Tracklops : Real-Time NFS Performance Metrics
Extractor

Théophile Dubuc
ENS de Lyon, Outscale
France
theophile.dubuc@ens-lyon.fr

Pascale Vicat-Blanc
Inria, ENS de Lyon
France
pascale.vicatblanc@inria.fr

Pierre Olivier
The University of Manchester
United Kingdom
pierre.olivier@manchester.ac.uk

Mar Callau-Zori Christophe Hubert Alain Tchana
Outscale Qutscale Grenoble INP
France France France

mar.callau-zori@outscale.com

Abstract

Network File System (NFS) is commonly used in cloud envi-
ronments as a cost-effective file storage solution that is easy
to set up. However, the multi-tenant nature of cloud infras-
tructures makes distributed file systems prone to instability
and unpredictability. These performance issues can be very
harmful to both Cloud Service Providers (CSPs) and tenants.
Therefore, CSPs and their customers require more and more
real-time granular metrics (per-file, high-frequency) for dy-
namically optimizing data placement, resource usage and
ensuring file access performance as well as for provision-
ing resources cost-effectively, billing and troubleshooting
them rapidly. In this paper, we propose TRackIoOPs, a novel
NFS tracer that provides these metrics without effort and
at low cost. TRACKIOPs is an eBPF-based client-side request-
oriented tracing solution. The main contribution of this pa-
per is a smart kernel-level solution that reconstructs NFS
request and response threads and analyses them online with-
out requiring server instrumentation. TRAckIoPs provides
real-time per-tenant, per-file, per-second NFS metrics extrac-
tor, easy to integrate in any optimization or troubleshooting
solution, with an overhead lower than 3.5% on the client in
a worst-case scenario.

ACM Reference Format:

Théophile Dubuc, Pascale Vicat-Blanc, Pierre Olivier, Mar Callau-
Zori, Christophe Hubert, and Alain Tchana. 2024. Tracklops : Real-
Time NFS Performance Metrics Extractor. In 4th Workshop on Chal-
lenges and Opportunities of Efficient and Performant Storage Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHEORPS 24, April 22, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0538-0/24/04...$15.00
https://doi.org/10.1145/3642963.3652202

christophe.hubert@outscale.com

alain.tchana@grenoble-inp.fr

(CHEOPS °24), April 22, 2024, Athens, Greece. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3642963.3652202

1 Introduction

Cloud applications and services rely on complex infrastruc-
tures made of thousands of nodes. A typical infrastructure
dissociates compute and storage nodes [19]: compute nodes
are used for their large amount of CPU cores and memory,
and they contain the hypervisor which runs the virtual ma-
chines (VMs) or containers. Storage nodes are used for their
large amount of storage capacity and are used to store the
virtual storage, which can be virtual drives for VMs, or con-
tainer persistent volumes. They are accessed from the com-
pute nodes through remote file systems like NFS. With NFS,
modern cloud applications can transparently share data and
collaborate on files accessed by multiple virtual machines or
containers.

Cloud providers need fine-grained storage performance
metrics like bandwidth, latency and I/O operations per sec-
ond (iops) to perform load-balancing [23], or to know cus-
tomers’ resource usage, for billing purposes [25, 35] or car-
bon emission estimation [33]. For these use-cases, the cloud
providers need storage metrics at the granularity of the re-
source reserved by the customer. For storage, this granularity
is the file, as virtual drives for VMs are stored as files on the
host machine, and a container volume can be a directory
mounted in the container. Thus, the use-cases cited above
require per-file and real-time NFS performance metrics.

In production environments, storage nodes are usually
industrial scale closed-source solutions which cannot be
instrumented. Therefore, collecting NFS metrics is harder
for it should be done from the compute nodes (NFS clients)
only.

To the best of our knowledge, there is no existing tool
which provides NFS performance metrics per-file and in real
time from the client side only.

To fill this gap, we introduce TrRackIoPs, a real-time per-
file and client-side NFS performance metrics extractor. Some
of the challenges which explain the gap in existing tooling,
and that TrRackIops successfully overcomes, are:

https://doi.org/10.1145/3642963.3652202
https://doi.org/10.1145/3642963.3652202

CHEOPS ’24, April 22, 2024, Athens, Greece Théophile Dubuc, Pascale Vicat-Blanc, Pierre Olivier, Mar Callau-Zori, Christophe Hubert, and Alain Tchana

e (C1) The tool should have a negligible overhead on the
compute node performance, as it should be always-on
in production environments.

e (C2) It is often not desirable or even not possible to
modify the kernel of production machines, for stability
reasons: a modified kernel or a kernel module could
lead to kernel crashes, which is not a risk that can be
taken in production.

o (C3) The NFS system is asynchronous. The I/O requests
from the client are not emitted by the same process that
receives the answer, therefore it is difficult to measure
requests latency.

We argue that basing the tracer on eBPF [12] (called BPF
for convenience) allows tackling challenge (C2), and also
helps for (C1) as BPF enables lightweight instrumentation.

Also, Tracklops solves (C3) by reconstructing the NFS
requests directly in the kernel using the RPC (remote proce-
dure call) layer, on which NFS is based, to match NFS answers
received from the NFS server to the requests that were is-
sued by the client. This method is also what allows real-time
metrics extraction, contrary to methods which would rely
on logging events and reconstructing the requests offline.

After motivating the use-case for the metrics and provid-
ing background about existing tools and BPF (Section 2), this
paper presents TRACKIOPS’s design and implementation (Sec-
tion 3), then evaluates its overhead on the system (Section
4). We find that even in a scenario where the NFS server has
a very low latency, the overhead of TRackIoPs on storage
performance is always below 3.5%, which makes it suitable
for real-world production environments.

2 Background and Motivations
2.1 Use-Cases for Per-File NFS Performance Metrics

A fundamental practice for a cloud provider managing many
servers is load-balancing [23, 24, 27]. It consists in deciding
where to place the resources requested by a client, or move
existing ones for optimization. The goal of load-balancing
is to save energy by enabling over-commitment, while main-
taining the same Quality of Service. If customers use 10% of
the resources (for instance CPU) they reserved, then 90% of
the resources on the server are wasted, and so are energy and
money, as energy consumption of physical servers is not pro-
portional to server usage [17]. Therefore, the cloud provider
can over-commit on the resources and allocate more virtual
resources to the customers than the actual physical resources,
and thus reduce energy consumption by increasing server
usage. In case of a peak of usage of a server, load-balancing
is also used to move parts of the reserved resources to other
machines, and prevent resources starvation inducing Service-
Level Agreement violation and financial penalties [30].

In order to perform load-balancing, the cloud provider
needs to know at any time what resources are used, and
it needs this information to the granularity of the unit of

allocation (per-VM, per-container), so it knows what VMs
or containers can be moved away to free the required re-
sources. For CPU and memory, this information is provided
directly by Linux, as a container or a VM is a process (or a
set of processes) on the host, and Linux built-in tools can
provide CPU and memory usage per process identifier (PID)
[9, 11]. However, a single VM could have several virtual
drives stored in several files, on different drives or even dif-
ferent storage nodes. Thus, per-PID storage consumption
is not of any use as it aggregates the information of all the
drives or volumes of a single VM or container. Therefore,
for storage load-balancing, the required granularity is (at
least) per-file. Obtaining per-file size is straightforward, so
this work focuses on collecting storage performance metrics:
I/O operations per second (iops), throughput and latency.

A second use-case of per-file storage metrics is carbon
footprint estimation [31, 33]. As emissions reporting is be-
coming mandatory in a growing number of countries [2],
companies need to have the means to compute their car-
bon footprint. If a company IT infrastructure is cloud-based,
the cloud provider should report the carbon emissions to
their customers. Providing the data per-volume rather than
per-VM or container allows finer decision-taking from the
companies relying on cloud services. This per-file precision
also enables better billing precision. It should finally provide
help in troubleshooting performance issues, especially when
a single virtual drive of a VM is split onto several files on
the storage host, which is possible with copy-on-write drive
formats (like QCOW?2 [10], the default for KVM-based virtu-
alization). For instance, if a customer experiences latency on
their VM drive, knowing per-file latency helps the provider
pinpointing one problematic file in the QCOW?2 chain and
taking action on the responsible storage node.

2.2 Closed-Source Storage Nodes

The first challenge for collecting these metrics from a produc-
tion system is that storage nodes are usually industrial-scale
storage solutions, like NetApp ONTAP or Dell EMC. These
solutions usually provide performance metrics, but they are
aggregated at the scale of a whole NFS share at best [15, 16].
Unfortunately, as they are closed-source, they cannot be
instrumented to collect more data. Thus, the storage node
must be considered as a closed-box, and storage performance
metrics should be collected from the client side only.

2.3 Extended Berkley Packet Filter (eBPF)

BPF [12] is a technology which allows attaching BPF pro-
grams to some kernel events, like kernel function entry
(kprobes) or exit (kretprobes), or tracepoints, which are special
hooks placed at strategic points in the kernel by its develop-
ers. BPF programs are written in a restricted C-like language,
and are verified and compiled to byte code which is executed
in a kernel virtual machine. The BPF verifier and the isola-
tion from the kernel ensures that BPF-based applications are

Tracklops : Real-Time NFS Performance Metrics Extractor

perfectly stable and do not risk crashing the kernel, contrary
to modifying the kernel code directly or through modules. It
is therefore safer and used by many companies in production.
Furthermore, as it runs in kernel space where NFS resides,
it is much faster than user-space tracing. Additionally, BPF
developers argue that tracepoints have a faster interface than
kprobes [21], and they are not vulnerable to function sig-
nature changes. Therefore, we base TRackIops on available
NFS tracepoints, for Challenge C1 - low overhead.

2.4 Existing Tools

There exist many tools for monitoring an NFS mount point
from the client side. nfsiostat [1] provides statistics per NFS
mount, nfsstat [7] only counts the number of operations.
There exist BPF-based tools, like nfsdist [3] and nfsslower
[4], which provide some stats about NFS mounts, but they
both filter per PID and not per file.

Performance metrics can also be measured at the VFS
level. Examples of tools providing performance metrics are
blktrace [5], atop [13], or pidstat [8]; but they provide only
block device or per-process metrics. inotifywatch [6] pro-
vides file-level metrics, but only the number of read and write
operations, not the latency. There are several bpftools [14]
provided with BCC (a Python-based eBPF framework and
toolkit) which trace some storage metrics, but none provides
all the required performance metrics at the file granularity.

In the state of the art, there are also a lot of works aiming at
tracing I/O in user-space [18, 20, 26, 34] or even mixing both
user and kernel tracing [28] for better comprehension of the
system; but these tools have a purpose of tracing and collect
too many data than what we require here, thus they usually
have an overhead that discards them for real-time metrics
extraction. There also exist distributed tracing frameworks
for cloud native applications [22, 29, 32], which can thus be
used for NFS-based storage; however they usually require a
lot of post-processing for trace reconstruction and are thus
not intended for real-time metrics extraction. There is, to the
best of our knowledge, no recent work focusing on efficiently
extracting per-file NFS performance metrics.

3 Design and Implementation

TracklIops is composed of two parts: a kernel-space agent
and a user space consumer, as shown in Figure 1. The kernel-
space agent (A) is based on BPF, for light and stable instru-
mentation (challenges C1 and C2). Its role is to collect data
at different stages of the NFS requests, and reconstruct them
using a unique identifier available at the RPC layer. It aggre-
gates statistics on the reconstructed requests in a BPF map
(B) readable from user space. The user space consumer (C)
collects the data and writes it to a pipe for use by external
services. This section gives the key points of the design and
implementation of these components.

CHEOPS ’24, April 22, 2024, Athens, Greece

External real-time
A » analysis / storage
platform

Metricspipe --1--

Consumer

Applications

user space

"o "
requests answers

A

BPF map

Per-file
metrics

NFS servér (;;otential
_ black-box) _

A

kernel space

NFS Client

Figure 1. The global design of TrRackIops. It is composed of
an eBPF agent which attaches to NFS and RPC tracepoints,
and a user space consumer which collects the storage metrics
and writes them to a database.

Table 1. Data exposed by nfs_readpage_done, a trace-
point triggered when an NFS read request is completed.

Field name Explanation
dev Device to which the read is issued
fhandle File handle
fileid File ID (inode number)
offset Offset in the file of the requested read
arg_count | Requested number of bytes to read
res_count Actual number of bytes read

3.1 BPF for In-Kernel Data Collection

TracklIops leverages eBPF for in-kernel lightweight data
collection. It allows writing BPF programs that are compiled
and verified before being attached to kernel events. When
an event occurs, the hooked BPF program is executed in a
kernel VM. This approach offers efficiency for the executed
BPF code, as it is directly in kernel and has access to kernel
data structures. It also offers security, as the BPF verifier
and some constraints on the BPF code ensure it is safe to
execute in the kernel, unlike kernel modules or kernel patch-
ing. Kernel events to which the BPF programs are attached
can be kernel function entry (kprobe), function return (kret-
probe), tracepoints, which are placed at key points inside the
kernel code by the kernel developers, or even user-defined
probes. Tracepoints are designed for tracing and directly
expose context-related information like shown in Table 1,
through a faster interface compared to kprobes. Thus, they
are preferred when available, which is the case for NFS.

CHEOPS ’24, April 22, 2024, Athens, Greece Théophile Dubuc, Pascale Vicat-Blanc, Pierre Olivier, Mar Callau-Zori, Christophe Hubert, and Alain Tchana

Table 2. The conversion formulas for the different target
metrics. g is the granularity, i.e. the time interval during
which the raw metrics were collected.

Metric Formula
I0PS I/O count /g
Throughput Cumulated size /g
Average latency | Cumulated latency / I/O count

3.2 Metrics Sources

The role of the BPF agent is to collect data that the user space
consumer can use to compute NFS storage performance met-
rics: IOPS (number of I/O operations per second), throughput
(read / written size per second), and latency (average time
before an I/O request gets a response). These metrics can be
derived respectively from the count of I/O operations on a
given time, the cumulated size of I/O operations on a given
time, and the cumulated latencies of a known number of I/O
operations. Table 2 summarizes these conversions.

Therefore, the BPF agent must collect the following data:
read count, read cumulated size, read cumulated latency, and
the same ones for write. For read requests, the tracepoint
nfs_readpage_done allows collecting the first two: count-
ing the number of times it is triggered gives the read count,
and by summing the res_count values, one gets the cu-
mulated read size. Finally, the read latency is the difference
between the timestamp when nfs_initiate_read is trig-
gered and the one when nfs_readpage_done is triggered
for a same request. This is all analogous for write requests
(with corresponding write tracepoints). However, to com-
pute this difference, when an NFS request (read or write)
occurs, one must link the two events corresponding to its
beginning and end in order to compute this latency. This
request reconstruction is performed directly in the kernel by
the BPF programs, and is explained next in Section 3.3.

3.3 NFS Requests Reconstruction

In order to measure the NFS read and write latencies, a tracer
should be able to link the tracepoints related to requests be-
ginning and end. However, this information is not directly
provided by the NFS tracepoints. In order to get a common
request identifier, TrRacklops hooks two extra sunrpc trace-
points. The RPC (remote procedure call) is the layer below
NES, which is responsible for packing the NFS request and
sending it through the network to the server. The following
observations allow to reconstruct an NFS request:

1. The process initiating an NFS request is the same that
will create the RPC task responsible for transporting
it.

2. The RPC identifies its tasks with a task ID which is
unique on the client even if mounted from different
NFS servers are present.

——Same PID——
| |
A4 A4
|NFS request .| RPC task
creation creation
VFS NFS RPC same rFc NFS
task ID
server
NFS request RPC task
< T R
end end
A A
|—_Same pip—
NFS Client

Figure 2. One can link the beginning and end of an NFS
request using the information available at kernel tracepoints.
The reconstruction uses the RPC subsystem and its tasks IDs
as an intermediary between the two NFS tracepoints.

3. The process ending an RPC request when the answer
has been received is also the one that completes the
NFS request.

Therefore, by collecting the task ID when an RPC request is
created and when it is done, along with the process ID (PID),
and collecting the ID of the process which initiates and the
one that ends an NFS request, TRACKIOPS can reconstruct the
NFS request by linking its beginning and end. The RPC task
IDs and PIDs are collected by hooking the rpc_task_begin
and rpc_task_done tracepoints. Figure 2 summarizes the
different collect points along an NFS request and how they
relate to each other.

An important aspect of the design is that this reconstruc-
tion is done inside the kernel, directly by the BPF programs.
This method allows minimizing data movement between ker-
nel and user spaces, when compared to the other common
option which consists in sending an event to the user space
every time a tracepoint is triggered and reconstructing the
request offline there. To achieve this, the BPF side of TRACK-
Iops uses different hash maps that it uses to store temporary
information while waiting for an NFS request to end. We
detail next the instrumented tracepoints and what data is
used to reconstruct the requests.

3.4 In-kernel Reconstruction Implementation

This section presents the different tracepoints instrumented
by the BPF agent. To each of these tracepoints in attached one
BPF program, and we describe what information it collects
and stores in the different hash maps in order to reconstruct
the requests. The whole process is presented in Figure 3,
which is referenced to all along the following paragraphs.

nfs_initiate_read (1R). This tracepoint is triggered
at the beginning of an NFS read request. Here, the tracer
collects only a timestamp and the PID of the process which
triggered the tracepoint. It stores this information in the
hash table 1ink_begin, whose key is the PID and value the
timestamp.

Tracklops : Real-Time NFS Performance Metrics Extractor

User space Kernel space

Application VFS NFS
1R
Read request¢————------------ -
1w
Write request §————————}------------ R &
4R
Read answer€—=————-———""------------ *-- - "ZZIC:;S
Write answer €—————---=--=-=--- Wigl .
K J|
link_init < initiate_read
PID
io_metrics i) initiate_write Irpc_task_begin
User-sp file_ID-d
consumer le_ID-dev waiting

read count RPC task ID

read size i L

read latency - L)‘

B — link_done <—J _| read_done rpc_task_done

L PID
write size 5| write_done
write latency T a
eBPF
map_name
T Tracepoint BPF program key BPF hash table
value(s)

Figure 3. The BPF agent detail, the different steps are de-
tailed in Section 3.4. The names in the "BPF program" boxes
are the names of the BPF programs attached to the various
tracepoints, whose names are given as the paragraph titles
of Section 3.4.

nfs_initiate_write (1W). This is analogous to the
above nfs_initiate_read but for write requests.

rpc_task_begin (2). This tracepoint is triggered at the
beginning of an RPC task, which can be triggered after a NFS
read or write request alike. The BPF program attached to this
tracepoint collects the current PID and the RPC task ID, ex-
posed by the tracepoint. It reads the hash map 1ink_begin
using the PID, and collects the timestamp associated to it,
filled in step (1R/W). It then writes back the timestamp to
the waiting_RPC hash table, with the RPC task ID as the
key. Note that the RPC might be used by other services than
NES; therefore this tracepoint can be triggered outside the
scope of TRacklops. However, the first step of reading the
hash map link_begin with the key as PID acts like a filter:
if the read fails, it means that the map was not filled by this
process, therefore the current RPC task is not for an NFS
read or write.

rpc_task_done (3). This tracepoint is triggered when an
RPC request received an answer, right before returning to
the requesting application (here, NFS). On this tracepoint,
Tracklops gets the PID and RPC task ID, reads the timestamp
stored in the waiting_RPC table at step (2), and writes it in
link_end with the PID as the key. Now the link between
the request and its answer has been made, the next step is
to collect the last pieces of information about this request.

nfs_readpage_done (4R). This is the last tracepoint of
NES read requests instrumented by the BPF agent. The pro-
gram attached to it gets the current PID, reads the 1ink_end

CHEOPS ’24, April 22, 2024, Athens, Greece

Table 3. Fields of struct raw_metrics. Values are
counted or summed since last reset.

Field Description
read_count | Number of read operations
read_size Total read size
read_lat Cumulated read latencies
write_count | Number of write operations
write_size Total written size
write_lat Cumulated write latencies

table to fetch the timestamp of when the NFS request was
started. It also fetches the size of the read operation from the
res_count of the tracepoint context, like shown in Table 1,
as well as the ID (inode number) of the read file (fileid)
and the device hosting it (dev). The keys of the io_metrics
hash table are the concatenation of the file ID and the device
number. This is for in NFS, the inode number are borrowed
to the server. Thus, when several NFS shares are mounted
from different servers to a single client, nothing prevents
inode number conflicts, and the device number is required
to disambiguate them. Using that key, the BPF program can
enrich the io_metrics map by:

e Incrementing the read count by one

e Incrementing the total read size by this operation size

e Incrementing the total latency by the difference be-
tween the current time and the timestamp of the re-
quest beginning.

nfs_writeback_done (4W). This is the equivalent to
nfs_readpage_done for write requests.

3.5 Metrics Polling by the User Space Consumer

As the BPF hash map containing the metrics is being filled by
the BPF programs, the role of the user space consumer is to
collect those metrics at regular time intervals (the granularity
g, in seconds, which can be as low as 1). This is possible as
the BPF maps are accessible from the user space for read and
write. Every g seconds, the consumer reads the io_metrics
hash table, whose keys are the file IDs, and the values are
the struct raw_metrics described in Table 3. The hash
table entries are reset right after they are read, so the BPF
programs which are constantly running can keep filling them
with fresh data for the next collect. The collected information
is converted to the actual storage metrics like described in
Table 2. Therefore, the granularity does not impact the collect
of the data by the BPF programs in the kernel, which is
always exhaustive. Instead, it defines the rate at which the
user space consumer will fetch the data in the shared map,
allowing to refine the granularity, or reduce the overhead
and amount of data generated by the consumer, depending
on the needs of the user.

CHEOPS ’24, April 22, 2024, Athens, Greece Théophile Dubuc, Pascale Vicat-Blanc, Pierre Olivier, Mar Callau-Zori, Christophe Hubert, and Alain Tchana

4 Evaluation
4.1 Performance Overhead

This section evaluates the overhead of the tracer and the
factors that impact it. The main sources of overhead for a
given workload are:

o The code injected in the kernel at BPF hooks. It slows
down the application that makes NFS calls, as it adds
instructions to the critical path of its execution. Each
NFS request will be slowed down by the same amount
of time. So (1) the lower the NFS latency, the higher
the impact of the tracer is visible per request. And (2)
the higher the frequency of NFS requests made by an
application, the higher the impact of slowing NFS, so
the higher the impact of the tracer.

e The consumer, which adds some CPU and memory
load when reading the hash table every g seconds. The
longer the consumer runs, the higher this overhead;
therefore the parameters that influence it are the gran-
ularity g (increases the number of times that the con-
sumer runs) and the size of the hash table (increases
the execution time of every full read), which directly
depends on the number of active NFS files.

Here is a summary of the identified parameters that impact
the overhead, and how they are treated in this experiment:

1. NFS server performance. The lower the NFS latency,
the more the tracer’s impact is visible. Therefore, the
experiment emulates a very fast server by running lo-
cally on the client (no network latency) and in memory
(very low storage latency).

2. Frequency of NFS requests. As the tracer supposedly
impacts NFS performance, the workload chosen for
this experiment is an fio test on files accessed via NFS.
This storage-intensive workload will maximize the
impact of the tracer in the measurements.

3. Tracer’s granularity. The experiment is run several
times with variable granularity, going from infinitely
coarse (the user space consumer never fetches the data)
to the finest available with our implementation (fetch
the data every 1 second).

4. Simultaneously active files. The experiment also varies
the number of workers run in the fio workload, which
is equivalent to the number of files read and written
to. It goes from a single file to 4000 simultaneous files,
which is the maximum we could get fio to run.

This experiment ran on a single Dell PowerEdge C6420
with two Intel Xeon Gold 5118 CPUs (12 cores/CPU, 2.30GHz),
and 512 GiB of memory, with Linux 5.15 in Ubuntu 22.04.

The workload consists in running a fio experiment with k
workers. Each worker opens a 1 MB file, and performs a total
of 1 GB of random read/write operations on it. The same
experiment is run several times with different values for the

Table 4. Read latency degradation (in %) compared to the
control experiment for the all the tested values of granularity
and number of workers.

workers | -s | 60s | 30s | 15s | 5s 1s
1 3.10 | 3.30 | 3.14 | 299 | 3.12 | 0.48
5 0.83 | 0.38 | 0.86 | 1.12 | 0.54 | 0.45
10 0.62 | 0.75 | 0.71 | 1.31 | 0.74 | 0.47
100 0.23 | 0.21 | 0.28 | 0.18 | 0.22 | 0.00
1000 1.57 | 1.70 | 1.83 | 1.98 | 1.79 | 1.84
4000 0.00 | 0.05 | 0.51 | 0.00 | 0.00 | 0.73

Table 5. The worst degradation observed for every met-
ric, and the couple (granularity, workers) of parameters for
which each worst performance was met.

Metric max loss | workers | granularity
Read bandwidth 2.47% 1 60s
Write bandwidth | 2.47% 1 60s

Read latency 3.30% 1 60s
Write latency 2.65% 5 5s
Read iops 2.48% 1 60s
Write iops 2.47% 1 60s

parameters cited above: granularity and number of fio work-
ers. For every (granularity, workers) couple of parameters,
the experiments was run 15 times. The results presented here
are the arithmetical mean of 13 of these runs after removing
the min and max value. We present the degradation in per-
cent compared to a control experiment, which is the same
workload running without any tracer at all.

Table 4 shows the results for read bandwidth experiments.
The biggest degradation values are reached for the single
worker configurations. The reason for that is the high perfor-
mance of fio in that configuration: the average read latency
with a single worker in the control experiment is 169.4ps.
Thus, the 2.47% observed degradation corresponds to an ex-
tra 5.6ps latency on average. The baseline latency of 169.4us
is extremely low thanks to our experimental setup which
almost completely removes storage and network latencies.
As the latency of an SSD drive is usually higher than 200ps,
this 5.6ps degradation is negligible when the NFS server is
distant rather than local and using SSDs rather than memory.

The worst degradation per metric is shown in Table 5.
The overall maximum degradation observed during this eval-
uation is the read latency one presented above. All other
metrics degradation for every couple (granularity, workers)
of parameters is less than 3%, even in this worst-case setup.
This makes TrackIops suitable for environment production,
which was Challenge C1.

Tracklops : Real-Time NFS Performance Metrics Extractor

4.2 Volume of Generated Data

Here we briefly provide an insight on the quantity of data
generated by Tracklops. The data generated per day on a
single node is given by the formula:

(86400/g) = w = sizeof (log_entry)

86400 is the number of seconds in a day, g is the granular-
ity, w the number of workers. In its current implementation,
the size of an entry of the io_metrics map is 28 bytes, and
the key (fileid and device) is 12 bytes long, for a total of
40 bytes. So with the worst-case 1s granularity and 4000
simultaneously open files, TRACKIOPS generates less than 13
GiB of data per day, which is reasonable in terms of stor-
age and network overhead in a cloud provider production
environment, and can be easily reduced by increasing the
granularity.

5 Conclusion

This paper proposes TRacklops, an eBPF-based client-side
request-oriented tracer which extracts NFS performance met-
rics (iops, throughput and latency) and exposes them for
services that requires them, like a load balancer. The main
contribution of this paper is the in-kernel NFS session re-
construction which allows lightweight and real-time metrics
collection while reducing the amount of generated data com-
pared to traditional eBPF-based tools. Our evaluation shows
that Tracklops is suitable for production always-on use as
it has a very low overhead on the NFS client running it (less
than 3.5% in a worst-case scenario).

In the future, we intend to perform further testing of
Tracklops with our industrial partner to eventually charac-
terize performance metrics at a cloud provider scale. We also
plan to associate it with an existing networking analysis tools
like ePPing in order to break down storage latency between
client, network and server for better troubleshooting.

Acknowledgment

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.1r).

References

[1] 2010. nfsiostat man page. https://man7.org/linux/man-pages/man8/

nfsiostat.8.html

2020. Mandatory Emissions Reporting Around the Globe. https:

//www.ul.com/news/mandatory-emissions-reporting-around-globe

[3] 2021. nfsdist. https://github.com/iovisor/bcc/blob/master/tools/
nfsdist.py

[4] 2021. nfsslower. https://github.com/iovisor/bcc/blob/master/tools/
nfsslower.py

[5] 2023. blktrace man page. https:/linux.die.net/man/8/blktrace

[6] 2023. inotifywatch man page. https://linux.die.net/man/1/
inotifywatch

[2

—

CHEOPS ’24, April 22, 2024, Athens, Greece

[7] 2023. nfsstat man page. https:/linux.die.net/man/8/nfsstat

[8] 2023. pidstat man page. https://man7.org/linux/man-pages/man1/
pidstat.1.html

[9] 2023. ps man page. https://man7.org/linux/man-pages/man1/ps.1.
html

[10] 2023. QCOW?2 format reference. https://github.com/qemu/qemu/
blob/master/docs/interop/qcow2.txt

[11] 2023. top man page. https://man7.org/linux/man-pages/man1/top.1.
html

[12] 2023. What Is eBPF? https://ebpf.io/what-is-ebpf/

[13] 2024. atop man page. https:/linux.die.net/man/1/atop

[14] 2024. BCC storage tools. https://github.com/iovisor/bcc?tab=readme-
ov-file#storage-and-filesystems-tools

[15] 2024. Dell EMC storage metrics. https://www.ibm.com/docs/
en/storage-insights?topic=metrics-performance-dell-emc-storage-
systems

[16] 2024. NetApp storage metrics. https://docs.netapp.com/us-en/ontap-
automation/rest/performance_metrics.html

[17] Luiz André Barroso and Urs Holzle. 2007. The case for energy-
proportional computing. Computer 40, 12 (2007), 33-37. Publisher:
IEEE.

[18] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel
Lang, Robert Latham, and Robert Ross. 2011. Understanding and
Improving Computational Science Storage Access through Continuous
Characterization. ACM Trans. Storage 7, 3 (Oct. 2011). https://doi.
org/10.1145/2027066.2027068 Place: New York, NY, USA Publisher:
Association for Computing Machinery.

[19] Tao Chen, Xiaofeng Gao, and Guihai Chen. 2016. The features, hard-
ware, and architectures of data center networks: A survey. J. Parallel
and Distrib. Comput. 96 (Oct. 2016), 45-74. https://doi.org/10.1016/j.
jpdc.2016.05.009

[20] Steven WD Chien, Artur Podobas, Ivy B Peng, and Stefano Markidis.
2020. tf-Darshan: Understanding fine-grained I/O performance in
machine learning workloads. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 359-370.

[21] Jonathan Corbet. 2016. Tracepoints with eBPF.
Articles/683504/

[22] Téania Esteves, Francisco Neves, Rui Oliveira, and Jodo Paulo. 2021.
CAT: Content-aware tracing and analysis for distributed systems. In
Proceedings of the 22nd International Middleware Conference. 223-235.

[23] Pawan Kumar and Rakesh Kumar. 2019. Issues and Challenges of Load
Balancing Techniques in Cloud Computing: A Survey. ACM Comput.
Surv. 51, 6 (Feb. 2019). https://doi.org/10.1145/3281010 Place: New
York, NY, USA Publisher: Association for Computing Machinery.

[24] Daniel Kunkle and Jiri Schindler. 2008. A load balancing framework
for clustered storage systems. In International Conference on High-
Performance Computing. Springer, 57-72.

[25] Haitao Li, Yuliang Yang, and Bin Zheng. 2012. Research on Billing
Strategy of Cloud Storage. In 2012 Fourth International Conference
on Multimedia Information Networking and Security. 624-627. https:
//doi.org/10.1109/MINES.2012.172

[26] Bjern Lindi. [n.d.]. I/O-profiling with Darshan. PRACE report ([n. d.]).

[27] Guoxin Liu, Haiying Shen, and Haoyu Wang. 2015. Computing load
aware and long-view load balancing for cluster storage systems. In
2015 IEEE International Conference on Big Data (Big Data). 174-183.
https://doi.org/10.1109/BigData.2015.7363754

[28] Mohammed Islam Naas, Francois Trahay, Alexis Colin, Pierre Olivier,
Stéphane Rubini, Frank Singhoff, and Jalil Boukhobza. 2021. EZIO-
Tracer: unifying kernel and user space I/O tracing for data-intensive
applications. In Proceedings of the Workshop on Challenges and Oppor-
tunities of Efficient and Performant Storage Systems. ACM, Online Event
United Kingdom, 1-11. https://doi.org/10.1145/3439839.3458731

[29] Francisco Neves, Nuno Machado, and others. 2018. Falcon: A practical
log-based analysis tool for distributed systems. In 2018 48th Annual

https://lwn.net/

https://man7.org/linux/man-pages/man8/nfsiostat.8.html
https://man7.org/linux/man-pages/man8/nfsiostat.8.html
https://www.ul.com/news/mandatory-emissions-reporting-around-globe
https://www.ul.com/news/mandatory-emissions-reporting-around-globe
https://github.com/iovisor/bcc/blob/master/tools/nfsdist.py
https://github.com/iovisor/bcc/blob/master/tools/nfsdist.py
https://github.com/iovisor/bcc/blob/master/tools/nfsslower.py
https://github.com/iovisor/bcc/blob/master/tools/nfsslower.py
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/1/inotifywatch
https://linux.die.net/man/1/inotifywatch
https://linux.die.net/man/8/nfsstat
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://github.com/qemu/qemu/blob/master/docs/interop/qcow2.txt
https://github.com/qemu/qemu/blob/master/docs/interop/qcow2.txt
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://ebpf.io/what-is-ebpf/
https://linux.die.net/man/1/atop
https://github.com/iovisor/bcc?tab=readme-ov-file#storage-and-filesystems-tools
https://github.com/iovisor/bcc?tab=readme-ov-file#storage-and-filesystems-tools
https://www.ibm.com/docs/en/storage-insights?topic=metrics-performance-dell-emc-storage-systems
https://www.ibm.com/docs/en/storage-insights?topic=metrics-performance-dell-emc-storage-systems
https://www.ibm.com/docs/en/storage-insights?topic=metrics-performance-dell-emc-storage-systems
https://docs.netapp.com/us-en/ontap-automation/rest/performance_metrics.html
https://docs.netapp.com/us-en/ontap-automation/rest/performance_metrics.html
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1016/j.jpdc.2016.05.009
https://doi.org/10.1016/j.jpdc.2016.05.009
https://lwn.net/Articles/683504/
https://lwn.net/Articles/683504/
https://doi.org/10.1145/3281010
https://doi.org/10.1109/MINES.2012.172
https://doi.org/10.1109/MINES.2012.172
https://doi.org/10.1109/BigData.2015.7363754
https://doi.org/10.1145/3439839.3458731

CHEOPS ’24, April 22, 2024, Athens, Greece Théophile Dubuc, Pascale Vicat-Blanc, Pierre Olivier, Mar Callau-Zori, Christophe Hubert, and Alain Tchana

(30]

(31]

IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 534-541.

Pankesh Patel, Ajith Ranabahu, and Amit Sheth. 2009. Service Level
Agreement in Cloud Computing. Kno.e.sis Publications (Jan. 2009).
https://corescholar.libraries.wright.edu/knoesis/78%7D

Lorenzo Posani, Alessio Paccoia, and Marco Moschettini. 2018. The
carbon footprint of distributed cloud storage. (2018). https://doi.org/
10.48550/ARXIV.1803.06973 Publisher: arXiv Version Number: 3.

[32] Junxian Shen, Han Zhang, Yang Xiang, Xingang Shi, Xinrui Li, Yunxi

Shen, Zijian Zhang, Yongxiang Wu, Xia Yin, Jilong Wang, and oth-
ers. 2023. Network-centric distributed tracing with DeepFlow: Trou-
bleshooting your microservices in zero code. In Proceedings of the ACM
SIGCOMM 2023 Conference. 420-437.

[33]

[34]

[35]

Arie Taal, Dexter Drupsteen, Marc X. Makkes, and Paola Grosso.
2014. Storage to energy: Modeling the carbon emission of stor-
age task offloading between data centers. In 2014 IEEE 11th Con-
sumer Communications and Networking Conference (CCNC). 50-55.
https://doi.org/10.1109/CCNC.2014.6866547

Francois Trahay, Francois Rue, Mathieu Faverge, Yutaka Ishikawa,
Raymond Namyst, and Jack Dongarra. 2011. EZTrace: a generic frame-
work for performance analysis. In 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. IEEE, 618-619.
Matthew Wachs, Lianghong Xu, Arkady Kanevsky, and Gregory R
Ganger. 2011. Exertion-based billing for cloud storage access. In 3rd
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 11).

https://corescholar.libraries.wright.edu/knoesis/78%7D
https://doi.org/10.48550/ARXIV.1803.06973
https://doi.org/10.48550/ARXIV.1803.06973
https://doi.org/10.1109/CCNC.2014.6866547

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Use-Cases for Per-File NFS Performance Metrics
	2.2 Closed-Source Storage Nodes
	2.3 Extended Berkley Packet Filter (eBPF)
	2.4 Existing Tools

	3 Design and Implementation
	3.1 BPF for In-Kernel Data Collection
	3.2 Metrics Sources
	3.3 NFS Requests Reconstruction
	3.4 In-kernel Reconstruction Implementation
	3.5 Metrics Polling by the User Space Consumer

	4 Evaluation
	4.1 Performance Overhead
	4.2 Volume of Generated Data

	5 Conclusion
	References

