with respect to the
wavenumber, k̃ 5 (k̃, ‘̃, m̃), as

[u′(x, 0), u′(x, 0), p′(x, 0)]

5
1

(2p)3/2
�
[û(k̃, 0), û(k̃, 0), p̂(k̃, 0)]eik̃?xdk̃: (9)

We then consider the evolutions of the Fourier components,
(û, û, p̂). At this stage, a difference from the usual computa-
tion of the Fourier spectral method arises. Since the differ-
ential operator Dt contains spatially inhomogeneous factors,
each Fourier component is not linearly independent. To
solve this problem, we introduce a time-dependent wave-
number, k(t)5 (k, ‘, m), and postulate the following form of
expression:

Dt(ûeik?x) 5 (tû)eik?x: (10)

In order for this expression to be identically valid, the time-
dependent wavenumbers should satisfy

dk
dt

52=U ?k, (11)

i.e., dk/dt5 a‘, d‘/dt52bk and dm/dt 5 0. Solving these
equations, the wavenumbers are determined as

k 5 k̃ cosvy t 1
‘̃

r
sinvy t, ‘ 52rk̃ sinvy t 1 ‘̃ cosvy t, m 5 m̃,

(12)

where vy;
����
ab

√
and r;

�����
b/a

√
represent the rotation frequency

and the long/short axes ratio of the vortex, respectively. To
make the dependence of the temporally varying wavenumber
k on the initial wavenumber k̃ explicit, it would be better to
write it as k5 k(k̃, t). Consequently, Fourier transform at an
arbitrary time becomes

[u′(x, t), u′(x, t), p′(x, t)]
5

1

(2p)3/2
�
[û(k̃, t), û(k̃, t), p̂(k̃, t)]eik(k̃ ,t)?xdk̃: (13)

The governing equations in Fourier space are

tû 1 û ? =U 1 F[u′ ? =u′] 1 f êz 3 û 52ikp̂ 1 Nûêz 2 nu|k|2û,
(14a)

tû 1 F[u′ ? =u′] 1 Nŵ 52nr|k|2û, (14b)

k ? û 5 0, (14c)

where nonlinear terms are represented using the conventional
notation of Fourier transform, F[ ? ] ; 1/(2p)3/2� e2ik(k̃ ,t)?xdx.
Although in these equations the independent coordinates are
chosen as (k̃, t), in the energetic analysis, it would be better to
use the genuine wavenumber k instead of the initial wavenum-
ber k̃. For this purpose, we also write the functional relation-
ship between k and k̃ as k̃ 5 k̃(k, t) and define the kinetic and
available potential energy spectra as

Êu(k, t) 5
∣∣∣û(k̃(k,t),t)∣∣∣2

2
and Êu(k, t) 5

∣∣∣û(k̃(k,t),t)∣∣∣2
2

, (15)

respectively. Then, spectral energy budgets are derived as

Êu

t
1 =k ? (k̇Êu) 5 2 R[ûy ? (û ? =)U]︸







︷︷







︸

P̂

1 R[Nŵyû]︸


︷︷


︸
2Ĉ

2 R{ûy ?F[(u′ ? =)u′]}︸










︷︷










︸
T̂ u

2 2nu|k|2Êu︸


︷︷


︸
êu

,

(16a)

Êu

t
1 =k ? (k̇Êu) 5 2 R[Nŵyû]︸



︷︷



︸

Ĉ

2 R{ûyF[(u′ ? =)u′]}︸









︷︷









︸
T̂ u

2 2nr|k|2Êu︸


︷︷


︸
êu

, (16b)

where =k is the gradient operator in wavenumber space,
k̇ ; dk/dt is the temporal differentiation of a wavevector,
y represents the complex conjugate, and Re denotes taking
the real part. In each expression, a linear energy flux diver-
gence term appearing on the left-hand side reflects the varia-
tions in wavenumber induced by the reference stream as
specified by (12). On the right-hand sides, P̂ is the lateral
shear production rate, Ĉ is the conversion rate from the
kinetic to available potential energy, T̂ u and T̂ u are the non-
linear energy transfer rates, and êu and êu are the energy dissi-
pation rates, respectively. Finally, integrations of (16) over
wavenumber space coincide with the total energy budgets,
(7), as the termwise correspondence,

�
(Êu, Êu, P̂ , Ĉ, T̂ u, T̂ u, êu, êu)dk 5 (Eu, Eu, P, C, 0, 0, eu, eu),

(17)

is established.
From now on until the end of this section, we assume that

the disturbance amplitudes are sufficiently small such that the
nonlinear terms are negligible. This postulate makes each
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wavenumber component completely independent. In addi-
tion, we shall set the inviscid condition, nu 5 nr 5 0, for the
moment. Consequently, the system is governed by the follow-
ing set of ordinary differential equations,

dû
dt

5 ( f 2 b)ŷ 2 ikp̂, (18a)

dŷ
dt

5 (a 2 f )û 2 i‘p̂, (18b)

dŵ
dt

52imp̂ 1 Nû, (18c)

dû
dt

52Nŵ, (18d)

0 5 kû 1 ‘ŷ 1 mŵ: (18e)

The state of the system is now specified by four complex vari-
ables, û, ŷ , ŵ, and û. Taking into account the incompressibil-
ity condition (18e), the number of degrees of freedom is
three. Note that multiplying (18a), (18b), and (18c) by k, ‘,
and m, respectively, and using (18e), one may obtain p̂ at any
instance as a function of other variables.

b. Wave–vortex decomposition

If the background stream is absent, a 5 b 5 0, it is known
that the motion is decomposed into a pair of oscillating IGWs
and one stationary BM, which are normally referred to as the
wave and vortical modes, respectively (Lien and Müller 1992;
Herbert et al. 2016). Here, we extend this wave–vortex de-
composition technique into a situation of finite a and b.

Now, (18) leads to the potential vorticity conservation,
dq̂/dt5 0, with

q̂(û, û) 5 iN(kŷ 2 ‘û) 1 iVmû, (19)

where V ; f2 a 2 b is the absolute vorticity of the reference
state. To decompose the flow field into the wave and the vorti-
cal modes uniquely, (û, û)5 (ûw, ûw)1 (ûy , ûy ), we raise the
following postulates: (i) the vortical mode components,
(ûy , ûy ), are proportional to q̂, and (ii) the wave mode and
vortical mode are energetically orthogonal. To begin with,
postulate (i) yields that the vortical modes are formally ex-
pressed as

(ûy , ŷ y , ŵy , ûy ) 5 (gu, gy , gw, gu)q̂, (20)

and we would like to know the coefficients, (gu, gy, gw, gu).
Next, postulate (ii) yields ûyy ? ûw 1 û

y
y ûw 5 ûyy ? (û 2 ûy )1

û
y
y (û 2 ûy )5 0, which results in gyuû 1 gyy ŷ 1 gywŵ 1 gyuû 5

(|gu|2 1 |gy |2 1 |gw|2 1 |gu|2)q̂. Comparing this expression with
the definition of q̂(û, û) in (19) yields

(gu, gy , gw, gu) 5
(iN‘, 2 iNk, 0, 2 iVm)
N2k2 1 N2‘2 1 V2m2

: (21)

We have thus formulated a wave–vortex decomposition in the pres-
ence of a reference stream. In the same way as in the conventional

case, in this definition, the wave mode does not possess potential
vorticity; q̂(ûw, ûw)5 0.

We next derive the evolution equations of the wave mode
and the vortical mode, separately. First, it is obvious that the
vortical mode obeys the set of equations,

dûy

dt
5

dgu
dt

q̂,
dŷ y

dt
5

dgy
dt

q̂,
dŵy

dt
5 0,

dûy
dt

5
dgu
dt

q̂:

(22)

Since the vertical acceleration is identically 0 for the vortical
motion, the buoyancy force should be balanced with the hy-
drostatic pressure represented as

p̂y 52
iNûy
m

52
iNguq̂
m

: (23)

Subtracting (22) from the original Eq. (18) and using (23)
with p̂w 5 p̂ 2 p̂y, we also derive the equations that govern
the wave mode as

dûw

dt
5 ( f 2 b)ŷ w 2 ikp̂w 1 agy 2

dgu
dt

{ }
q̂︸





︷︷





︸

Fu

, (24a)

dŷ w

dt
5 (a 2 f )ûw 2 i‘p̂w 1 2bgu 2

dgy
dt

{ }
q̂︸






︷︷






︸

Fy

, (24b)

dŵw

dt
52imp̂w 1 Nûw, (24c)

dûw
dt

52Nŵw 2
dgu
dt

q̂︸

︷︷

︸
Fu

, (24d)

0 5 kûw 1 ‘ŷ w 1 mŵw: (24e)

We find several difference in the current system from the clas-
sical a 5 b 5 0 case. First, the vortical mode is no longer sta-
tionary because, while the potential vorticity q̂ is unchanged,
the coefficients (gu, gy, gu) vary associated with variations in
the wavevector, (12). Second, the wave mode is not fully de-
coupled from the vortical mode; the terms represented as
(Fu, Fy, Fu), which are proportional to q̂ and nonzero unless
e 5 0, work as external forces onto the wave mode. Due to
these terms, even when (ûw, ûw) is initially 0, a wave motion
can be spontaneously generated from a pure vortical motion.

Let us define the wave mode energy as Êw 5 (|ûw|2 1 |ûw|2)/2
and the vortical mode energy as Êy 5 (|ûy |2 1 |ûy |2)/2, the
sum of which coincides with the kinetic energy plus the
available potential energy, Êw 1 Êy 5 Êu 1 Êu. The vortical
mode energy is a quadratic function of the potential vorticity,
Êy 5 |q̂|2/[2(N2k2 1N2‘2 1V2m2)]. The energy budget for
each mode is described as

dÊw

dt
5 (a 2 b)R[ûy

wŷ w]︸







︷︷







︸
P̂w

1 R[ûy
wFu 1 ŷ y

wFy 1 û
y
wFu]︸












︷︷












︸

P̂wy

,

(25a)

O NUK I E T A L . 1595JUNE 2023

Brought to you by KYUSHU UNIVERSITY | Unauthenticated | Downloaded 06/26/23 12:17 PM UTC



dÊy

dt
5

d
dt

1

N2k2 1 N2‘2 1 V2m2

( ) |q̂|2
2︸















︷︷















︸

P̂ y

, (25b)

where P̂w is the lateral shear production associated with the
wave motion, P̂wy is the energy injection to the wave mode
due to the combined effect of the reference stream and the
vortical mode, and P̂y is the energy conversion from the ref-
erence stream to the vortical mode. Obviously, sum of these
terms coincides with the total energy production rate,
P̂w 1 P̂wy 1 P̂y 5 P̂ .

c. Linear stability analysis

Let us move on to the stability analysis. Although this anal-
ysis is essentially equivalent to those in previous studies, we
present several new insights into this classical problem. The
incompressible condition, (18e), allows us to represent the
amplitude of pressure p̂ in terms of û and û. Then, redefining
the state variables in a vectorial form as v ; (û, ŷ , ŵ, û), we
may write the set of equations, (18), in the form,

dv
dt

5 A(t)v, (26)

where A(t) is a time-dependent 4 3 4 matrix with periodicity
of 2p/vy ; T. We then investigate the stability of the system
(26) based on the Floquet theorem. In this analysis, contrary
to intuition, the incompressible condition is not needed to be
coupled with (26). The reason is partly explained by Mathur
et al. (2014) and will be made more explicit below in this
paper.

Stability analysis based on the Floquet theorem is carried
out as follows. We first prepare a set of initial conditions,
v1(0) 5 (1, 0, 0, 0), v2(0) 5 (0, 1, 0, 0), v3(0) 5 (0, 0, 1, 0) 5
v4(0) 5 (0, 0, 0, 1), and then integrate (26) for each case inde-
pendently until t 5 T. The resulting state vectors are aligned
to compose a 4 3 4 matrix, M 5 (v1, v2, v3, v4), named the

monodromy matrix. We next derive the eigenvalues of M and
the corresponding eigenvectors and write them as mi and w̃i,
respectively. We again regard a vector w̃ i as an initial condi-
tion of (26) and define the corresponding solution wi(t). From
the definition, this solution satisfies

wi(T) 5 Mwi(0) 5 miw̃ i: (27)

We consequently understand that mi represents an amplification
factor of the ith-mode state vector wi over one period of integra-
tion of (26). If |mi| is greater than unity, the ith mode is unstable.
To measure the rate of amplification for each state vector per
unit time, we shall write the growth rate as li 5 (1/T)log|mi|.

Equation (26) has an invariant, d ; kû 1 ‘ŷ 1mŵ, which
stems from the incompressibility condition imposed to elimi-
nate the pressure variable p̂. Since d is a linear function of v,
the amplification factor of a solution wi(t) with a nonzero d

should be unity. This mode cannot grow exponentially. That
is to say, for an unstable mode, the incompressible condition,
d 5 0, is always satisfied. The Floquet stability analysis per-
formed without imposing an incompressible constraint is thus
rationalized. Following the same logic regarding q̂, an unsta-
ble mode has no potential vorticity. We thus understand that
pure IGWs are amplified through the AAI. In the following,
for simplicity, we drop the subscript to denote the growth rate
of the most unstable mode and the corresponding amplifica-
tion factor and the eigensolution, namely, l ; maxili, m and
w(t), respectively.

For the stability analysis, because k and ‘ vary composing
an ellipse (12) and the choice of the initial time is arbitrary,
we can assume without loss of generality that the horizontal
wavevector is initially parallel to the x axis, that is, ‘̃5 0. The
problem then involves 4 dimensionless parameters, e, Ro, N/f,
and f ; arc tan(m̃/k̃), where f represents the initial elevation
angle of wavevector. The instability growth rates l are com-
puted for a range of these parameters using the fourth-order
Runge–Kutta method and an eigenvalue solver in LAPACK

FIG. 1. Numerically obtained instability growth rates l scaled by f are contoured against (a) Ro and tanf for
e 5 0.6 and N/f 5 10 and (b) against e and tanf for Ro5 0.95 and N/f 5 10. Here, Ro is the Rossby number defined
as the ratio of the relative vorticity to the planetary vorticity, e is the ellipticity of the vortex, f is the initial elevation
angle of the wavevector, and N/f is the ratio of the buoyancy frequency to the planetary vorticity. In (b), e ranges
from 0 to 0.99. The white diamonds indicate the parameter settings of Fig. 2.
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(Anderson et al. 1999). For the crosscheck of our FORTRAN
code, we have compared the results with those in McWilliams
and Yavneh (1998), who adopted a different formulation, and
confirmed a reasonable agreement.

Figure 1a demonstrates the computed instability growth
rates against Ro and tanf for the case of (N/f, e) 5 (10, 0.6).
Several wedge-shaped unstable regions extend from larger to
smaller Ro directions. To qualitatively distinguish the wedges,
we analyze the temporal character of the growing mode in
further detail. The method basically follows that of Onuki
and Tanaka (2019); the eigen solution is reduced by a time-
dependent amplification factor to compose a T-periodic
function, wp 5 wm2t/T, and wp(t) is expanded into a Fourier
series, wp 5∑jWjexp(ijvy t), to derive a frequency spectrum.
Several cautions are required in this analysis. First, the actual
frequency of the eigen solution, w, differs from that of wp(t)
because of the argument of m. The frequency axis should be
accordingly represented as v 5 jvy 1 (1/T)I[logm](j 5 0, 61,
62, … ), where I represents taking the imaginary part. Sec-
ond, the frequency spectrum derived using the Fourier coeffi-
cients, (û, û), deviates from that in physical space using (u, u)
because the variation in wavenumber k(t) is not taken into ac-
count. This difference corresponds to the Doppler effect
caused by the elliptic stream. We thus interpret v used here
as an intrinsic frequency measured at a frame moving with the
background stream. Third, in the moving frame rotating with
the background stream, the reference direction of disturbance
velocity also rotates at a mean rate of vy around the vertical
axis. To incorporate this effect into the spectrum, we redefine
the horizontal velocity vector as

(ûr, ŷ r) ; (û cosvy t 2 ŷ sinvy t, û sinvy t 1 ŷ cosvy t), (28)

and Fourier expand (ûr, ŷ r) instead of (û, ŷ ). Figure 2 shows
the eigensolutions of the unstable modes and the correspond-
ing energy spectra obtained for (N/f, Ro, e) 5 (10, 0.95, 0.6),
and tanf 5 57.21, 27.94, and 18.50, within three different
wedges. For the most unstable mode (tanf 5 57.21), the en-
ergy peak is located at v 5 vy. This result is explained from
the basic mechanism of parametric excitation (Fig. 3); an
IGW with its natural frequency vy is resonantly excited via
the periodic stretching of the horizontal wavenumber,
kH ;

����������
k2 1 ‘2

√
. For other branches, the peak frequency is al-

ways located at a multiple of the vortex frequency and shifts
higher as f decreases, as inferred from the dispersion rela-
tionships of IGWs. We can thus distinguish the unstable re-
gions in parameter space in terms of the intrinsic wave
frequency divided by the vortex frequency. Wedge-shaped
unstable regions are also visible in Fig. 1b at e , 0.8. The
gravest wedge that extends to close to e 5 0 again corre-
sponds to the region with peak frequency at vy. For a large e
area, width of the wedges gets much thinner, and the unstable
regions are no longer distinguishable. Consequently, IGWs of
an almost continuous frequency spectrum will be excited.

Figure 4a shows the maximum growth rate in wavenumber
space, or lmax 5 maxfl, as a function of 1/Ro. Note that the ver-
tical axis is a logarithmic scale while the horizontal axis is a linear
scale. Roughly, lmax ; e2C/Ro predicted from the asymptotic

analysis (Aspden and Vanneste 2009) is confirmed. In these plots,
we notice that the curve of the slope suddenly changes at several
points. This corresponds to the exchange in the maximum growth
rates from one wedge-shaped unstable region to another in the
Ro-tanf plane (Fig. 1a). Figure 4b also shows a dependence of
lmax against e as well as Ro. It is natural that lmax 5 0 at e 5 0
because the energy production term P defined as (8a) vanishes at
a circular vortex case, a 5 b. Besides, we find that lmax is maxi-
mum at around e 5 0.6 and significantly decreases when e ap-
proaches 1. This result indicates that an extremely elongated
vortex does not induce exponential growth of inertia-gravity wave

FIG. 2. Time series of the variables, (ûr, ŷ r, ŵ, û), of the unstable
modes obtained from Floquet analysis for (a) tanf 5 57.21,
(b) tanf 5 27.94, and (c) tanf 5 18.50, with the conditions of
Ro 5 0.95, e 5 0.6, N/f 5 10. The vertical axis is scaled such that
the total energy, which is the sum of the kinetic and available po-
tential energy, at the initial time is unity. The insets are the corre-
sponding frequency spectra of the total energy density.
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energy. McWilliams and Yavneh (1998) pointed out that, in a ho-
mogeneous parallel shear flow, the disturbance wave amplitude
remains finite even for an asymptotically large time. Therefore, it
is reasonable that the most effective instability occurs somewhere
within 0, e, 1. Classically, the difference between the absolute
vorticity A and the strain rate S has been used for the criterion of
the occurrence of AAI. In the present case,

A 2 S
f

5 1 2 Ro 2
1 2 (1 2 e)2
1 1 (1 2 e)2 Ro , 0 (29)

would be regarded as the possibly unstable region. In Fig. 4b, it
is true that A 2 S 5 0 well follows the contour of lmax ; 0.01f

at e # 0.25. However, for a larger e, since the system is again
stabilized, this criterion is virtually meaningless.

In the present linear analysis, we have employed an invis-
cid system. As a result, the computed instability growth
rate does not depend on the wavenumber length. Only the
initial elevation angle of wavevector matters. Now, we take
the terms of viscosity and diffusivity into account. For a
particular case when viscosity and diffusivity coincide, nu 5

nr 5 n , the viscous solution wn
i is immediately derived from

the inviscid solution wi as wn
i (t)5 wi(t)exp(2

�t
0 n |k(t′)|2dt′).

As a result, the viscous growth rate ln is explicitly
derived as

FIG. 3. Schematic illustration of the basic mechanism of elliptic instability. We consider an initially rectangular do-
main embedded within an anticyclonic vortex. (a) When the vortex is circular, the domain rotates without changing
its shape. (b) When the vortex is elliptic, the shape of the domain is periodically distorted; expanded in the x direction
while compressed in the y direction. (c) Colors and arrows represent the phase and the horizontal wavevector of a
plane wave disturbance in the initially rectangular domain within the elliptic vortex in (b). The length of the wavevec-
tor varies over time; lengthened and shortened twice during one cycle of rotation. If the natural frequency of this
wave matches with the vortex rotation rate, parametric resonance occurs resulting in exponential wave amplification.

FIG. 4. (a) The maximum instability growth rate in wavenumber space, lmax ; maxfl, scaled by f plotted against
the inverse Rossby number, 1/Ro, for several values of ellipticity e. (b) Contour plot of lmax/f against Ro and e. The
white curve denotes the line of A2 S5 0, whereA is the absolute vorticity and S is the strain rate. Their precise defi-
nitions are given in (29). In both plots, we adopt N/f5 10.
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ln 5 l 2 n k̃2 1 1 r2

2
1 tan2f

( )
: (30)

This expression tells us that the growth rate is a monotonic
decreasing function of the initial wavenumber length. Al-
though the current homogeneous base flow condition does
not allow the existence of the lower bound in wavenumber
length, in practice, it can be said that the possible largest-scale
mode primarily grows. The actual shape and size of this pri-
mary mode are determined by the geometrical conditions,
such as a diameter or a thickness of a reference vortex. The
local stability analysis is incapable of coping with this scale-
selection problem. However, this simple analysis offers fruit-
ful insights into the parameter dependence and temporal
characteristics of the growing inertia-gravity wave disturbance
within a sheared reference stream. The information obtained
here is utilized for the model setup and data interpretation in
the fully nonlinear simulations.

Before concluding this section, we further mention neu-
trally stable modes. In addition to the unstable IGW solution,
we can find an eigenvector of M that has q̂ Þ 0 and d 5 0. Al-
though this solution is characterized by the potential vorticity,
it is not a pure vortical mode. As clarified in (24), any finite q̂
drives a wave mode. In particular when e is large and Ro ; 1,
the wave mode amplitude forced by the vortical mode can be-
come huge (McWilliams and Yavneh 1998) despite the ampli-
fication factor derived from Floquet analysis being unity. For
example, Fig. 5 shows the time series of the variables as well

as the wave and vortical mode energy for the neutrally stable
mode of the (N/f, Ro, e, tanf)5 (10, 0.98, 0.8, 15.59) case. Al-
though most of the energy is contained in the vortical mode at
the initial time, the wave mode energy is transiently enhanced
during one cycle of vortex rotation. This study regards this
wave generation mechanism as another possible energy cas-
cade process.

3. Nonlinear simulations

a. Model configuration

To investigate the saturation and dissipation processes of
growing IGWs via AAI, we carry out fully nonlinear numerical
simulations. The Fourier integral is now replaced by a Fourier
series expansion. To make the formulation simpler, we intro-
duce a moving coordinate in physical space, X(x, t) 5 (X, Y, Z).
This coordinate initially coincides with x but moves following

FIG. 5. (a) Time series of the variables, (ûr, ŷ r, ŵ, û), of the
neutrally stable mode for Ro 5 0.98, e 5 0.8, N/f 5 10, and
tanf 5 15.59. (b) Energy of the wave mode (Êy , red), the vortical
mode (Êw, blue), and their sum (Ê, black). FIG. 6. (a) Schematic view of the numerical model in physical

space. The calculation domain is initially a rectangle represented as
dashed blue lines. The model geometry is specified by the edge
lengths of this rectangle, Lx, Ly, and Lz. The domain rotates follow-
ing the reference streamlines indicated by gray ellipses while being
distorted as represented by blue solid lines. (b) Schematic view in
wavenumber space. The calculation domain is an elliptic cylinder
whose geometry is specified by the truncation wavenumbers, k̃c, ‘̃c,
and m̃c. Although the overall structure of the domain is time in-
variant, each element that composes the domain moves following
an ellipse similar to the edges of the cylinder.
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the reference stream; i.e., X(0) 5 x and DtX 5 0. Accordingly,
we derive

X 5 x cosvy t 2 ry sinvy t, Y 5
x
r
sinvy t 1 y cosvy t, Z 5 z:

(31)

The calculation domain is a rectangular fixed in the X coordi-
nate, namely, 0# X# Lx, 0# Y# Ly, and 0# Z# Lz, which
corresponds to a rotating parallelepiped in the x coordinate
(Fig. 6a). Imposing a triple periodic boundary condition with
respect to X, a Fourier series expansion is defined as
u5∑k̃ ûk̃e

ik̃ ?X, where the wavevector, k̃ 5 (k̃, ‘̃, m̃), is discre-
tized as k̃ 2 (2Nx/2, …, Nx/22 1)(2p/Lx), ‘̃ 2 (2Ny/2, …,
Ny/22 1)(2p/Ly), m̃ 2 (2Nz/2, …, Nz/22 1)(2p/Lz). Notably,
this formulation is equivalent to the discretized form of the
time-dependent Fourier integral (13), and efficiently com-
puted using a fast Fourier transform algorithm. Numerical in-
tegration of the governing equations (14) basically follows
Chung and Matheou (2012). The pressure terms are evaluated
imposing the incompressible condition. The viscous and

diffusive terms are analytically treated. The quadratic terms
are calculated in physical space and dealiased using the 2/3
rule. For the temporal evolution, we employ the third-order
Runge–Kutta scheme of Spalart et al. (1991).

To specify the domain size, we first suppose that the domain
shape restores to the initial shape every 908 rotation by impos-
ing Lx/Ly 5 r. Next, we fix the vertical length as Lz 5 200 m
and arrange the vertical aspect ratio as Lx/Lz 5 tanfmax, where
fmax is the elevation angle of the wavevector at which the insta-
bility growth rate is maximum, so that a wave mode of the larg-
est wavelength components, k̃ 5 (62p/Lx, 0, 6 2p/Lz) or
(0, 62p/Ly, 62p/Lz), grows fastest. In the following, we shall
call these components as the primary mode.

The truncation wavenumbers are now k̃c 5 [Nx/3](2p/Lx),
‘̃c 5 [Ny/3](2p/Ly), and m̃c 5 [Nz/3](2p/Lz), where [] is the
floor function. We eliminate the horizontal wavevectors out-
side an ellipse (k̃/k̃c)2 1 (‘̃/‘̃c)2 5 1, so that the effective wave-
numbers compose an elliptic cylinder. We further assume that
Nx 5 Ny, which makes the effective genuine wavenumbers,
k(k̃, t), also compose the congruent elliptic cylinder that is

TABLE 1. Experimental parameters for the nonlinear numerical simulations. Here, Ro and e are Rossby number and ellipticity defined
for the reference flow, N/f is the buoyancy frequency divided by the planetary vorticity, and umax and lnmax are the initial elevation angle of
the wavevector and the instability growth rate of the primary mode, respectively. In all the experiments, the Coriolis parameter is fixed as
f 5 1.0 3 1024 rad s21. As to the geometrical conditions, the vertical length of the domain is fixed as Lz 5 200 m, while the horizontal
lengths at the initial time are varied depending on the parameter setting as Lx 5 tanumaxLz and Ly 5 Lx/r, where r 5 1/(1 2 e). The
number of grid points, Nx 3 Ny 3 Nz, is 3072 3 3072 3 384 for the run ID 1, and 768 3 768 3 192 for the other runs. The viscosity and
diffusivity are fixed for ID 1 and varied for the others using the subgrid model (appendix A). The fixed parts of the viscosity and
diffusivity, nu0 and nr0, are 1.0 3 1024 (m2 s21) for ID 1 and 2 and 1.0 3 1026 (m2 s21) for the others. To make explicit the exceptional
viscosity conditions, asterisks are placed on ID 1 and 2 In the table.

ID Ro e N/f tanumax lnmax/f ID Ro e N/f tanumax lnmax/f

1* 1 0.6 3 15.80 0.0613 2** 1 0.6 3 15.80 0.0613
3 1 0.6 3 15.80 0.0623 4 1 0.6 6 31.78 0.0628
5 1 0.6 8 42.42 0.0629 6 1 0.6 10 53.04 0.0629
7 1 0.8 6 105.6 0.0449 8 1 0.7 8 67.87 0.0580
9 1 0.5 10 38.43 0.0603 10 1 0.4 5 15.25 0.0517

11 1 0.3 7 18.16 0.0401 12 1 0.2 4 9.178 0.0264
13 1 0.5 2 7.526 0.0582 14 1 0.7 4 33.86 0.0579
15 1 0.4 3 9.084 0.0510 16 1 0.55 3 13.25 0.0617
17 1 0.25 2 4.737 0.0317 18 1 0.3 2 5.054 0.0381
19 1 0.5 4 15.30 0.0598 20 1 0.7 3 25.34 0.0577
21 1 0.75 2 23.20 0.0520 22 1 0.5 3 11.43 0.0594
23 0.99 0.6 2 10.56 0.0561 24 0.99 0.6 4 21.39 0.0571
25 0.99 0.7 3 25.67 0.0504 26 0.99 0.5 3 11.56 0.0553
27 0.99 0.5 2 7.610 0.0542 28 0.98 0.4 3 9.290 0.0451
29 0.98 0.35 2 5.581 0.0394 30 0.98 0.7 4 34.89 0.0438
31 0.98 0.8 2 11.15 0.0329 32 0.98 0.65 3 20.08 0.0489
33 0.97 0.4 5 15.79 0.0428 34 0.97 0.6 3 16.45 0.0468
35 0.97 0.55 3 13.76 0.0481 36 0.97 0.5 4 15.87 0.0479
37 0.97 0.7 3 12.82 0.0399 38 0.97 0.55 2 9.075 0.0474
39 0.96 0.5 2 7.922 0.0431 40 0.96 0.6 3 16.73 0.0421
41 0.96 0.7 2 8.448 0.0360 42 0.96 0.65 2 13.78 0.0378
43 0.95 0.6 6 34.29 0.0379 44 0.95 0.1 6 13.45 0.009 83
45 0.95 0.4 2 6.359 0.0359 46 0.94 0.2 5 12.36 0.0188
47 0.93 0.3 8 22.68 0.0259 48 0.92 0.1 6 14.03 0.008 11
49 0.91 0.2 3 7.71 0.0150 50 0.9 0.6 6 17.99 0.0255
51 0.9 0.1 3 7.184 0.006 91 52 0.9 0.1 10 24.20 0.007 04
53 0.9 0.2 5 13.16 0.0141 54 0.89 0.1 6 14.75 0.006 50
55 0.88 0.3 8 24.81 0.0172 56 0.87 0.2 4 11.13 0.0109
57 0.85 0.6 6 19.73 0.0165 58 0.8 0.6 6 13.76 0.0111
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time invariant. Consequently, the calculation domain is dis-
torted in physical space but fixed in wavenumber space
(Fig. 6b).

In our simulations, the number of grid points is insufficient
to resolve the Kolmogorov scale. To make the viscous and dif-
fusive terms as small as possible at low wavenumbers while
avoiding energy accumulation near the truncation wavenumber,
we incorporate a subgrid model that modifies the viscosity and
diffusivity as nu 5 nu0 1 nue(k) and nr 5 nr0 1 nre(k). Func-
tional forms of the wavenumber-dependent parts representing
the eddy viscosity and diffusivity, nue and nre, are specified in
appendix A.

Detailed parameter settings are summarized in Table 1. For
most of the simulations, the background buoyancy frequency N
is smaller than the oceanic typical values. We note in appendix B
that the instability growth rate hardly depends on the stratifica-
tion as far as N . f is satisfied, but the wavevector elevation an-
gle of the most unstable mode increases with N. Therefore, if we
made N greater, the computation domain would be elongated
horizontally. As a consequence, the number of horizontal grid
points required to resolve wave breaking would become huge
that is beyond our computer resources.

The experimental procedure is the same for all the simulations.
We give a small noise only to the wave mode at the smallest
wavenumbers, 22p/Lx # k̃ # 2p/Lx, 22p/Ly # ‘̃# 2p/Ly,
and 22p/Lz # m̃ # 2p/Lz at the initial time, and let the system
evolve without any external forcing term.

b. Case I: Strong instability

First, we focus on the experiment of (N/f, Ro, e)5 (3, 1.0, 0.6),
when the instability growth rate is quite large. We carried out
three simulations for this parameter setting but different resolu-
tions or viscosity conditions (ID 1, 2, 3 in Table 1). Among these,
ID 1 and 2 are conducted with relatively high nu0 and nr0 condi-
tions for a calibration purpose (appendix A) while ID 3 is con-
ducted with low nu0 and nr0 for the use of quantitative discussion
in section 4. Here, we demonstrate the results of ID 2 as the
representative.

Figure 7a is a time series of the kinetic and available poten-
tial energy. In the initial stage of exponential energy growth,
the growth rate evidently coincides with that predicted from
linear stability analysis. Around t ; 8 days, the energy ceases
growing, and, at the same time, the dissipation rates of the
kinetic and available potential energy are abruptly enhanced.
The spatial structure of the amplified internal wave and its
breaking process are illustrated in Fig. 8 by coloring the density
field before and after the timing of energy saturation (a movie
is presented in the supplemental material). At t ; 7 days, a
wave crest is significantly stretched and, consequently, dense
water is placed on liter water resulting in the occurrence of
gravitational instability that produces small-scale turbulent
fluctuations. Figure 9 shows the kinetic and available potential
energy spectra for each direction in a turbulent state. In the
low-wavenumber region, �0:1 rad m21, the energy level in the
vertical spectrum overwhelms that of the horizontal spectra,
but in the higher wavenumber region, energy levels almost co-
incide for the three directions. According to the standard

scaling estimates for a stratified fluid (Carnevale et al. 2001;Kimura
and Herring 2012), it is known that an energy spectrum follows
Êu(k); cN2k23 for low wavenumbers and Êu(k); CKe

2/3
u k25/3

for high wavenumbers. Here, k is a wavenumber, c is a constant
that differs for the horizontal and vertical directions, and CK ; 1.5
is the Kolmogorov constant. Consequently, transition in the spec-
tral slope occurs at k 5 (c/CK)

3/4(N3/e)1/2. For the vertical direction,
the most accepted constant, c 5 0.2, yields the present transition
wavenumber being ; 0.06 rad m21, around twice the smallest
vertical wavenumber allowed in the model. We thus understand
that the vertical spectrum is mostly dominated by the isotropic
turbulence regime and the stratification effect is limited at a few
smallest wavenumbers.

Even after the wave breaking occurs, the energy level sig-
nificantly varies in a time scale longer than a typical wave pe-
riod or an initial energy growth. A notable feature is that the
energy in the horizontal mean flow component (appendix C)
gradually increases and finally dominates the whole system.
This manifestation of vertically sheared horizontally large
scale flow structure is a common characteristic of stratified
turbulence as identified in direct numerical simulations (Riley
and de Bruyn Kops 2003).

To investigate the interscale energy transfer mechanisms in
further detail, we evaluate the energy budgets in wavenumber
space. For this analysis, we compute and store the terms

FIG. 7. (a) Time series of the kinetic energy, available potential
energy, their sum, and the kinetic energy of the horizontal mean
(k5 ‘5 0) components for the run ID 2. Data are moving aver-
aged over one period of vortex rotation. The gray broken line indi-
cates the theoretically estimated energy growth rate. (b) Those of
the kinetic energy and available potential energy dissipation rates.
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in (16) during the simulation and integrate them for the azi-
muthal angle to create 2D plots against the horizontal wave-
number kH and the vertical wavenumber m (Fig. 10). The
kinetic energy production rate P̂ , which originates from the
lateral velocity shear in the background vortex, is concentrated
at the lowest wavenumber components that correspond to the
primary mode (Fig. 10c). Somewhat surprisingly, the energy
production rate is negative in high horizontal wavenumbers,
although it is negligibly small in the total energy budgets.
Looking at the kinetic energy flux convergence term,
2=k ? (k̇Êu), we find a significant positive value at a horizontal
wavenumber of kH ; 1022 rad m21 that is slightly greater
than the peak wavenumber in P̂ , kH ; 63 1023rad m21. In
light of the mechanism of elliptic instability, this energy trans-
fer is interpreted to result from the stretching of horizontal
wavenumber during the wave amplification process. This

kinetic energy is concurrently converted to available potential
energy via the vertical oscillation of the primary wave as evi-
dent in Fig. 10d, in which Ĉ is positive in the corresponding
area.

We next examine the nonlinear interaction terms, T̂ u and
T̂ u, in Figs. 10e and 10f. As expected from a basic picture of
energy cascade, both T̂ u and T̂ u are negative at small horizon-
tal and vertical wavenumbers and positive at large horizontal
and vertical wavenumbers. However, the signs are different in
the intermediate-wavenumber range. Specifically, T̂ u is posi-
tive but T̂ u is negative at the low-vertical-wavenumber region
(m � 0:05 rad m21). This region corresponds to the area
where Ĉ is positive in Fig. 10d. These results are explained in
terms of the shear instability; in a high vertical shear and large
horizontal-scale flow, when the local gradient Richardson
number falls below 0.25, horizontally undulating vertical

FIG. 8. Evolution of the density field for the run ID 2. Displacements of the isopycnal surfaces and the stratification
structures at the lateral faces are visualized. The black ellipse indicates the streamline of the background vortex flow.
The vertical scale is magnified 3 times. A movie is presented in the supplemental material.
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motions are spontaneously enhanced through Kelvin–Helm-
holtz or Holmboe wave instability (Caulfield 2021). During
this process, the kinetic energy in the large-scale motion is first
supplied to the high horizontal wavenumber components (i.e.,
T̂ u . 0) and subsequently converted to the available potential
energy (Ĉ . 0). This available potential energy will be further
transferred toward higher wavenumbers (T̂ u , 0). At the in-
termediate vertical wavenumbers (m�0:05 rad m21), in con-
trast, T̂ u is negative but T̂ u is positive, and the available
potential energy is converted to the kinetic energy. These re-
sults are the features of the gravitational instability, in which a
large-scale density structure is skewed to create a smaller-scale
density overturn (T̂ u . 0) followed by the release of potential
energy to vertical motions (Ĉ , 0) and the energy transfer to
smaller-scale turbulence (T̂ u , 0). Passing through these two
kinds of instability processes, energy cascades down toward
the smallest scale, where significant dissipation of both the ki-
netic and available potential energy takes place (Figs. 10g,h).

c. Case II: Weak instability

Next, we take up the case of (N/f, Ro, e)5 (10, 0.9, 0.1) (ID
52 in Table 1), when the instability growth rate is one order
smaller than Case I. A striking difference in the present re-
sults from the previous ones is the absence of clear signatures
of the breaking of the primary wave. In the time series analy-
sis (Fig. 11), after the initial stage of the exponential energy
growth, the increasing tendency gradually weakens, and the
energy smoothly transits to a decreasing phase. Figure 12 il-
lustrates the density structures before and after the peak of
energy. In contrast to Fig. 8, density overturns are virtually in-
visible and, alternatively, small-scale wrinkles gradually ap-
pear on the isopycnal surface and they finally fill out the
whole domain. As a result, the system continuously shifts
from a laminar flow to a turbulent state. Even at the peak
time of eu, the typical size of the density overturn, namely, the

Thorpe scale, is several factors smaller than that of Case I.
This point will be quantitatively discussed in section 4.

To examine the temporal characteristics in further detail,
we carry out time–frequency analysis (Brouzet et al. 2016a).
Using a cosine-tapered window function, the time series of
the kinetic energy and available potential energy spectra are
computed as shown in Fig. 13. At the initial stage (t � 70 days),
most of the energy is contained at v 5 vy ; 3.9 rad day21, in
agreement with the prediction from linear analysis in section 2.
After that, energy in the harmonics, 2vy, 3vy, … gradually
grows. Around t5 90 days, when the total energy is maximum,
the situation abruptly changes; a pair of low-frequency compo-
nents with v; 0.4vy, 0.6vy rapidly gain energy. This is a signa-
ture of a parametric subharmonic instability of the primary vy

component. Subsequently, after t ; 100 days, the local inertial
component, v ; feff ; f(1 2 Ro), corresponding to the pure
horizontal flow (appendix C) grows and the energy in the other
components steadily declines. Conducting bispectrum analysis
(Yang et al. 2022), we have confirmed that a net energy trans-
fer from a high-frequency range (�10 rad day21) to the iner-
tial component takes place around 80 days , t , 160 days
(results not shown). Drastic changes in spectral shapes are also
evident in Figs. 13c and 13d, which demonstrate the frequency
spectra for three phases in the simulation. At the end of the
simulation, most of the energy is concentrated at v ; feff in
the kinetic energy part, and the spectral form is close to the
Garrett–Munk spectrum, a typical internal wave spectrum in
the ocean (Garrett and Munk 1972, 1975), although a slight
difference in the spectral slope is confirmed at the high-
frequency region.

Succession of resonances to achieve wave turbulence found
here is analogous to those reported in various contexts includ-
ing internal wave attractor experiments (Brouzet et al.
2016a,b; Davis et al. 2020) and numerical or tank experiments
of elliptic instability for internal or inertial waves (Le Reun
et al. 2017, 2018, 2019). However, in the present study, the fi-
nal state of the spectrum differs from these previous ones. In
the pure internal wave case, energy was distributed broadly in
frequency space. In pure rotation cases, the final states were
either inertial wave turbulence or a strong geostrophic vortex.
Presumably, existence of lateral boundary or absence of strat-
ification prevented the excitation of a horizontally homoge-
neous flow mode. Energy concentration to the vertically
sheared horizontal flow is a unique feature in the present
setup relevant to ocean conditions.

Overall, in Case II, energy transfer in spectral space is dom-
inated by weakly nonlinear processes that involve high-
harmonic generation and subharmonic instabilities. Wave
breaking that causes high energy dissipation takes place at
spatial scales much smaller than the primary unstable mode.
This result is in contrast to Case I, in which the primary wave
directly breaks through gravitational instability; the system is
totally governed by strongly nonlinear processes. Comparing
the two results of time series, Figs. 7 and 11, we notice that
the maximum levels of energy density and dissipation rates
are greater for Case II contrary to the smaller growth rate.
This seemingly surprising result is ascribed to the difference

FIG. 9. Kinetic and available potential energy spectra for the run
ID 2. Data are averaged over 11 # t , 13 days and projected onto
the k, ‘, orm axis to create 1D plots.
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of the background buoyancy frequency; N/f 5 3 for Case I
and N/f 5 10 for Case II. This point will be further investi-
gated in the following section.

4. Discussion on parameter dependence of
turbulence properties

Results in section 3 have shown that the energy saturation
processes of internal waves excited by AAI can be qualitatively

classified into two categories: direct wave breaking versus
weakly nonlinear wave–wave interactions. In this section, we
aim to distinguish these two scenarios quantitatively using a
suit of simulation results, total 56 runs from ID 3 to ID 58. A
main direction is to parameterize the kinetic energy dissipa-
tion rate, eu, in terms of parameters precisely determined
from the external conditions, such as the linear instability
growth rate l (abbreviated from lnmax), and rationalize it on a
theoretical basis. Here, since the state of the system varies

FIG. 10. Terms in the energy equation in wavenumber space, (16), for the run ID 2. Each data point is averaged
over 8 # t , 10 days, integrated over the azimuthal angle, smoothed using a moving average for three points in the
vertical direction, and multiplied by the wavenumbers kH and m to create a content spectrum (McComas and Müller
1981).
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significantly during a long-term simulation, to provide a dis-
cussion on a specific basis, we set the final time of the simula-
tion as tfin 5 15/l (this is enough to cover the stage of wave
breaking and transition to turbulent states for all the experi-
ments), took a running mean of scalar data such as eu over
one rotation period T, and used the peak value of it for the
analysis.

We are aiming at finding a scaling relationship between an
external parameter and the energy dissipation rates. For this
purpose, a dimensionless quantity is more favorable than the
original dimensional one. Specifically, we define the Ozmidov
length scale multiplied by the vertical wavenumber of the pri-
mary wave as

hOmp ;
eu
N3

( )1/2 2p
Lz

( )
(32)

and utilize it instead of eu. First, Fig. 14a demonstrates the
scatterplot between l/N and hOmp. The significant positive
correlation is naturally understood that stronger instability re-
sults in higher energy dissipation. Besides, the log–log plot in-
dicates two types of scaling relationships,

hOmp ~ l/N i:e:; eu ~ L2
zNl2 for l/N � 0:008

hOmp ~ (l/N)1/2 i:e:; eu ~ L2
zN

2l for l/N � 0:008
:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(33)

We shall call the two regimes “weak instability” and “strong
instability” and try to provide a reasoning of (33) in the fol-
lowing analysis.

Now, we focus on the energy density in the primary mode,
denoted as Ep. For the evolution of Ep, we may define two
types of time scales: the energy growth time scale tg and the
energy decay time scale td. The growth time scale naturally
derives from the linear instability growth rate as tg 5 1/(2l),
where the factor 2 is placed because the energy is propor-
tional to the square of the wave amplitude. The decay time
scale is rather difficult to define precisely because it involves
complicated nonlinear processes. Here, making an assump-
tion that the energy lost from the primary wave will be dissi-
pated without escaping outside the system, we write the decay
time scale as td 5 Ep/eu. Figure 14b is a scatterplot against
1/tg and 1/td. The accumulation of data along the diagonal
line with the correlation coefficient of 0.884 supports the
hypothesis that the growth and decay time scales, tg and td, al-
most coincide for all the experimental conditions.

Using the primary mode energy density Ep, we further in-
troduce a dimensionless parameter,

Frp 5
mp(2Ep)1/2

N
, (34)

which represents the Froude number defined for the primary
mode. As shown in Fig. 14c, in every simulation, Frp is strictly
bounded around 0.9. This value may represent the condition
for the direct wave breaking of the primary mode. When l/N
is small, Frp does not reach such an upper bound, presumably
because the weakly nonlinear interactions take place to drain
energy from the primary mode before its amplitude grows
enough. In the log–log plot, although the deviation is large,
the most plausible functional relationship appears to be
Frp ~ (l/N)1/2 for the weak-instability regime. Then, accepting
the two scaling relationships,

Frp ~ (l/N)1/2 for l/N � 0:008

Frp ; constant for l/N � 0:008
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (35)

and using td ; tg, we derive the expected scaling laws, (33).
Why does Frp ~ (l/N)1/2 hold for the weak-instability re-

gime? This can be explained from a basic knowledge of weak
turbulence theory (Nazarenko 2011). In general, in a weakly
nonlinear wave system where energy is transferred in spectral
space through resonant interactions, the typical time scale
that characterizes the evolution of wave energy density is
called the kinetic time scale tk. For internal wave turbulence,
resonant triad interactions dominate the energy transfer in
spectral space, and the net energy transfer rate divided by the
energy density is quadratic of the wave amplitude (Lvov et al.
2012; Onuki and Hibiya 2019). In the present case, assuming

FIG. 11. (a) Time series of the kinetic energy, available potential
energy, their sum, and the kinetic energy of the horizontal mean
(k5 ‘5 0) components for the run ID 52. Data are moving aver-
aged over one period of vortex rotation. The gray broken line indi-
cates the theoretically estimated energy growth rate. (b) Those of
the kinetic energy and available potential energy dissipation rates.
The inset shows the same data with a logarithmic scale in the verti-
cal axis.
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that the typical wave amplitude is scaled by Frp and the typi-
cal wave frequency is scaled by N, we can write the kinetic
time scale as tk ; Fr22

p /N. As is clear from its definition, the
energy decay time scale of the primary mode is equivalent to
the kinetic time scale; i.e., td ; tk is established. Finally, again
using tg ; td, we arrive at the aforementioned scaling rela-
tionship, Frp ~ (l/N)1/2.

Our classification of the scaling relationships has several
common aspects with the wave–turbulence transition model
(WT model, hereafter) proposed by D’Asaro and Lien (2000).
Indeed, the dependence of eu on wave amplitudes for the weak
instability regime well corresponds to the low-wave-energy re-
gime in the WT model. This scaling is also consistent with the
fine-scale parameterization widely used to infer energy dissipa-
tion rates in the open ocean (Gregg 1989; Polzin et al. 1995;
Ijichi and Hibiya 2015). However, the present scaling of the
strong instability regime differs from the WT model. In our
simulations, energy in the largest-scale waves is limited by the
condition of Frp ; 1, and eu is controlled by the instability

growth rate that determines the characteristic time scale. For a
high energy regime of the WT model, on the other hand, the
time scale is prescribed by the Coriolis frequency and eu is pro-
portional to a variable wave energy level. This proportionality
between the kinetic energy and the energy dissipation rate is
an accepted notion underlying the large-eddy method to infer
eu from velocity measurement (Moum 1996; Beaird et al.
2012). On this point, our scaling is a new one that may apply to
special situations where internal waves are generated from bal-
anced motion through ageostrophic instability.

In the context of ocean energetics, the ratio between the ki-
netic energy dissipation rate and the available potential en-
ergy dissipation rate, i.e., the mixing coefficient G ; eu/eu, is of
special importance (de Lavergne et al. 2016; Gregg et al.
2018). However, to obtain an accurate estimate of G in a nu-
merical model, the number of grid points should be high
enough to resolve the smallest scales of turbulent motion
where the molecular viscosity and diffusivity dominate. In
the present model, since a subgrid scheme is employed to

FIG. 12. Evolution of the density field for the run ID 52. The vertical scale is magnified 5 times.
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represent eddy viscosity and diffusivity, the mixing coefficient
is not directly available. Alternatively, we investigate the
Thorpe scale hT, the typical size of density overturn calculated
by sorting the instantaneous vertical density profiles. Scaling
estimates of stratified turbulence argue that G is a function of
the ratio between the two length scales, hO and hT (Garanaik
and Venayagamoorthy 2019). In the ocean, observation data
revealed that the value of hT/hO ranges over two orders of
magnitude and G varies accordingly as G ~ (hT/hO)

4/3 (Ijichi
and Hibiya 2018; Ijichi et al. 2020). In our experiments, al-
though hO and hT both vary depending on l/N over one de-
cade, the variation of their ratio is much smaller, around
2.5–5 throughout all the simulations (Fig. 15). This result im-
plies that the mixing coefficient is irrelevant to the wave
breaking scenarios in the present situation.

At the end of discussion, we analyze the role of the vortical
mode in the energy budget. Following the formulation of
section 2, we separate (u, u) data into the wave part and the
vortical part and compute the energy density for each part,
Ey and Ew, respectively. The energy production terms, Pww, Pwy ,
and Py , are also computed and integrated over time as

(Pc
ww, P

c
wy , P

c
y ) 5

� tfin

0
(Pww, Pwy , Py )dt (36)

to discuss their cumulative contributions. As shown in
Fig. 16a, the peak value of the vortical mode energy is no
more than 20% of the wave mode energy. Although a positive
correlation between l/N and Ey/Ew may exist, the deviation is
too large to derive a specific scaling relationship. Among the

energy production terms, as has been expected in linear anal-
ysis, the dominant contribution comes from Pc

ww (Fig. 16b).
For the remaining two terms, while Pc

y is ignorable in every
case, Pc

wy explains up to 30% of the total energy production
rate. Therefore, although the vortical mode does not gain en-
ergy directly from the reference flow, it effectively assists the
energy production of the wave mode components. A unique
character of Pc

wy is that it depends on the Rossby number Ro
and the ellipticity e of the vortex rather than l/N. As revealed
in Fig. 16c, Pc

wy /P
c tends to increase with e. This functional re-

lationship is particularly clear when Ro is close to 1. As Ro
departs from 1, this tendency becomes obscure, and Pc

wy can
even be negative for e 5 0.6 and Ro� 0:9 cases. We have
thus asserted that the IGWs generation assisted from the vor-
tical mode is effective when both the Rossby number and the
ellipticity are large, which is consistent with the theoretical
analysis of McWilliams and Yavneh (1998). When Ro is small,
the vortical mode disturbances can have both positive and
negative impacts on the wave energy production. A proper
explanation for this unexpected result is yet to be given at the
present stage.

5. Conclusions

Spontaneous generation of internal gravity waves from a
balanced motion is an important process for the ocean and at-
mosphere dynamics. In this study, we have theoretically and
numerically investigated a kind of wave generation phenome-
non named ageostrophic anticyclonic instability (AAI) in a

FIG. 13. (a) Time–frequency diagram of the kinetic energy spectra for the run ID 52. Fourier transform is carried out
for each time segment of 20 rotation periods (;32.5 days) at each location in the moving frame X, and the horizontal
velocities are rotated as (28). (b) Energy spectra for certain intervals of time. Here, feff ; f(1 2 Ro) represents the ef-
fective inertial frequency in the rotating frame. The black curve indicates the shape of the Garrett–Munk internal wave
spectrum. (c),(d) Those of the available potential energy spectra.
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specific situation of spatially uniform elliptic vortex. Using a
time-dependent Fourier transform method, we have clarified
temporal characteristics and energetic properties of growing
internal waves in this unique setting.

Performing a series of numerical simulations, we have iden-
tified two types of wave-breaking scenarios and categorized

them using the linear instability growth rate scaled by the
background buoyancy frequency l/N. When l/N�0:008, the
Froude number, Frp, defined for the primary unstable mode
resulting from AAI promptly reaches around unity, thus di-
rectly leading to gravitational instability of the primary wave.
When l/N � 0:008, in contrast, before Frp grows sufficiently
large, weakly nonlinear wave–wave interactions arise to redis-
tribute energy across the frequency spectrum. Consequently,
the system gets into a weak turbulence state and the wave
breaking occurs at vertical scales much smaller than the pri-
mary unstable wave.

Throughout the experimental conditions, the growth and
decay time scales of the primary wave energy are always com-
parable. Besides, in the weak turbulence regime, this time
scale is roughly proportional to Fr22

p , while in the strong insta-
bility regime Frp is almost constant and irrelevant to any time
scales. Combining these two estimates, we derive distinct scal-
ing relationships between the linear instability growth rate l

and the energy dissipation rate eu, for the strong- and weak-
instability regimes, respectively. Notably, in the strong insta-
bility regime, eu does not depend on the internal wave energy
level. This result challenges the conventional parameteriza-
tion schemes in which eu is parameterized as a function of a
velocity spectral level at the internal wave band.

This study has considered a particular type of AAI: para-
metric excitation of IGWs from a fully balanced homoge-
neous flow of an elliptic shape, in a highly idealized setting. In
the real ocean, a submesoscale eddy may not maintain a co-
herent structure over such a long period as O(10) days, and
there should be velocity gradients in both the horizontal and
vertical directions. Recently, Eden et al. (2019) and Chouksey
et al. (2022) carried out numerical simulations on gravity
wave emission from an unstable baroclinic shear flow. In their
experiments, however, the generated wave energy was quite
weak because the Rossby number was small (Ro # 0.3), and
the wave dissipation processes were not fully investigated.

FIG. 14. (a) Scatterplot of the Ozmidov length scale multiplied
by the vertical wavenumber of the primary wave hOmp vs the insta-
bility growth rate divided by the buoyancy frequency l/N. (b) Scat-
terplot of the inverses of the primary wave energy growth and de-
cay time scales. (c) Scatterplot of the Froude number defined for
the primary unstable wave Frp vs l/N. The insets are the log–log
plots. The colors represent the buoyancy frequency divided by the
Coriolis parameter N/f.

FIG. 15. Scatterplot of the Ozmidov length scale hO vs the
Thorpe length scale hT. The color represents the instability growth
rate divided by the buoyancy frequency l/N. The inset is the scat-
terplot of l/N vs hT/hO.
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Gravity wave generation forced by evolving vortical motion is
another candidate for the energy sink of the balanced mode
(Sugimoto et al. 2015; Sugimoto and Plougonven 2016). It
would be worth assessing the scaling for energy dissipation
rates also in these processes.

Finally, for the actual ocean situations, it is important to con-
sider more intense types of instability}symmetric/centrifugal
instabilities occurring when the potential vorticity (PV) changes
sign. In recent years, a series of field measurements in the
Kuroshio region have revealed that the interplay of the in-
tense instabilities in negative PV and internal waves trapped
within positive but low PV creates a wide-ranging turbulent
mixing zone off the southern coast of Kyushu Island, Japan
(Tsutsumi et al. 2017; Nagai et al. 2017, 2021). Extending our
understanding on energetics of ageostrophic instability from a
weak internal wave–emission regime to a much stronger instabil-
ity regime remains a challenging problem for a future study.
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represents the total amount of kinetic energy production.

FIG. A1. (a) Time series of the kinetic energy, available potential
energy, and their sum for the runs ID 1 (DNS) and ID 2 (LES). In
ID 1, the number of the grid points is 3072 3 3072 3 384 and the
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APPENDIX A

Subgrid Models of the Viscosity and Diffusivity

In the nonlinear simulations, we employ scale-dependent
eddy viscosity and diffusivity as subgrid models to keep the
virtual Reynolds number at the low-wavenumber region
sufficiently high while avoiding excessive energy accumula-
tion at the high-wavenumber regions. Emulating the formu-
lation of spectral eddy viscosity of classical large-eddy
simulations (Chollet and Lesieur 1981; Domaradzki 2021),
the viscosity coefficients are varied depending on the spec-
tral energy density at the truncation wavenumbers. Since
the grid spacing is highly anisotropic in the present case, we
modify the formulation originally invented for isotropic
turbulence, borrowing the technique of Furue (2003). We
first define scaled horizontal and vertical wavenumbers,

ks ; (k2/k̃2
c 1 ‘2/‘̃2c)0:5 and ms ; |m/m̃c|. Then, eddy viscosity

and diffusivity are arranged as

nue 5 nre 5 CH

���������������
Eu(ks 5 1)

k̃c

√
k2s 1 CV

����������������
Eu(ms 5 1)

m̃c

√
m4

s ,

(A1)

where Eu(ks 5 1) ;∑0:9,ks#1Êu(k)/0:1k̃c and Eu(ms 5 1) ;
∑0:9,ms#1Êu(k)/0:1m̃c are the 1D spectral density of kinetic
energy averaged over thin shells of the side and a pair of
vertical faces of an elliptic cylinder composed of the effec-
tive wavenumbers, respectively. This parameterization involves
dimensionless adjustable parameters, CH and CV.

For the calibration purpose, we have performed a high-
resolution experiment without using the subgrid model, i.e.,
direct numerical simulation (DNS) and also a relatively
low-resolution experiment using the subgrid model, i.e.,
large eddy simulation (LES), in an equivalent setting, which
are the runs ID 1 and 2 in Table 1. It was found that the
results of DNS and LES well coincide (Fig. A1) by setting
the dimensionless constants as CH 5 1 and CV 5 1.5. Then,
we adopt these values throughout the other simulations.

APPENDIX B

Dependence of Linear Stability Analysis on N/f

In the present study, we have employed the stratification
parameter as N/f 5 10 for the linear analysis while varied it
over 2 # N/f # 10 for nonlinear simulations. In light of the
actual oceanic conditions, these values are relatively small.
At the thermocline of low-latitude oceans, N/f occasionally
reaches around 100. This discrepancy of N/f is not a serious
problem for linear stability analysis because a scaling rela-
tionship exists between N/f and tanf (Aspden and
Vanneste 2009). Figure B1a demonstrates the instability
growth rate, l, against N/f and tanf. Clearly, the unstable
regions follow lines on which (N/f )/tanf is a constant.
Figure B1b shows lmax as a function of N/f. We confirm
that the maximum growth rates hardly depend on N/f when
N/f $ 2. To summarize, a choice of N/f 5 10 is enough to
check the parameter dependence of linear stability analysis
as long as tanf is varied over a wide range.

APPENDIX C

Pure Horizontal Flow Mode

Equation (18) allows a solution of the vertically sheared
horizontal flow mode to be computed analytically. Setting
k5 ‘5 0 and ŵ 5 0, we may write the equations as

dû
dt

5 ( f 2 b)ŷ , (C1a)

dŷ
dt

5 (a 2 f )û: (C1b)

FIG. B1. (a) Numerically obtained instability growth rates l
scaled by f for Ro5 0.95 and e5 0.6 are contoured againstN/f and
tanf. (b) The maximum instability growth rates in wavenumber
space lmax scaled by f for Ro 5 0.95 and several e are plotted
against N/f.
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Since 0 , a, b , f, these equations are immediately solved
as

û 5
A cos(vht 1 q)
(1 2 a/f )1/2 , (C2a)

ŷ 52
A sin(vht 1 q)
(1 2 b/f )1/2 , (C2b)

where vh ; f(1 2 a/f )1/2(1 2 b/f )1/2 is the natural frequency of
this mode in the frame fixed to Earth, and A and q are arbitrary
constants. For this mode, the buoyancy û is arbitrary chosen.

In a frame rotating with the vortex, the horizontal veloci-
ties are changed according to (28) as

ûr 5
A{cos(vht 1 vy t 1 q) 1 cos(vht 2 vy t 1 q)}

2(1 2 a/f )1/2

2
A{cos(vht 1 vy t 1 q) 2 cos(vht 2 vy t 1 q)}

2(1 2 b/f )1/2 , (C3a)

ŷ r 5
A{sin(vht 1 vy t 1 q) 2 sin(vht 2 vy t 1 q)}

2(1 2 a/f )1/2

2
A{sin(vht 1 vy t 1 q) 1 sin(vht 2 vy t 1 q)}

2(1 2 b/f )1/2 : (C3b)

If the shape of the vortex is close to circular, or equivalently
e ,, 1, while Ro ; O(1), we may expand the parameters as
a/f 5 Ro/2 1 O(e) and b/f 5 Ro/2 1 O(e). Consequently,
we obtain

ûr ;
A cos[f (1 2 Ro)t 1 q]

(1 2 Ro/2)1/2 1 O(e), (C4a)

ŷ r ;2
A sin[f (1 2 Ro)t 1 q]

(1 2 Ro/2)1/2 1 O(e), (C4b)

and thus understand that feff ; f(1 2 Ro) represents the ef-
fective inertial frequency that is the lower bound of the in-
ternal wave frequency in this setup.

REFERENCES

Anderson, E., and Coauthors, 1999: LAPACK Users’ Guide.
SIAM, 425 pp.

Aspden, J. M., and J. Vanneste, 2009: Elliptical instability of a
rapidly rotating, strongly stratified fluid. Phys. Fluids, 21,
074174, https://doi.org/10.1063/1.3177354.

Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated
imbalance and the enhancement of eddy kinetic energy dissi-
pation by internal waves. J. Phys. Oceanogr., 47, 181–198,
https://doi.org/10.1175/JPO-D-16-0117.1.

Bayly, B. J., 1986: Three-dimensional instability of elliptical flow.
Phys. Rev. Lett., 57, 2160–2163, https://doi.org/10.1103/
PhysRevLett.57.2160.

Beaird, N., I. Fer, P. Rhines, and C. Eriksen, 2012: Dissipation of
turbulent kinetic energy inferred from Seagliders: An applica-
tion to the eastern Nordic seas overflows. J. Phys. Oceanogr.,
42, 2268–2282, https://doi.org/10.1175/JPO-D-12-094.1.

Brouzet, C., E. V. Ermanyuk, S. Joubaud, I. Sibgatullin, and T.
Dauxois, 2016a: Energy cascade in internal-wave attractors.
Europhys. Lett., 113, 44001, https://doi.org/10.1209/0295-5075/
113/44001.

}}, I. N. Sibgatullin, H. Scolan, E. V. Ermanyuk, and T. Daux-
ois, 2016b: Internal wave attractors examined using labora-
tory experiments and 3D numerical simulations. J. Fluid
Mech., 793, 109–131, https://doi.org/10.1017/jfm.2016.119.

Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shche-
petkin, 2008a: Mesoscale to submesoscale transition in the
California Current system. Part I: Flow structure, eddy flux,
and observational tests. J. Phys. Oceanogr., 38, 29–43, https://
doi.org/10.1175/2007JPO3671.1.

}}, }}, }}, and }}, 2008b: Mesoscale to submesoscale
transition in the California Current system. Part II: Frontal
processes. J. Phys. Oceanogr., 38, 44–64, https://doi.org/10.
1175/2007JPO3672.1.

}}, }}, }}, and }}, 2008c: Mesoscale to submesoscale
transition in the California Current system. Part III: Energy
balance and flux. J. Phys. Oceanogr., 38, 2256–2269, https://
doi.org/10.1175/2008JPO3810.1.

Carnevale, G. F., M. Briscolini, and P. Orlandi, 2001: Buoyancy-
to inertial-range transition in forced stratified turbulence. J.
Fluid Mech., 427, 205–239, https://doi.org/10.1017/S0022112
00000241X.

Caulfield, C. P., 2021: Layering, instabilities, and mixing in turbu-
lent stratified flows. Annu. Rev. Fluid Mech., 53, 113–145,
https://doi.org/10.1146/annurev-fluid-042320-100458.

Chollet, J.-P., and M. Lesieur, 1981: Parameterization of small
scales of three-dimensional isotropic turbulence utilizing
spectral closures. J. Atmos. Sci., 38, 2747–2757, https://doi.org/
10.1175/1520-0469(1981)038,2747:POSSOT.2.0.CO;2.

Chouksey, M., C. Eden, and N. Brüggemann, 2018: Internal
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