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S U M M A R Y
The presence of a magma ocean may have characterized the beginning of terrestrial planets
and, depending on how the solidification has proceeded, the solid mantle may have been in
contact with a magma ocean at its upper boundary, its lower boundary, or both, for some period
of time. At the interface where the solid is in contact with the liquid the matter can flow through
by changing phase, and this affects convection in the solid during magma ocean crystallization.
Linear and weakly non-linear analyses have shown that Rayleigh–Bénard flow subject to two
liquid–solid phase change boundary conditions is characterized by a non-deforming translation
or weakly deforming long wavelength mode at relatively low Rayleigh number. Both modes
are expected to transfer heat very efficiently, at least in the range of applicability of weakly
non-linear results for the deforming mode. When only one boundary is a phase change, the
critical Rayleigh number is also reduced, by a factor of about 4, and the heat transfer is also
greatly increased. In this study we use direct numerical simulations in 2-D Cartesian geometry
to explore how the solid convection may be affected by these boundary conditions for values of
the Rayleigh number extending beyond the range of validity of the weakly non-linear results,
up to 103 times the critical value. Our results suggest that solid-state convection during magma
ocean crystallization may have been characterized by a very efficient mass and heat transfer,
with a heat flow and velocity at the least twice the value previously thought when only one
magma ocean is present, above or below. In the situation with a magma ocean above and below,
we show that the convective heat flow through the solid layer could reach values of the same
order as that of the black-body radiation at the surface of the magma ocean.

Key words: Composition and structure of the mantle; Phase transitions; Mantle processes;
Numerical modelling; Planetary interiors.

1 I N T RO D U C T I O N

Partial or even complete melting of the silicate mantle may have
occurred early in the history of rocky planets, and depending on
the phase diagram involved (e.g. Thomas et al. 2012; Boukaré
et al. 2015), the solid mantle may have crystallized upwards and/or
downwards leading to a solid mantle bounded above and/or below
by molten layers, commonly called magma oceans (e.g. Debaille
et al. 2007; Labrosse et al. 2007; Elkins-Tanton 2012; Solomatov
2015). Petrological experiments and thermodynamics calculation
have shown that chemical composition controls significantly the
melting curves of mantle rocks (Thomas & Asimow 2013; Boukaré
et al. 2015; Andrault et al. 2017), and that the location of the
first solids within the mantle depends on the slope of their melt-
ing curves compared to the isentropic temperature gradient in the
magma. The solid crystallizes from the bottom if the isentropic gra-
dient is smaller than the melting temperature gradient (e.g. Thomas
& Asimow 2013) and from the top if the adiabatic gradient is larger

that the melting one (e.g. Mosenfelder et al. 2007). The comparison
between the two slopes must be done locally, at each depth, and
the curvature of the two temperature profiles matters. Fiquet et al.
(2010) obtained a curved liquidus whereas Andrault et al. (2011)
obtained a liquidus with a nearly constant slope, for different com-
positions and using slightly different experimental techniques. The
curved liquidus implies that the magma ocean starts crystallizing at
intermediate depth while the straight liquidus implies a crystalliza-
tion from the bottom up (Thomas et al. 2012). Moreover, at the low-
ermost mantle conditions, crystallization may lead to the formation
of solids lighter (Fe depleted) than the surrounding melt (Boukaré
et al. 2015), and this would favor the formation of a basal magma
ocean and eventually sustain the scenario with a solid bounded be-
tween two magma oceans (Labrosse et al. 2007; Boukaré et al.
2015) A situation with a basal ocean is also currently encountered
in icy satellites like Enceladus, Europa, Titan, where the shallow
icy layer is in contact with liquid water ocean and where possibly
a high-pressure ice layer underlies the buried ocean (e.g. Khurana
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et al. 1998; Pappalardo et al. 1998; Grasset et al. 2000; Tobie et al.
2003, 2006; Baland et al. 2014; Čadek et al. 2016).

Whatever the relative position of the solid compare to the ocean
is, the existence of solid–liquid phase change at the boundary of
a solid mantle is thought to strongly affect its dynamics (Deguen
2013; Labrosse et al. 2018) and this is the subject of this paper.

Usually, convection models in solid mantles assume a non-
penetrating boundary condition at the horizontal boundaries of the
solid shell, where the free-surface boundary condition is modeled
as a free-slip boundary condition on an undeformed surface. This
approximation is valid as long as the dynamic topography generated
by convective stresses is small and is affected only slowly by surface
processes (Ricard et al. 2014). This approximation has been used
for mantle convection models as it operates in the current Earth and
planets (Schubert et al. 2001), but also in the presence of a magma
ocean (Ballmer et al. 2017; Maurice et al. 2017). However, at the
boundary between the solid and liquid, matter may flow through
by changing phase. This requires that the latent heat released in
regions of freezing (inflow for the solid) is transferred efficiently to
regions where it is consumed for melting (outflow). Whether this
happens depends on how fast latent heat is transferred in the liquid
region compared to the rate at which topography is generated by
solid viscous flow (Alboussière et al. 2010; Deguen et al. 2013;
Deguen 2013). Indeed, if the heat transfer in the liquid is able to
erase the topography formed by viscous deformation, the lithostatic
stress due to the topography variation will not balance the viscous
stress of the convective solid, and the liquid–solid boundary can be
considered as semi-permeable (Deguen et al. 2013; Deguen 2013).
This process, that leads to semi-permeable boundary condition, has
been shown to strongly affect the dynamics of the solid and the
associated heat transfer leading for example to a translation dy-
namics in the Earth’s inner core in contact with the liquid outer
core (Alboussière et al. 2010; Monnereau et al. 2010; Deguen et al.
2013; Mizzon & Monnereau 2013; Deguen et al. 2018), whereas
only recently, attention has been paid on its effect on the evolution
of the solid mantle (Deguen 2013; Labrosse et al. 2018; Morison
et al. 2019).

Morison et al. (2019) looked at the effect of semi-permeable
solid–liquid phase change boundaries on the development of the
first mantle overturn, during magma ocean crystallization of the
silicate mantle of the Earth, Mars and Moon. They show that solid–
liquid phase change boundary conditions make the timescale of the
first overturn decrease by several orders of magnitude compared
to the case where solid–liquid phase change is not taken into ac-
count (Ballmer et al. 2017; Maurice et al. 2017; Boukaré et al.
2018). Moreover, Labrosse et al. (2018) performed both linear and
weakly non-linear analysis to show that Rayleigh–Bénard flow in a
2-D Cartesian geometry, subjects to one semi-permeable boundary,
representing the simplest scenario during solid mantle formation,
presents an heat transfer efficiency much higher than the classical
values obtained with non-penetrating boundary conditions. More-
over, their study shows that the flow is characterized by a non-
deforming translation mode or weakly deforming long-wavelength
mode if the flow is allowed at both boundaries of the solid mantle.
Both translation and weakly deforming modes are able to transfer
heat very efficiently, and may have characterized mantle dynamics
during the primordial epochs of Earth or of larger size terrestrial
planets.

In this study, using 2-D Cartesian numerical simulations, we ex-
plore how solid-state Rayleigh–Bénard convection may be affected
by the presence of one or two solid–liquid phase change(s) at hor-
izontal boundary(ies). We compare the results of the present finite

amplitude calculations to the weakly non-linear results of Labrosse
et al. (2018) and discuss the applicability of the latter to finite
amplitude situations at high Rayleigh number, and the likely conse-
quences of these boundaries conditions on the primordial evolution
of the Earth or other terrestrial planets.

2 M E T H O D

2.1 Governing equations

Solid-state mantle convection is described by the system of con-
servation equations for mass, momentum and energy for an incom-
pressible fluid with infinite Prandtl number and in the Boussinesq
approximation. These equations, rendered dimensionless using the
thickness H of the solid mantle for length, the diffusion time H2/κ
for time, with κ the thermal diffusivity, κ/H for velocity and η κ/H2

for pressure, with η the viscosity, are:

∇ · u = 0, (1)

∇2u − ∇ p + Ra(T − Tc)z = 0, (2)

∂T

∂t
+ u · ∇T = ∇2T (3)

with u = (v, w) the velocity, p the dynamic pressure, T the temper-
ature and Tc the steady conduction solution, t the time, z the unit
vector in the vertical direction and Ra the Rayleigh number:

Ra = αgρs�T H 3

κη
, (4)

with α the thermal expansion coefficient, g the acceleration of grav-
ity, ρs the density of the solid, �T the temperature difference be-
tween the lower and upper boundaries.

This set of equations neglects many of the complexities of man-
tle convection: in this first study, we assume a Newtonian rheology
with a constant viscosity, we do not consider volumetric heat gen-
eration, all physical parameters are assumed uniform and constant
and no compositional effect is included. Although we recognize the
importance of these complexities to understand mantle dynamics
(Schubert et al. 2001), we consider the simplest possible convective
system to isolate the effects of the phase change boundary condition.

2.2 Treatment of the solid–liquid phase changes

At the boundary between a solid mantle and a liquid of the same
composition, a flow through the phase change can take place, de-
pending on how fast latent heat is transferred in the liquid region
(Deguen et al. 2013). Stresses in the solid lead to the formation of
topography of the solid–liquid interface and convective heat trans-
fer in the liquid tends to homogenize temperature and suppress that
topography. On the one hand, if the topography is able to build be-
cause the heat transfer in the liquid region is slow, the radial velocity
at interface is limited by the weight of the topography (classical dy-
namic topography balance) and the flow across the boundary is
effectively inhibited. On the other hand, when heat transfer in the
liquid is fast, it can destroy the topography by transporting heat
from places where crystallization occurs to places where melting
happens, and the flow through the boundary is allowed. To include
this process, the solid–liquid phase change is accounted for by con-
sidering the variation in the stress field and the associated dynamic
pressure at the phase boundary. Details can be found in previous
papers (Deguen 2013; Deguen et al. 2013; Labrosse et al. 2018)
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and the derivation of the boundary condition is only shortly recalled
here.

Across the solid–liquid boundary the total stress must be continu-
ous and, if the topography slope and the viscous stress and dynamic
pressure in the liquid side are assumed small and can be neglected,
the vertical stress equilibrium acting along the undeformed phase
boundary is

(
ρs − ρ±

l

)
gh± + 2η

∂w

∂z
− p = 0. (5)

The first term is the differential stress between the solid and liquid
hydrostatic pressures, with ρs and ρ l the solid and liquid density,
respectively, and h the topography height, the second term and
third term (p) are the viscous stress and the dynamic pressure on
the solid side, w being vertical velocity. The + and − exponents
refer to the upper and lower boundaries, respectively. Note that
Chambat et al. (2014) argue for a discontinuity of traction across
the boundary and propose to add two terms to the balance eq. (5). A
preliminary analysis has shown that these two terms are negligible
for applications to mantle convection and they are omitted here for
simplicity.

At the solid–liquid boundary, like any phase change, the reaction
is accompanied by release and absorption of latent heat, during
freezing and melting, respectively. Because the interface between
solid and liquid cannot accumulate or lose heat, the discontinuity of
heat flow at the interface must equilibrate the release or absorption
of latent heat due to the reaction. This may be expressed by the
Stefan condition,

ρs Lvφ = −qs + ql , (6)

where the term on the left represents the heat production due to
freezing or melting, with L the latent heat and vφ the freezing
(negative for melting) rate. The right-hand-side is the heat flow
difference across the boundary, and the subscript s and l refer to solid
and to liquid respectively. The heat flow difference of the right-hand
side is dominated by convective heat transport in the liquid side, and
for the sake of simplicity the right side of eq. (6) can be expressed
by the advective heat flux on the liquid. Moreover, the freezing (or
melting) rate (vφ) can be approximated by the vertical velocity (w)
across the boundary, if the topography is in quasi-steady state (i.e.
if vertical advection of the boundary is balanced by melting and
freezing).

Under these conditions eq. (6) leads to (see Deguen et al. 2013;
Labrosse et al. 2018, for details):

w ≡ h±

τφ

, (7)

τφ being the characteristic phase-change timescale for transferring
latent heat from region where it is released (freezing, around topog-
raphy depression) to places where it is consumed (melting, around
topography highs), and is defined as:

τφ = ρs L(
ρl cpl ul

(
dTl

dz
− dTad

dz

))± , (8)

where cpl is the heat capacity, ul the characteristic liquid velocity and
dTl
dz and dTad

dz are the melting temperature Clapeyron slope and the
isentropic gradient in the melting region, respectively. The explicit
development of eqs (7) and (8) can be found in Deguen et al. (2013).
Using eq. (7) and introducing the viscous timescale for building

topography,

τη = η

|ρs − ρ±
l |gH

, (9)

eq. (5) becomes, in dimensionless form:

± 
±w + 2
∂w

∂z
− p = 0, (10)

where 
 = τφ /τ η is the phase-change number and represents the ra-
tio between the characteristic phase-change and viscous timescales.
For a large value of 
, the phase change condition (eq. 10) implies
a small value of w. This can be interpreted considering that, when
τ η � τφ , the topography forms in response to stress in the solid and
the solid flow is limited by the buoyancy of the topography, which
makes the vertical velocity effectively drop to zero at the bound-
ary, which leads to an effectively non-penetrating classical free-slip
boundary condition. On the other hand, for the opposite situation
when τ η � τφ , the topography is erased faster than it is generated.
The removal of the associated buoyancy leads to a non-zero velocity
across the interface and the boundary is permeable.

The continuity of the horizontal traction across the boundaries
leads to the classical free-slip boundary condition,

∂u

∂z
+ ∂w

∂x
= 0. (11)

Note however, that contrary to the classical calculations assuming
a non-penetrating boundary condition, the second term in eq. (11)
is identically zero in our model.

2.3 Numerical approach and set-up

The equation described in Sections 2.1 and 2.2 are solved using
the finite-volume code StagYY (Tackley 2008). The mass and mo-
mentum eqs (1) and (2) are discretized as a unique linear system of
equations inverted using a direct solver for sparse matrices (UMF-
pack for sequential calculations, MUMPS for parallel calculations;
Amestoy et al. 2001, 2006), whereas the energy eq. (3) is solved
in an explicit manner, using a total variation diminishing (TVD)
method for the advection term.

The mechanical boundary conditions are periodic on the ver-
tical sides, and free-slip (eq. 11) on the top and bottom domain
boundaries, where eq. (10) is also applied. The thermal bound-
ary conditions are the Dirichlet condition of fixed temperature of
0 and 1 at the top and bottom, respectively. However, resolving
numerically the boundary layers on the melting front of the flow
at low values of the phase change number (
) is difficult at large
Rayleigh number. Indeed, as shown by the analytical solution for
the translation mode of convection when both boundaries have a
phase change, a thermal boundary layer (TBL) of thickness 1/w
exists in the solid side (Labrosse et al. 2018) and since the veloc-
ity can be very large, it requires a huge number of grid points to
be properly resolved. Moreover, even if extreme grid refinement
can be used in the boundary layers, the stability of the explicit time-
stepping scheme requires a extremely small time step which renders
calculations at high Rayleigh number inaccessible. The analytical
solution for the translation mode and the weakly non-linear analysis
for the deforming mode (Labrosse et al. 2018) show however that
regions where the TBL is very thin are those where flow is toward
the boundary and therefore are not prone to convective instabilities.
Moreover, the temperature difference in these TBLs are tiny. In that
sense, these regions play little role in the global dynamics and can
be modeled using the theory developed by Labrosse et al. (2018).
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In that case, the thin TBL needs not to be resolved numerically and
the Dirichlet boundary condition is replaced by an effective Robin
one that depends on the vertical velocity w. The Dirichlet condition
that applies at the boundary is replaced by a condition that applies
on the interior side of the thin boundary layer. In practice, when the
flow is toward the boundary (w < 0 at the bottom, w > 0 at the top),
the vertical temperature gradient should be null, ∂θ /∂z = 0, whereas
flow going away from the boundary carries the information of the
boundary temperature and the Dirichlet condition is applied, θ = 0,
with θ the deviation of temperature with respect to the steady-state
conduction profile. This condition is written as:

�±θ + (
1 − �±) ∂θ

∂z
= 0, (12)

where �± is a smooth approximation of the Heaviside function
depending on the vertical velocity:

�± = 1

2

[
1 + tanh

(
π

∓w + w0
2

w0
2

)]
, (13)

with w0 the velocity range along which � varies from 0 to 1, defined
depending on the problem. For a large velocity toward the boundary
(w � −w0/2 at the bottom, w � w0/2 at the top), � ∼ 0 and
we get a Neumann boundary condition, ∂θ /∂z = 0, whereas for
flow away from the boundary or slow flow toward the boundary,
we get the classical Dirichlet boundary condition, θ = 0. Using
eq. (12) the heat carried by diffusion across the thermal boundary
layer is ignored and heat transport is done entirely by advection
across the boundary. A similar approach has been already used to
study the convection pattern with fast surface erosion or important
magmatism in hot planets (Ricard et al. 2014). We checked that,
for cases with intermediate velocity at the boundary that can be
modeled using both boundary conditions, the results do not depend
on the choice of boundary condition. We are therefore confident
that the thermal boundary condition (12) can be used to model the
phase change at high Rayleigh number.

The initial temperature conditions are described case by case
in the results Section 3. The model domain has different mesh
resolution depending of the problem, and it ranges from 18 to 128
gridpoints for unit length.

3 R E S U LT S

We performed 323 simulations in 2-D Cartesian coordinates (the
full simulation list is presented in the supplementary material) to
systematically investigate the convection style, the thermal structure
and heat transfer efficiency in the solid mantle when it is bounded by
one or two solid–liquid phase change boundaries. We investigate the
effect of the phase change (
±) and Rayleigh (Ra) numbers, which
allows us to have an overview of possible convection patterns during
magma ocean crystallization. In this first exploration, we do not
consider the effects of many ingredients that are commonly thought
to play a role in mantle convection: spherical geometry, volumetric
heating, compositional variations, temperature- and depth variation
of physical properties. We make this choice in order to restrict
this first study to a tractable set of independent parameters and
compare the results to the well studied situation of Rayleigh–Bénard
convection.

3.1 Convection with a magma ocean above and below

Let us first consider the situation where both the top and bottom
boundaries are the seat of a phase change between the convecting

solid and the magma oceans. This situation may have happened if
the solid mantle crystallized from the middle, up- and downward
(Labrosse et al. 2007; Thomas et al. 2012; Boukaré et al. 2015).
For simplicity, we consider only the situations with an equal value
of the phase change parameter at the top and bottom boundaries,
which we call simply 
 for both sides.

3.1.1 Non-deforming translation mode

Labrosse et al. (2018) showed that a steady-state translation mode
of convection can exist when both top and bottom boundaries are
phase change interfaces. In that mode, a uniform purely vertical
upward or downward flow in the solid is maintained by the buoyancy
associated with a nearly uniform temperature, equal to that of the
boundary at which the flow enters. This analytical solution is a good
test of the numerical method.

To investigate the ability to develop a translation mode, we have
performed numerical simulations, in a rectangular domain with as-
pect ratio A = 4, with a finite small phase-change number 
 = 0.01
for both top and bottom sides. The choice of these parameters is jus-
tified by the fact that, for such a low value of 
, the critical Rayleigh
number for the onset of the translation mode is Ract = 24
 = 0.24
and this mode is favored over a deforming mode if the aspect ratio
of the domain is smaller than the critical wavelength of the deform-
ing mode, which is approximately 115 (Labrosse et al. 2018). The
reduced Rayleigh number εt = (Ra − Ract)/Ract investigated ranges
from 0.01 to 100 (Table S1). The numerical results show that steady
state vertical translation occurs in the solid. The dimensionless ver-
tical velocity (w) increases with the Rayleigh number in a way that
was predicted by the analytical solution for a steady-state transla-
tion (Labrosse et al. 2018, Fig. 1a). Fig. 1(b) shows the temperature
profiles obtained by the numerical simulations compared to the
temperature profile predicted by the analytical solutions. Numerical
solutions nicely reproduce theoretical results, and this validates our
numerical method. The temperature profile obtained at low values
of the reduced Rayleigh number (εt < 1) diverges from the con-
ductive profile by an amount proportional to the velocity (Labrosse
et al. 2018). At high Rayleigh numbers (high translation velocity),
the profile assumes a form with a constant temperature equal to the
temperature at the inflow boundary (0 for downward flow and 1 for
upward flow), whereas on the opposite side the temperature drops
(or rises) to the boundary temperature in a thermal boundary layer
of thickness δ ∼ 1/w (Labrosse et al. 2018). Contrary to classical
Rayleigh–Bénard convection where the flow is driven by horizontal
density contrast, in the translation mode, the uniform topography of
each boundary, h = τφw, is maintained by the buoyancy associated
with difference between the nearly uniform temperature and con-
ductive profile that decreases linearly with height. Moreover, in the
translation mode at high Rayleigh number, heat is mainly advected
by the translation, and the difference between the top and bottom
conductive heat fluxes is equal to the advective heat flux (Labrosse
et al. 2018). This implies that, at high Rayleigh numbers (εt � 1),
the heat flux scales linearly with the Rayleigh number, on the con-
trary to classical Rayleigh–Bénard convection where the heat flux

scales as Ra
1
3 .

3.1.2 Non-translating mode

The simulations to study the non-translating modes of convection
are performed in a model domain with aspect ratio equal to the
critical wavelength, Ac = 2π /kc, with kc the wavenumber for which
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Figure 1. Non-deforming translation mode. (a) Translation velocity (w) plotted against the reduced Rayleigh numbers (εt), compared to the theoretical
predictions (Labrosse et al. 2018). The blue symbols are the numerical simulations, and the white crosses indicate the simulations in (b). Solid, and dashed lines
are the theoretical results. (b) Temperature profiles for relatively slow and fast velocities, both upward and downward compared with the theoretical profiles.

the critical Rayleigh number is minimum. Ac increases with the
decrease of the phase-change number 
 as

√
128π/9
 for small 


and tends to the classical 2
√

2 at large 
 (Labrosse et al. 2018). For
this study we have investigated 5 values of 
, ranging from 10−1

to 103, and the aspect ratio ranges from ∼36 to ∼2.8, respectively.
Wider and narrower aspect ratios of respectively 1.5 and 0.5 times
Ac have been used, too. We performed numerical simulations with

the supercritical Rayleigh number Rasc = Ra
RacNt

ranging from 100.25

to 103 (Table S2). The critical Rayleigh number (RacNt) refers to the
critical Rayleigh number for the non-translating mode and must not
be confused with the one for the translation mode [Ract = 12(
+

+ 
−)]. In this study, we use the subscript ‘Nt’ to indicate the
non-translating mode, and ‘t’ the translation one. For low values
of 
, RacNt 
 Ract − 0.3
2, whereas for high values of 
, RacNt

increases up to reach the critical value for a classical Rayleigh–
Bénard convection 27π4

4 (Labrosse et al. 2018). The limit between

low and high 
 regimes can be assumed to occur where 24
 = 27π4

4 ,
that is at 
 = 27.39.

The temperature initial condition is:

T (x, z) = 1 − z + 0.05 sin (π z) cos (kcx) (14)

which represents a conductive profile with a cosine perturbation of
wavenumber kc, maximum at the centre (z = 0.5) and zero at the
horizontal boundaries.

Fig. 2 gives an overview of the convective flows obtained by the
numerical simulations for three values of Rasc and three values of

. At 
 = 0.1, convection is mostly characterized by alternating
vertical up- and downward flow, whereas at higher 
 the flow is
similar to the situation with classical free-slip boundary conditions.
For intermediate cases, like for 
 = 10, the flow is still able to pass
throughout the phase changes, but it presents a substantial horizon-
tal component compared to the lowest phase change number cases.
At high values of 
, for example 
 = 1000, the flow across the
phase-change boundaries appears completely limited and the solu-
tion resembles the classical one for Rayleigh–Bénard convection
with free-slip boundary conditions. This behaviour agrees with the
prediction of the weakly non-linear analysis (Labrosse et al. 2018).

Fig. 2 shows well the effect of 
 and Rasc on the thermal structure
of the solution. For 
 = 103, we observe the classical behaviour

of Rayleigh–Bénard convection with the thickness of boundary lay-
ers and the associated up- and downwelling currents that decreases
with Rasc. Conversely, the regions between up- and downwelling
currents where the temperature is approximately uniform and close
to 0.5, hereafter the isothermal cores, become thicker as Rasc in-
creases. A markedly different behaviour is observed for low values
of 
 (
 ≤ 0.1 on the Fig. 2) for which the thickness of vertical
currents does not relate to the thickness of boundary layers. In ad-
dition, the boundary between the isothermal cores and the vertical
currents sharpens with the increase of the Rayleigh number, and the
temperature becomes more uniform in each region. To describe the
thermal structure of the convective system more quantitatively, we
compute the width of the isothermal core. To define the limits of the
isothermal core we use the horizontal profile of the vertically aver-
aged temperature and the limits are defined where the temperature
is the average of the mid-value and the extrema (e.g. Grigné et al.
2005). The isothermal core size normalized by the domain width is
plotted against εNt = RaNt − 1 on Fig. 3(a). For high values of 
 (

> 100) the width of the isothermal core increases with the Rayleigh
number. This is the typical behaviour of classical (closed bound-
aries) Rayleigh–Bénard convection in which plume width decreases
with the Rayleigh number value, like the thickness of boundary lay-

ers from which they originate, as Ra− 1
3 . We show in Fig. 3(a), for

comparison, the relationship between the isothermal core width and
the Rayleigh number for the classical Rayleigh–Bénard cases, as:

WI soCore

A
= 0.5 − 2.87Ra− 1

3 (15)

with A = 2π /kc the aspect ratio of computational domain. Eq. (15)
is obtained by WI soCore + Nu−1 1+√

2√
2

= 0.5A, with 1+√
2√

2
the correc-

tion due to the plume lateral heat diffusion, and assuming the clas-
sical scaling law for the dimensionless heat flux (Nusselt number,
Nu) as function of the Rayleigh number, valid for closed boundary
conditions (Fig. 5a). The width of the isothermal core also increases
with Ra at intermediate phase change number (
 = 10) but, in that
case, it saturates at a value smaller than 0.5, the maximum value
that can be reached for infinitely thin plumes. On the other hand,
it decreases for the smaller values of 
, leading to wider up- and
downwelling currents.

For the non-translating mode solutions obtained with 
 in the
low range, 
 < 27.39, the maximum and minimum temperature
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Mantle convection interacting with magma oceans 1883

Figure 2. Convection modes with two solid–liquid change boundaries. Snapshots of temperature (colour) and velocity (arrows) for different cases investigated.
The value of 
 increases from left to right, and the value of Rasc from the bottom to the top, as indicated by the axes. Note that the horizontal scale depends
on the value of 
.

Figure 3. Thermal structure of convection with two phase change boundaries. (a) Normalized width of the isothermal core between up- and downwelling
currents as function of εNt (see text for details). The dash-dotted and dotted black lines represent the width obtained by the numerical results for a classical
free-slip Rayleigh–Bénard problem (
± = ∞), and at the critical Rayleigh number. The red dash-dotted line is the predicted scaling for non-penetrating
boundary condition. (b) Temperature as function of height in the up- and downwelling currents for cases at 
 = 0.1 and 
 = 100 for the Rasc as indicated
in the legend. The dots represent the numerical solutions obtained from StagYY, whereas the solid lines are the profiles predicted by the theory for the pure
translation solution for the same values of the Rayleigh number.
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1884 R. Agrusta et al.

profile respectively of the cold and hot current perfectly match the
profile predicted by theory for the translation mode (Fig. 3b), which
therefore provides a good prediction of the solution for small 
.
The similarity between the translation and non-translation velocity
at lower 
 can be explained by the low value of the phase change
number, which promotes mainly vertical flow at the expenses of the
horizontal one. The similarity with the translation solution disap-
pears when 
 increases, with the transition that occurs for a value of

 somewhere between 1 and 10. For large values of 
, the vertical
flow velocity is lower than the one predicted for the translation ve-
locity. This agrees with colder and hotter profiles, respectively, for
the up- and downwelling current compared to the profile predicted
by the translation theory (Fig. 3b).

The existence of two types of solutions for the same set of pa-
rameters, one as a uniform translation and one with deformation,
raises the question of their relative stability and the one that would
be most likely chosen in natural situations. Labrosse et al. (2018)
showed that slightly above the critical Rayleigh number for the
translation mode, there is a region in the (k, Ra) space where the
steady translation is unstable with respect to a deforming mode. The
region shrinks with the decrease of 
, meaning that the translation
solution becomes more stable. In other words, for any value of 
,
there is a value of the Rayleigh number above which the translation
solution is stable. On the other hand, the stability of the deform-
ing mode of convection with respect to the translation one was not
studied but the increasing stability of the translation solution when
increasing the Rayleigh number suggests that the deforming mode
of convection could also become unstable with respect to transla-
tion. Without exploring systematically this question, we performed
calculations in the same range of parameters as presented above,
Rayleigh numbers, 
 and aspect ratio A, but starting from an initial
temperature condition characterized by a conductive profile with a
random thermal anomaly with amplitude of 0.05 (Table S3). Starting
with a random initial perturbation is closer to natural situations and
is known to lead to different stable solutions, or to planforms with
defects, in Rayleigh–Bénard convection. Fig. 4 shows snapshots of
representative cases that we computed. We obtained solutions with
a wavelength that differ from the one predicted by linear stability, or
with up- and downwelling blocks of different width, like the case of
Rasc = 100 and 
 = 0.1. We also get a translation solution in some
cases, when the Rayleigh number is large enough, like for Rasc =
100 and 
 = 1000. Note that, for the models presented with 
 =
0.1 in Fig. 4, despite running for a total dimensionless duration of
�t = 8.5 for Ra = 10 and for �t = 0.05 for Ra = 100, the system
has not yet reached steady state and may still evolve toward a trans-
lation solution. In particular, the case for 
 = 0.1 and Rasc = 100
shows a clear asymmetry between up- and downwelling currents,
the upwelling regions gaining with time. We expect it to ultimately
run in an upward translation mode.

The heat transfer efficiency of the non-translating mode of con-
vection is studied by computing the dimensionless heat flux and
the RMS velocity (Vrms), for all parameter sets investigated, but
ignoring the simulations that show pure translation that have been
discussed above and are already well explained by the analytical
theory of Labrosse et al. (2018). In Fig. 5 we show Nu and Vrms

plotted against the Rayleigh number, for different values of 
. The
case with classical boundary conditions as well as the exact solu-
tion for the translation velocity and the Nusselt number predicted
by weakly non-linear analysis (Labrosse et al. 2018) are plotted for
reference, too. As expected, for 
 = 1000, the solution roughly
follows the scaling for classical Rayleigh–Bénard convection. On
the other hand, for smaller values of 
, both Vrms and Nu increase

more steeply with Ra than for non-penetrating boundary conditions.
For 
 ≤ 1, the numerical solutions are found to closely match the
prediction of the weakly non-linear analysis, for the whole range of
parameters investigated, and in particular Nusselt number values in
excess of 103. This is somewhat unexpected since this first order
development is only supposed to be valid very close to the onset
of convection. This is another expression of the simplicity of the
solution which exhibits alternative up- and down-ward translation
regions, each very similar to the pure translation solution for which
the velocity and Nusselt numbers increase linearly with Ra at large
values of Ra. Indeed, for each set of solution with the same value
of 
 we fit the relation Nu = Nu0Raα , and Vrms = V0Raβ , and the
resulting scaling law are shown in the plot legends. In the Rayleigh
number range investigated, the exponent α of 0.36 and β of 0.66
for the case 
 = 1000 are similar to the exponents for a classical
Rayleigh–Bénard convection (e.g. Jaupart & Mareschal 2011). As 


decreases, both exponents tend to 1, showing the linear relationship
of heat flux and velocity with the Rayleigh number, already proved
for the pure translation solution (Labrosse et al. 2018). Moreover,
for cases at low phase change number (
 ≤ 10) the coefficient of
proportionality Nu0, and V0, both scale as 
−1, as shown for the
translation mode (Labrosse et al. 2018). The heat flux and velocity
obtained by the weakly non-linear analysis represent well the results
from direct numerical simulations for very small value of 
 (
 ≤
1). On the other hand, for 10 ≤ 
 ≤ 100, the heat flux and RMS ve-
locity from numerical solutions diverge at higher Rayleigh number
values from analytical predictions, which is the usual behaviour for
Rayleigh–Bénard convection.

3.2 Convection with a magma ocean above or below

The situation with only one boundary having a phase change is en-
countered in several cases. The case with a liquid ocean below the
solid layer is relevant to the surface ice-shell of some icy satellites of
Jupiter and Saturn (e.g. Khurana et al. 1998; Pappalardo et al. 1998;
Grasset et al. 2000; Tobie et al. 2003; Baland et al. 2014; Čadek
et al. 2016) and possibly for the early Earth with a basal magma
ocean (Labrosse et al. 2007). The case with a liquid on top of the
solid may be currently relevant for high pressure ice layers below
a buried ocean in the largest icy satellites (e.g. Grasset et al. 2000;
Tobie et al. 2006) and for an upwardly crystallizing magma ocean
in young terrestrial planets (Solomatov 2015). In the Cartesian ge-
ometry investigated in this paper, both situations are symmetrical
to one another and we only study one of them, with a magma ocean
below. This is done considering a finite value for the phase change
number only at the bottom boundary (
−), while for the top one
we consider 
+ to be infinite, in order to impose the classical non-
penetrative free-slip condition. We perform the calculations using
a model domain with aspect ratio equal to the critical wavelength,
Ac = 2π /kc, and imposing the same initial temperature condition as
above (eq. 14).

Before discussing all the results with only the phase change at
the bottom, let us consider one case to discuss and to prove the
symmetry between the situations with a magma ocean above and
below. Fig. 6 shows the final snapshots of two runs with the same
parameters except for the boundary conditions, one having the 
−

= ∞ and 
+ = 0.1 and the other 
− = 0.1 and 
+ = ∞. Both
cases were run in a box of aspect ratio 4.978 corresponding to the
wavelength of the most unstable mode at the onset of convection.
After a time of about 0.05 during which convection proceeded with
this initial wavelength, a transition occurred to a solution with a
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Mantle convection interacting with magma oceans 1885

Figure 4. Convection patterns with two solid–liquid change boundaries, obtained with a random initial perturbation. Snapshots of temperature (colour) and
velocity (arrows) for different cases investigated. The phase change parameter 
 increases from left to right, and the supercritical Rayleigh number Rasc from
the bottom to the top, as indicated on the axes.

(b)(a)

Figure 5. Heat transfer efficiency by solid-state mantle convection bounded by two magma oceans. (a) Nusselt number and (b) RMS velocity against the
Rayleigh number for different values of the phase change number, as labeled. Coloured solid symbols represent results of all cases investigated. The dotted
lines represent the predictions by Labrosse et al. (2018), using the weakly non-linear analysis for the heat flux and the exact solution of the translation mode
for the velocity , whereas the gray dashed and the coloured solid lines represent the fit for each value of the phase number studied as indicated in the legend
for each figures.

wavelength that is half the width of the computation domain, before
resuming to a solution having the original wavelength, as displayed
on the Fig. 6(a). As convection proceeds, the system alternates
between solutions with one or two plumes. The two situations appear
clearly symmetrical from one another: in the case of melting at the
top, the flow is characterized by hot plumes with a cold diffuse
return flow, whereas when the phase change is at the bottom, the
flow is dominated by cold downwelling plumes and a diffuse hot
return flow. The temperature in the return flow is equal to that of the
boundary from which it originates with a boundary layer to match

the opposite temperature (Fig. 6b). The thickness of that boundary
layer controls the heat flow in that situation and its scaling is the
subject of this subsection.

For our systematic study in the case of phase change condi-
tion only at the bottom, we investigated 5 values of 
−, ranging
from 0.1 to 1000, with a corresponding aspect ratio between 5 and
2.8, respectively. The range of supercritical Rayleigh number (Rasc)
is from 100.025 to 103.25 (Table S4), the lower Rayleigh number
cases allowing us a detailed comparison with the predictions of the
weakly non-linear stability analysis (Labrosse et al. 2018). For the
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1886 R. Agrusta et al.

(a)

(b)

Figure 6. Solution for convection bounded by a liquid above or below. (a)
Snapshots show the temperature field in colour and the streamlines at the
end of the run (t = 0.18), with a phase change boundary condition above
(top panel) or below (bottom panel), (b) The vertical profiles of minimum,
mean and maximum temperature. The dashed and solid lines represent the
profiles for the case with a magma ocean above and below, respectively. The
Rayleigh number is Ra = 104. We used the horizontal periodicity of the
solution to avoid the plume in the upper panel to be on the boundary, which
it originally was.

computations at relatively high Rayleigh number (Rasc ≥ 102.75) and

 ≤ 10, we applied at the bottom the Robin temperature boundary
condition (eq. 12), assuming a threshold velocity w0 based on the
RMS velocity for a case without phase change at similar Rasc, w0

= 0.5Vrms. The numerical solutions for nine cases for 
− of 0.1,
10 and 1000 and for Rasc of 100.25, 10, 103 are shown in Fig. 7.
The temperature and velocity field show that at high phase-change
number (
− = 1000), the solution does not differ from a classical
case of non-penetrating boundaries, and as Ra increases, the width
of the isothermal core increases, which is the same behaviour we
observed with phase change at both boundaries (Figs 2 and 3a).
At lower 
−, a stationary cold plume, that becomes thinner as the
Rayleigh number increases, characterizes the convective structure,
and depending on the phase change number, at high Rayleigh num-
ber, a second cold plume can form, as shown in Fig. 7 for 
− =
0.1 and Rasc = 100. The formation of a second plume occurs at
Rasc ≥ 100.5 for 
− ≤ 1 and at Rasc ≥ 101.75 for 
− = 1, and the
convection shows periodic alternation of one and two cold plumes.
In general, the gradual increase of the Rayleigh number and/or de-
crease of the phase change number leads to a strong increase of the
mean temperature and a consequent progressive reduction of the

thickness of the top thermal boundary layer, the formation of thin
and strong cold-plumes, and the disappearance of the hot thermal
boundary layer at the bottom. This pattern of convection is similar
to that obtained for internally heated convection (e.g. Houseman
1988; Parmentier et al. 1994; Sotin & Labrosse 1999), even though
no volume heating is included in the present calculations.

Let us now study how the Nusselt number (Nu) and the average
temperature (〈T&x3009 x232A;) vary at low Rayleigh numbers
(Rasc ≤ 100.25). Fig. 8 shows Nu and 〈T&x3009 x232A; plotted
against the Rayleigh number, for different values of 
−, together
with the prediction of the weakly non-linear analysis (Labrosse
et al. 2018). The weakly non-linear analysis is found to provide
good predictions only close to the critical Rayleigh number, as
expected, the range of validity being somewhat larger for the average
temperature than for the Nusselt number. For large values of 
−,
the average temperature is close to 0.5, like for classical Rayleigh–
Bénard convection, while at low 
− it increases more steeply as the
Rayleigh number increases. The fact that the average temperature
is larger than 0.5 is again similar to the situation encountered for
internally heated convection.

The Nusselt number (Nu), the RMS velocity (Vrms) and the aver-
age temperature (〈 T&x3009 x232A;) at higher Rayleigh numbers
are plotted on Fig. 9. The Nu and Vrms variations are bounded
between the low value of the classical Rayleigh–Bénard convection
with non-penetrative conditions and the high value for low phase
change number (
− = 0.1). The scaling law for the Nu, RMS
velocity and temperature are, for 
− = 0.1:

Nu = 0.37Ra0.33, (16)

Vrms = 0.2Ra0.66, (17)

〈T 〉 = 1.0 − 2.64Ra−0.33. (18)

We obtained the same scaling laws for Nu and 〈T&x3009 x232A; as
that obtained by Ricard et al. (2014) for mantle convection subject
to fast erosion or magmatism at its surface. This indicates that dif-
ferent physical processes can lead to a similar physics. Moreover,
as shown on Fig. 9, the pre-factors in the scaling laws for the Nus-
selt number and the RMS velocity (eqs 16 and 17) are about twice
their counterpart for the case with non-penetrating boundary condi-
tions, indicating a much larger heat and mass transfer when a phase
change is permitted at the boundary. As suggested by Labrosse et al.
(2018), because there is not limit to vertical flow at the bottom, the
Rayleigh number is equivalent to four times the Rayleigh number of
the classical not-permeable case. The ratio between the pre-factors
is similar to what would be expected from this simple heuristic.
Results for 
− ≥ 10 are close to that for non-penetrative boundary
conditions, at least at low values of the Rayleigh number. Increasing
its value makes the heat flow at the bottom increase which makes
the mean temperature increase further eventually leading to a tran-
sition to a fully open bottom boundary. This transition appears to
take place at 104 < Ra < 105 for 
− = 10, and likely at higher Ra
for 
− ≥ 100. We suspect that, for large enough Rayleigh numbers,
all scaling laws collapse to the one obtained in the small 
− limit,
the results obtained here for intermediate values of 
− (
− = 10,
100) being transitional.

4 D I S C U S S I O N

In this study, we have investigated the dynamics of a solid mantle
bounded between two magma oceans or in contact with one at the
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Mantle convection interacting with magma oceans 1887

Figure 7. Convection patterns obtained with a phase change only at the bottom boundary. Snapshots of temperature (colour) and velocity (arrows) for different
case investigated. 
− increases from left to right, and Rasc from the bottom to the top, as indicated by the axes. Note that the horizontal scale depends on the
value of 
−.

Figure 8. Heat flux and average temperature for a Rayleigh number close to the critical value for convection bounded by only one phase change boundary. (a)
Nusselt number and (b) average temperature against the Rayleigh number. The lines represent the predictions of the weakly non-linear analysis.

bottom. The mantle is modeled as a 2-D layer of infinite Prandtl
number fluid and the solid–liquid phase change at either or both
boundaries is taken into account by imposing a boundary condition
allowing a flow through the boundary. This boundary condition
is controlled by a phase change parameter, 
, which allows the
system to go from easy flow-through at low 
 values to classical
non-penetration at large 
.

In many ways, the setup we used is too simplistic to be directly
applied to planetary mantles but the effects of the phase change
boundary condition are so drastic that is calls for a systematic study

on these effects on the simplest situation before including some of
the complexities of mantle convection. Let us discuss here a few of
these complexities, that may be required to include in future mod-
els, depending on the planetary object of applications, the Earth
or icy satellites. The first obvious limitation concerns the chosen
geometry, Cartesian instead of a spherical shell. Running models
in a spherical shell is possible using StagYY (Tackley 2008) but
it is quite costly in three dimensions. Using the spherical annulus
geometry (Hernlund & Tackley 2008) is readily possible and is the
target of a future study. Compared to the situation investigated in
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1888 R. Agrusta et al.

(a)

(b)

(c)

Figure 9. Heat and mass transfer characteristics for mantle convection with
a solid–liquid phase change at the bottom. (a) Nusselt number, (b) RMS
velocity and (c) average temperature, against the Rayleigh number. The
gray solid line represents the fit for the simulation for 
− = 0.1, and the
grey dashed line the classical non-penetrative free-slip case as already shown
on Fig. 5.

this paper in which the horizontal scale of the flow can tend to
infinity when the phase change numbers of both boundaries are
decreased, up to the uniform translation mode, the spherical shell
geometry imposes a maximum wavelength that corresponds to the
spherical harmonics degree 1. This mode is indeed found to be pre-
ferred when both boundaries have a low value of 
 (Deguen 2013;
Morison et al. 2019), which corresponds to a spherical translation
mode. Opposite to the situation of the translation mode in Cartesian
velocity, a translation in spherical geometry is characterized by a
zero horizontal average of the vertical velocity. Even if this mode
of convection is predicted by the linear stability analysis, its form
at finite amplitude remains to be studied. In the case with only a
basal magma ocean, the dynamics is controlled by the top boundary
layer, as in internally heated convection, and we expect a similar
behaviour in spherical shell geometry. The main difference between
the two geometries is that the situations with a magma ocean on top
is not strictly symmetrical to the one with a magma ocean below in
spherical geometry, although the behaviours of each situation can
be qualitatively predicted from the other. Pursuing with geometrical
effects, the dynamics that is modeled here should also be accom-
panied with the net motion of the boundaries as the magma oceans
freeze or, possibly, the solid mantle remelts. The importance of this
aspect depends on the velocity of the boundary motion relative to
the flow velocity in the solid. During the crystallization of a top
magma ocean, both velocities may be comparable and the net freez-
ing has been included in the study of Morison et al. (2019) about
the onset of convection. In the case of a basal magma ocean only,
the net motion of the interface is expected to be slow and separation
of timescales should apply. Nevertheless, the net motion of the in-
terfaces is important, particularly when dealing with the long term
evolution of the mantle. This is also associated with the evolution
of the composition of magma oceans and the solid that crystallizes
from it. These effects have been included in the numerical model
and are the subject of our current studies. Another simplification of
the present model is that we consider all physical properties uni-
form whereas most vary with pressure and temperature in planetary
mantles. Among these, the most important one is undoubtedly the
viscosity. In the case of a magma ocean above and below, the whole
solid is close to the melting temperature and we do not expect its
variations to affect the solutions too much, in particular since the
solutions in that case have a very large wavelength with little de-
formation. The situation with only a basal magma ocean is quite
different since the surface boundary is the one at the lowest temper-
ature and therefore the highest viscosity but is also the one which
provides the buoyancy source for the flow. Taking into account the
temperature-dependence of the viscosity, we expect to obtain the
same regimes as with classical boundary conditions: the small vis-
cosity contrasts regime, the transitional regime and the stagnant-lid
regime (Moresi & Solomatov 1995). The regime boundaries should
however be displaced compared to the classical case, as is the value
of the Rayleigh number for the onset of convection. The signif-
icance of this effect remains to be investigated. By far, the most
important limitation of the present results comes from neglecting
variations of composition and their effect on the melting tempera-
ture and the implied two-phase flow dynamics. First of all, as we
assume incompressibility in the framework of the Boussinesq ap-
proximation, temperature gradients should in fact be interpreted as
superisentropic temperature gradients, or gradient of the potential
temperature. In this context, a curved liquidus as obtained by (Fi-
quet et al. 2010) that allows crystallization to start in the mid-mantle
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Mantle convection interacting with magma oceans 1889

(Mosenfelder et al. 2009; Boukaré et al. 2015), could in fact lead
to a decrease of melting temperature with depth in the deep mantle.
Considering first the situation where crystallization indeed starts
in the mid-mantle, the upward crystallization proceeds much faster
than the downward one, owing to the rapid heat transfer to the atmo-
sphere, and we expect a temperature profile in the solid following
the liquidus (Morison et al. 2019). As soon as the convective in-
stability sets in, the matter at the bottom of the solid layer, which
is at the highest temperature, should remelt on its way up. Treating
properly this problem requires including two-phase flow dynamics,
as done by Boukaré & Ricard (2017), and goes beyond the current
paper. We expect however that taking into account remelting of hot
solid as it moves up should enhance heat transfer even more than
what is obtained in the present results, which should then be consid-
ered as conservative. The situation with only a basal magma ocean
is less problematic. The existence of a basal magma ocean requires
the isentropic gradient to be steeper than the melting temperature
gradient. This has been proposed for the magma (Mosenfelder et al.
2009; Boukaré et al. 2015) and it is also possible for the solid. Of
course, we expect that an upwelling current getting close to the
upper boundary may eventually cross the solidus, leading to partial
melting and volcanism as it is happening in the current mantle. This
process is likely to be more pervasive with a basal magma ocean
since the whole mantle, except for focused downwelling currents,
is then predicted to have a potential temperature similar to that of
the lower boundary. Some effort has been conducted in the recent
years to account for volcanism and plutonism in large scale man-
tle convection models (e.g. Agrusta et al. 2015; Lourenço et al.
2018) and we expect that similar processes can coexist with a basal
magma ocean. Again, the present result not taking these effects into
account should be considered as conservative in terms of heat flow.
The model presented in this paper neglect the effects of variations
of composition even though Labrosse et al. (2007) proposed that
fractional crystallization at the base of the mantle could lead to for-
mation of dense piles at the bottom of the mantle. This behaviour is
in fact expected to develop late in the history of the mantle, when
enough of the basal magma ocean has already crystallized. The
present results should apply early in the history, when the variations
of composition are too small to significantly affect mantle dynam-
ics. They may also apply to the ice layers of icy satellites in which
very little salt is expected to enter. Having laid down the most im-
portant limitations that we can identify, we can still use the scaling
laws obtained for the Nusselt number as function of the Rayleigh
number to evaluate the heat flux and to quantify the impact that
a permeable solid–liquid change boundary might have had on the
thermal evolution of both bottom magma ocean and core, and on the
surface magma ocean. Combining the definition of Nusselt num-
ber, Rayleigh number, and their scaling relationship Nu = γ Raβ ,
the heat flux Q can be evaluated by the following equation:

Q = γ

(
αgρs

κη

)β

k Hs
3β−1

(
Tbottom − Ttop

)β+1
, (19)

with k = ρsCpκ the thermal conductivity, γ and β the fitting co-
efficients and that depend on the phase change number 
 and the
problem considered. Their values are given in the Fig. 5(a) for the
case with 2 magma oceans and in the eq. (16) for the case of a
solid in contact with only one magma ocean. Tbottom and Ttop are the
bottom and top potential temperature, respectively. Obviously, the
super-isentropic temperature difference depends on the thickness of
the solid mantle and we follow a very simple scenario similar to that
of Morison et al. (2019), assuming that the top and bottom bound-
aries are at the liquidus temperature. We assume that crystallization

Figure 10. Heat flux density predicted as a function of the thickness of
crystallized mantle. For a thickness lower than 2500 km, we assume the
existence of magma oceans above and below. For a thicker solid mantle,
we assume only a basal magma ocean. The blue curves are computed using
the scaling law obtained for 
 = 0.1, the orange ones are computed with
the scaling law obtained without the effect of the phase change boundary
condition. Solid and dashed curves are for different values of the solid
mantle viscosity, as labeled. The red dot represents the present-day value of
the mean surface heat flux.

starts at a depth of 2500 km, first upward with both magma oceans
then downwards with only a basal magma ocean. For any thickness
of the crystallized mantle we can compute the predicted heat flow
from eq. (19) for different values of the 
 parameters. Although
simplistic, this scenario allows us to compare a conservative esti-
mate of heat transfer by solid-state convection in the early mantle
to that at present and draw some implications.

For simplicity, we consider all physical parameters constant and in
particular the liquidus temperature gradient, ∂ rTL 
 −0.93 K km−1

(Andrault et al. 2011), the isentropic temperature gradient, ∂ rTAD


 −0.17 K km−1 (Katsura et al. 2004), which allow us to relate
the super-isentropic difference to the thickness of the layer as �T
≡ Tbottom − Ttop = 0.76 Hs with Hs in km and �T in K. For the
other parameters, we use g = 9.8 m s−2, α = 2 × 10−5 K−1, κ =
10−6 m2 s−1, ρs = 4 × 103 kg m−3, Cp = 103 J kg−1 K−1 and, for
the viscosity, either η = 1018 Pa s, possibly representative of the
situation where the solid is close to the solidus, or η = 1022 Pa s,
similar to the present-time mantle viscosity.

Fig. 10 shows the results of this simple calculation. The choice of
parameters makes the heat flux density for a completely solid man-
tle, using the classical boundary conditions and the large viscosity,
q = 98 mWm−2, similar to the present-day value, q = 90 mWm−2

(Jaupart et al. 2015), represented as a red dot on the figure. De-
creasing the viscosity obviously leads to a larger heat flux. Having
a basal magma ocean makes the heat flux 76 per cent larger, with γ

= 0.37 instead of γ = 0.21 as pre-factor in the scaling relation (19).
The most spectacular result is obtained with magma oceans above
and below. As a comparison, a magma ocean with a surface temper-
ature of Ts = 3000 K not surrounded by an atmosphere radiates q =
4.6 MWm−2 into free space. This value is obtained for a convecting
solid mantle of 1200 km thickness. Including an early atmosphere
on top of the magma ocean makes its surface heat flow decrease
significantly (e.g. Lebrun et al. 2013; Hamano et al. 2013; Salvador
et al. 2017) so that the value just quoted is in fact a maximum
achievable surface heat flux. On the other hand, the value 
 = 0.1
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used to compute the results shown on Fig. 10 is likely to be overes-
timated, possibly by orders of magnitude. It appears therefore that
if both magma oceans existed at some point in the early times, con-
vection in the solid mantle is not a limiting factor for the cooling
of the deep Earth. The reason for the ease of heat transport in that
case lies in the peculiar mode of convection that develops with no
or very little deformation, the viscosity playing therefore no role in
the process.

5 C O N C LU S I O N S

In this study we have investigated the dynamics of a solid mantle
bounded between two magma oceans or in contact with one at the
bottom, with a semi-permeable phase-change at the solid–liquid
boundary(ies). We explored systematically the parameter space to
compare with and extend the results of the weakly non-linear analy-
sis of Labrosse et al. (2018). For the case when the solid is bounded
above and below by magma oceans, we recover the two modes of
convection predicted by Labrosse et al. (2018): a steady-state up-
or downward non-deforming translation and a deforming mode.
Extending the previous results from Labrosse et al. (2018) to high
values of the Rayleigh number shows that the solution at small val-
ues of 
 takes the form of alternating up- and downward translating
blocks separated by thin deformation bands (isothermal core width
∼1). The two vertically moving blocks have a vertical velocity and a
thermal structure that closely resemble the exact analytical solution
for the pure translation mode (Labrosse et al. 2018). Both con-
vection modes are characterized by a very efficient heat transfer, in
which the Nusselt number scales linearly with the Rayleigh number,
whereas in the classical situation of Rayleigh–Bénard convection
with non-penetrating boundary conditions, it scales as Ra1/3. Con-
sequently, we find that the predictions from the weakly non-linear
analysis predict very well the behaviour of the solution for the whole
range of calculations performed in this study, with a Nusselt number
as high as 3 × 103.

The situation with a magma ocean above and below the solid
mantle may have occurred early in the history of Earth-or-larger-
sized rocky Planets (Labrosse et al. 2007; Thomas et al. 2012;
Boukaré et al. 2015). Assuming efficient mixing of the magma
ocean, we expect the value of 
 to be less than 0.01. Applying the
present results to that situation suggests that heat and mass transfer
would rapidly grow to values that are orders of magnitude larger than
any rate encountered in the solid mantle after full crystallization of
magma oceans, of the same order or even larger than the black body
heat flow at the surface of a bare magma ocean. This would promote
a heat flow from the deep interior to the surface magma ocean so
large that the basal magma ocean and the core would cool faster
than previously thought, fast enough to drive an early dynamo.

A magma ocean that simply cools by radiating heat into space
would solidify completely in a few thousand years (Monteux et al.
2016). Considering the effect of a dense atmosphere can elongate
this period to about 10 Myr at Earth position (e.g. Abe 1997;
Hamano et al. 2013; Lebrun et al. 2013; Salvador et al. 2017).
Longer timescales can be reached for planets closer to their star
(e.g. Hamano et al. 2013; Salvador et al. 2017). It is however dif-
ficult to explain with these models the apparent longevity of the
Martian magma ocean, of order 100 My according to Debaille et al.
(2007). Our result suggest that the possibility of phase change be-
tween the crystallizing mantle and the magma ocean allows for a
very efficient heat transfer by convection in the solid. This means
that the contribution of the heat flow from the deepest part of the

planet to the magma ocean thermal budget may not be as negligi-
ble as usually assumed. If the mantle crystallizes upward from the
bottom and is in contact with only one magma ocean, the heat flux
scaling obtained here would suggest a heat flow a factor of two larger
than that obtained for classical non-penetrating conditions, for the
same Rayleigh number. The importance of that heat flow depends
then crucially on the values of poorly constrained parameters such
as the viscosity of the solid mantle. On the other hand, it is quite
possible that a basal magma ocean formed on Mars owing to the
density inversion between olivine and silicate melt at about 8 GPa
(e.g. Ohtani 1983; Agee & Walker 1993, 1988). In that case, the heat
flow across the solid mantle could be orders of magnitude larger,
of the same order as the radiative surface heat flux, and contribute
significantly to keep the surface magma ocean liquid, as long as the
basal magma ocean has not crystallized. This could help making the
magma ocean on Mars last ∼100 Myr (Debaille et al. 2007). Heat
is not the only player in this scenario since fractional crystallization
would also lead to transfer of FeO between the top and basal magma
oceans changing their freezing temperature (Andrault et al. 2017).
A full model including FeO exchange is therefore necessary to test
whether this scenario could make the surface magma ocean live
longer.

Considering now the case of only one magma ocean, the situation
applies for the present time on icy satellites and possibly for a part
of the history of the Earth (Labrosse et al. 2007). We only stud-
ied here the situation with a magma ocean below the solid mantle
but the case with a magma ocean above is its symmetrical in the
Cartesian geometry considered here (fig. 6). The results presented
above show that the form of convection and the thermal structure
are dramatically modified and heat and mass transfer are greatly
enhanced when phase melting and freezing occurs at one boundary,
even though these effects are not as drastic as in the case of two
phase change boundaries. In the case of a basal magma ocean that
has been investigated thoroughly here, the dynamics and thermal
structure bears many similarities with internally heated convection,
with narrow cold plumes descending from the upper boundary and
broad high temperature return flow elsewhere. Even though vol-
umetric heating is not included in these calculation, the bottom
boundary layer is completely suppressed and no hot plume can de-
velop. This suggests that the dynamics of the surface ice shells of
icy satellites and possibly of the early Earth mantle are entirely
dominated by downwelling currents, leaving no role to hot plumes.
In the case of the Earth mantle, the situation is certainly more
complex with fractional crystallization at the bottom possibly lead-
ing to compositional stratification, a situation that deserves further
study.

In terms of heat transfer, we find that the dimensionless heat flux,
the Nusselt number, scales with the Rayleigh number with an expo-
nent equal to 1/3, which is the same as for classical non-penetrating
conditions, but with a pre-factor about 76 per cent higher. This
means that, for the same Rayleigh number, the thermal evolu-
tion with a basal magma ocean should be about twice faster than
without it, and this imply that thermal evolution models, involv-
ing a basal magma ocean, should take that effect into account.
The parametrization of the heat flow at the bottom of the solid
mantle cannot rely on the existence of a boundary layer, as was
assumed by Labrosse et al. (2007), since heat transfer happens by
advection through the boundary. We expect however that, as com-
positionally dense material fractionally crystallizing at the bottom
starts to accumulate (Labrosse et al. 2007), the dynamics of the
bottom of the solid mantle strongly departs from the one shown
here.
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