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The motion of an electrically conducting fluid in the presence of a steady magnetic field is analyzed.
For any non-uniform magnetic field and any non-electromagnetic driving force, a high Hartmann
number asymptotic analysis is developed using curvilinear coordinates based on the magnetic field.
This analysis yields the structure of the electric current density and velocity fields. In a second step,
orthogonal planar symmetries lead to a significant simplification of the asymptotic structure,
depending on the nature of the symmetry. The asymptotic solution is applied to some configurations,
some of them corresponding to crystal growth from a melt. In the case of electrically insulating
boundaries, the nature of the symmetry is found to govern the magnitude and structure of the
damped velocity. ©1996 American Institute of Physid$$1070-663196)02207-9

I. INTRODUCTION the magnetic Reynolds number is small enough to neglect
the perturbation of the applied magnetic field due to the fluid
In many problems, especially in crystal growth from aflow, The other, which assumes that inertia is negligible,
melt, the knowledge of the velocity field is needed, e.g., tQimits the scope of this work either to weak driving forces,
investigate the segregation of species in the resulting solighrge interaction parameter or fully-established rectilinear
phase. For instance, Hutlshowed how an unsteady convec- fiows. In addition, in section Iil, the magnetic field is as-
tion could be stabilized when a magnetic field is applied: this;;med to be strong enough to justify an asymptotic analysis,
is of great interest for the elimination of striatioh$ But valid for large Hartmann numbers; the flow is considered as
even a steady convection produces radial and longitudinghe sum of a core flowiinviscid) and some boundary layer
sggregatlonéSome of these steady movements were studieq, s (viscid), each obeying a particular structure. The struc-
with or without a magnetic field in crystal growth ture of the core flow, which is derived from an integration

. . -7 . .
configurations.™” Outside the field of crystal growth, many along the magnetic field lines, is expressed in a curvilinear

other pr_oblems also require a good understan_dmg of |VlHDsystem of coordinates such that one of thed} is constant
convection. Convection in the tokamak blarkk&t such a

. . on the iso-potential surfaces of the curl-free magnetic field
problem. The fusion energy must be carried away by a 2 3 .
L . . and the other$x~ andx®) are constant on the magnetic flux
lithium or lithium-lead flow. The amount of energy required

. - lines. This asymptotic study essentially differs from Kulik-
for the pumping and the efficiency of the heat transfer are .

. ; : o - . ovskii's approachby the fact that the flow may be driven by
still open questions. Another potential application consists in kind of body f
the determination of diffusion coefficienthermal, solute or any f'n Oh ody orce.. sis | leted. the initial
crossedl in electrically conducting fluids. In general, these After the asymptotic analysis is completed, the initia

measurements can easily be disturbed by unavoidable fluiifée-dimensional problem is changed to a two-dimensional

movements. The use of a magnetic field, with its damping®"®- Nevertheless, it may still be very difficult to get the
effect on convection, could help to get precise diffusion data@SymPptotic solution, and we show in section IV that certain

Our purpose in this paper is to carry out an originalSymmetries can significantly simplify the problem. Two
asymptotic analysis adapted to flows of electrically conductkinds of orthogonal planar symmetries are examined. In both
ing fluids under a strong, possibly non-uniform, steady magcases, the symmetry leads to simplifications in the structure
netic field. An arbitrary known body force is included in our of the asymptotic solution obtained in section Ill. The sim-
formulation, the only requirement being that it should notplification is more important for one symmetry which we call
depend on the fluid velocity. This force need not be specifiedsingular”. In section V, the asymptotic solution is derived
until applications are considered: for instance, it may be therfor some flows in crystal growth configurations and for some
mal buoyancy in the case of crystal growth configurations. other convective flows with magnetic fields. Asymptotic so-

In section I, the governing equations are written underutions are also derived in the case of a “regular” symmetry.
two main simplifying assumptions. One is quite classic forFinally, in section VI the role of the symmetries is high-
MHD at the laboratory scale and consists in assuming thaighted and the scope of the asymptotic theory is discussed.
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1. MATHEMATICAL MODEL classical operatord@iv, curl, A andA) are not easily avail-
. - . . ... able, whereas in the field of differential geometry, intrinsic
A cavity ) containing an electrically conducting fluid is N .
. ; . .definitions allow one to express the operators in any system.
placed in a region of a steady magnetic field. The magnetic . ) ) .
. S . ; N In the following, a field as a vector or as a differential
field, which is curl-free and divergence-free in the cavity, is .
. . form, will be denoted by the same symbol, except for the
generated by an external devi@coil or a permanent mag- - . . . .
i . : component indices that will take their conventional position.
nef) and may be non-uniform. The fluid motion results from : . . .

" . If u,j, B andf are considered as differential forms of degree
boundary conditions and non-electromagnetic body forces(.)ne equationgl). (2), (3) and(4) now take the form
The electromagnetic body force is separated from other body ™’ q T
forces. In addition to the classical MHD assumptions, the  dxu=0, (5)

following hypotheses are assumed to hold:

« the magnetic field is not disturbed by the motion of the ~ 9*1 =0 ©
fluid; . —dp+f+Ha?x(j/AB) + (xdxd)u=0, @)

* inertia is negligible; _

» non-electromagnetic body forcdsare known in the j+de—x(u/AB)=0. (8)
whole cavity and are independent of the velocity field;

« the physical properties of the fluid are uniform. lll. ASYMPTOTIC ANALYSIS

The motion of the fluid is modelled with four equations:
the conservation of mass, electric charge and momentum, [N this section, we concentrate on the asymptotic limit of
along with Ohm’s law. Using a typical length scafieof the ~ high Hartmann numbers. Whetta>1, equation(3) or (7)
cavity, a typical magnitud8, of the magnetic flux density, indicates that the electromagnetic body force is large com-
the kinematic viscosity, the electric conductivityr and the ~ Pared to the viscous forces, which can be neglected in the

mass densityp, non-dimensional variables are defined: main part of the cavity, called the core region. Later, we shall
x=X/H, B=B/By, f=fH312, u=UH/v, j=TH/vaBo, p  consider thin boundary layers or free shear layers for which

viscous terms may be comparable to the electromagnetic

=P H%p1? and =3/vB,. The symbols with a tildé, B, T,
body force.

0, T P and @ denote the dimensional spatial coordinates,
magnetic field, non-electromagnetic body force, velocityA. The core solution structure

field, electric current density field, pressure field and electric . .
T . i Before treating the general case of a non-uniform mag-
potential field. The governing equations take the non-

. i netic field, we consider a uniform field because the algebra is
dimensional form . . g
easier while the basic ideas are the same. The curl of equa-

div u=0, (1)  tion (3) (without the viscous terjnis

div j=0, (2 curl f+Ha?(B.V)j=0, 9

—Vp+f+Ha%/\B+Au=0, ©) because cufil/\B)=(B.V)j—(j.V)B—(div j)B+(div B)j re-

) duces to(B.V)j considering(2) and the uniformity ofB.

j+Ve—uAB=0, (4) Choosing the dimensional scale of referefilzeas equal to

where the Hartmann numbeta = \/o/pvBgH, is the single the magnitude of the uniform magnetic field, the non-
non-dimensional parameter in the problem. The requiredlimensionalB is simply a unit vector field. We choose a
boundary conditions are associated with each particulafartesian coordinate system'(xx%) such thatB=Vx".
problem. A weak formulation and the Lax-Milgram theorem Now, equation(9) gives the variation of with the x* coor-
then prove the existence and uniqueness of the solution fa#inate in terms of the known cufl By integrating(9) j has
such a linear problem. the form
Equations(1), (2), (3) and(4) are expressed in a vecto- ,
j=jo—Ha 2|

Xl
curl f dx'1, (10
0

rial framework. The expression of velocity, electric current
density and magnetic field in terms of vector fields is not the
only one possible. They may equivalently be considered agherej, is a vector field which is independentxf. The curl
differential forms(the differential forms are the antisymmet- of equation(4) has exactly the same form as equation
ric tensorg in the framework of differential geometrisee i

Westenholt? for the use of differential forms This ap- curl j—(B.V)u=0.

proach will be adopted here for two reasons. First, from gt |eads to an expression far, similar to (10),
theoretical point of view, differential geometry provides a

clearer and more general tool than vectorial analysis. Differ- u=uo+ fX1curIj dx’'L,

ential propertiegmainly the exterior derivatiod) are clearly

distinguished from the metric propertiéhe metric tensog
and the Hodge star operatey. This is not the case in clas-
sical notations where the operators div, cWi,and A alll o W1
involve both differentiability and distance. The other reason —Ha’zf curl< J curl f dx”1> dx'?,
is a practical one: we shall make use, in this paper, of non- 0 0

orthogonal coordinate systems for which expressions of thevhereu is a vector field which is independent wf.

=up+x*eurl jg (11)
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Conservation of masgl) and electric chargé2) give gu1 !
equations governing, and u,. With the solutions(10) and j>=je—Ha 2 f (df)gdx'L, (170
(11), these constraints are vdetg Jo

L 1 wherej3 andj3 are components gfat x!=0. The last com-
div jo=Ha "(curl H),a_o), (12 ponent ofj is derived from equatioK6),

div uo=~(curljo)” a3 _ [&(Mﬁ , A0Jdetai) | a(detgp)]
axt X

For a uniform magnetic field, the asymptotic core structure is dxj= ax? ax3
thus defined by equatior(40) and(11) with the conditions 5 3
(12) and(13). Adx*/Adx*=0,
An analogous analysis can be performed for any arbigg that
trary non-uniform magnetic field. It is useful to consider a

curvilinear system of coordinates based on the magnetic field . . 9u xt d \/d_t'z
lines. In the cavity, the curl-free magnetic field may be writ- 27101 [detg Jo a_XZ( etgj®)

ten as the gradient of a scalar functioh(see Kulikovskit?).

In an equivalent formulation, we write the differential form J 3 1

B as the differential ok': B=dx*. Moreover, it is possible to + -3 (Vdetgj7)dx’~. (179
find two other scalar functions® andx? such that the metric
tensorg, in the (x!,x%,x3) system of curvilinear coordinates,
can be expressed as

The exterior derivative of8) is similar to(16), andu is also
divergence-free. Therefore, the structureiqfarallels that of

i

gu O 0 g .
11 X .
g=| 0 02 0. (14 w=ug+ —= | (dj)dx'?, (18a
0 g3 033 detg Jo
This is the simplest metric that can be chosen in gertéral. W2 U2t O11 fXI(dj) dx' (18b
Wedenotey = \/detgdxt /\ dx? A\ dx, the volume Riemannian 0" Jdetg Jo s

3-form of the physical space. Furthermore, the magnetic field

must satisfy the Maxwellian condition of zero divergence. In J11 xt d )
the context of differential geometry, the divergence is de- Y17~ Yo1™ Jdetg Jo o2 (Vdetgu)
fined by the relationdxB=(divB)%. In the coordinates
(xt,x2,x3), 3 -

+W( detgu®)dx’-. (180

dxB

a(M

= )dxl/\dxz/\dx3. (15)

The fieldsu3, u3, ug;, j3. j3 andj,; are independent of?
and are also submitted to constraints, namelyak®\dx®
component 0f16) and of the exterior derivative dB):

11

The quantityydetgl/g,, is thus invariant along magnetic field

lines. For a non-uniform magnetic field, the curl of equation
(3) does not lead td9) since(j.V)B is not zero. Neverthe- J [ detg , d [detg ,
less, the solution is very similar with a few added terms duegyx® |\ g,; Jo| * 2\ gy lo
to the non-uniform field. Recalling th&tj andB are differ-

ential forms of degree one, we take the exterior derivative of ~=Ha %(df)ag . . (19
(7), without the viscous term,
d [detg , d (detg , )
df + Ha2d#(j/\B)=0, 16 el g, Ut | gy W)= in,,. @0

and express itdx*/\dx? anddx®/\dx! components relative

1573 The core structure for any non-uniform magnetic field is de-
to (x*,x5,x%),

fined, in the &*,x%x%) coordinates, by equationd?7) and

d [detg (18) under the constrain{d9) and(20). The formulas reduce
x| g j®|=—Ha %(df )y, to the previous ones for a uniform magnetic field. For either
1 a uniform or a non-uniform magnetic field, the boundary
d [+/detg conditions can not yet be considered with the hope to deter-
— j2|=—Ha %(df) i ields i
axI\ g J 31- mine the unknown field§, andug. The reason is that these

boundary conditions are changed through thin boundary lay-
[The components of a vector fieldr a differential form  ers(see sections Il B and Il € The general method is the
are denoted by the same symbol as the vector field itself, ifollowing. An equivalent structure to that for the core re-
italics instead of boldfacg.Integration of these equations gions has to be found for the boundary layers. Afterwards,
and the invariance ofdetg/g,; along magnetic lines lead to the true boundary conditions have to be applied to the global
structure of the solution, consisting in the matched structures

1 .
j3=j8— Ha 2 911 x (df),dx'L, (179 of thg cores apd that of the bound.ary Iaygrs. A simultaneous
ydetg Jo solution has finally to be found fdgg, ug (in each core re-

Phys. Fluids, Vol. 8, No. 8, August 1996 Alboussiere, Garandet, and Moreau 2217



gion) and the unknown fields related to the boundary layersmagnetic field along the surface and involving the boundary
This nice program will be completed only in the presence ofcurvature. The normal components are obtained by direct
some symmetry or in particular cases with the help of thentegration of(1) and(2) using the expressior{&3) and(24).

characteristic surfacgsee section V. The divergence of the electric current density and that of the

B. Hartmann layers velocity field are

in
Near each boundary, the velocity gradients increase so gjy j= 1+dlv[1 e~ HaB.nin

that the viscous term in equatid®) becomes comparable to

the electromagnetic body force term. In each boundary layer, aun

the solution can be considered as the sum of the neighbour- div u= — + div[ u,e~"a/8nin],

ing core solution and a solution which is governed by the an

homogeneou&=0) version of equationél), (2), (3) and(4) The integration of these equations betweeand +« yields

and which vanishes far from the boundary. The matching ithe expression foj" andu", taking into account the condi-

simply a sum, thanks to the linear behavior of the solutiortion that the deviation fields vanish far from the boundary:

with respect td. The magnetic field being almost uniform at

the layer thickness scale, the curl of the homogeneous mo-  jn=| Ha™! div,, In )_ in-VaolB. n|) ~HalB.nin
mentum equation and of Ohm’s law can be combined to get |B.n| |B.n|
the following equations: (26)
—Ha¥(B.V)%+ A% =0, (21) o= Ha 1 div,g |;h |) U T§Q||B ”|) “HalBnin
.n n
—Ha?(B.V)2u+A2u=0. (22

When the normal unit vector (directed toward the fluidof =~ The symbols diy, andV,, denote the divergence and gra-
the boundary and the magnetic field are not parallel, an analient operators defined on ti#) submanifold. The value of
lytical solution can be derived for the systd21) and(22), (26), at n=0, is the same as the conservation of electricity
the so-called Hartmann layer solution. The thickness of thesgiven by Holroydet al'® The termV ,|B.n| is not zero for
Hartmann layers is found to scalelda 2, in the asymptotic non-uniform magnetic fields or for curved boundaries, so
limit of high magnetic field: the magnetic field can indeed bethat equation$26) and(27) each involve a combination of a
assumed uniform at this scale. In the analysis, spatial derivasonstant and of a linear term times the basic exponential
tives alongn are considered as very important compared tafunction.

that along other directions. Let us limit ourselves to the pro-

jection of (21) and(22) on the plane tangent to the Hartmann C. Parallel layers

boundary. The derivative operatdB.V) is estimated as
(B.n)(n.V) and the projections of equatiorf21) and (22)
admit the simplified form

When the normal to the layer is orthogonal to the mag-
netic field, the boundary layer equations involve derivatives
along bothn and B. These parallel layers are much more

Jt % difficult to handle. The literature contains solutions for sev-
—Ha?B.n|? 2t a0 eral particular casegHunt!* Alty,®® Petrykowski and
Walker'®), but a general solution is not available to our
) ) Pu, o, B knowledge. In this paper, we do not treat any parallel layer.
—Ha%B.n[* — 7+ —7=0. These layers have a typical thicknessttd /2, and either
) o develop along walls which are parallel to the magnetic field
The tangential part of the solution is therefore or develop as free-shear layers between two core regions:
jtzjhefHalB-nln, (23) any discontinuity on the boundary may generate an interior
layer through the cavity. While these layers may carry a
U= upe~ HalBnin, (24 significant fraction of the total flow or electric current, they

are sometimes passivye.g., in section IV A and produce no
perturbation of the core flow, whereas the core solution can
not be determined in many cases without matching the Hart-
mann layer solutions, exception made of the very special
symmetry described in section IV A.

wherej,, andu, are two tangential vector fields defined on
the Hartmann boundary: they are vector fields on &k
manifold. It is well known(see for instance More& that
Ohm'’s law implies a characteristic relation linkingandu,, .
Since the normal component$ and " are very small, the
curl of equation(4) leads to:

nAjp=(B.n)uy,. (25

D. Characteristic surfaces

It has been stated in the past that flow streamlines and
One should not derive similar exponential-like functions for electrical current lines must often lie on certain characteristic
" andu”, the normal components ¢fandu, which para- surfaces>'"*In a cavity Q, these characteristic surfaces

doxically seem to obey the same equati¢@d3$) and (22). are defined as the union of the magnetic lingshaving the
The equations for the normal components involve nonsame value fof ,ds/|B||, wheres is the distance along each
negligible derivatives of the tangential components, andnagnetic field line and the integration is performed only on
these derivatives lead to terms involving the gradient of thehe connected part of the field line insifle(see Fig. 1 The
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On the boundary defined by", the condition of vanishing
normal componentd(x'—x").a=0, can be rewritten using

(28),

tangent

lanes Vdet d +

plane Y ag- — | Vdetgaddxt
O11 IX= Jo

& +
- fox Jdetgaddx!=0. (29)

The same relation holds for™ and equation{15) states that
Jdetg/g;; does not vary along a magnetic line. Subtracting
the relation forx™ to that forx™, (29) yields

J + J +
i fo \/detgaédlerW fxi Jdetgaddx*=0. (30)
X X

agnetic

lines A

of
e 2 By analogy with(19), a satisfies
d (Vdetg , d [vdetg 4
. : o v |t =3 5| =0. (31
FIG. 1. Characteristic surface under a uniform magnetic field. 2 d11 (28 J11

Since \/detg/g,; is independent ok, equations(30) and

(31) give

x* 1

assumptions and proofs in the previous work are based on an d( JX, gudx” |.a=0. (32

analogy with the Kelvin-Helmholtz theorem and the induc-
tion equation while our purpose is to reexamine this concepBince the norm oB is 1\/gy5, s = x*V/gy, is the distance
with more physical arguments, somehow related to Kulik-2long a magnetic field line. The change of variable yields
ovskii's proof!! First we prove the following general theo- fﬁfglldxl = f:fds/||B||. Equation(32) exactly means tha,
rem, which defines the exact conditions for the relevance off considered as a vector field, is tangent to the surfaces
the characteristic surfaces, and then we discuss the applicBomposed of magnetic lines with the same value for
tion to MHD problems. fsfds/||B||. 0
Theorem 1: Let us consider a fluid physical doman s

such that the length of each part of each magnetic field Iinegim
contained inQ) remains finite. We denotea divergence-free
vector field inQ), such that

« curl (@\B)=0in Q;

e an=0on d);

Second prooffor a uniform magnetic field, there is a
pler and more visual proof. Under our assumptions,
curl(@/\B) is equal to(B.V)a. The vector fielda is thus in-
variant along a magnetic line and must also be tangent to
both boundaries crossed by the magnetic line. So, the direc-
tion of a is given as the intersection of both tangent plane
then, everywhere i), a is tangent to the characteristic surfacegsee figure 1 In this direction, the length of the part

surfaces of the magnetic line intercepted by the fluid domain obvi-
Proof: The fielda is seen to satisfy the same equation asously does not vary, which proves the theorem for uniform
j in the core flow(16) whendf=0. So its structure can be magnetic fields. O
deduced from(17): In MHD, the characteristic surfaces are important when
eitheru orj in the core satisfies the conditions farso that
ad= ag, (289 u orj must be tangent to the surfaces, i.e., the flow or electric

current must follow these surfaces. For a curl-free non-
. electromagnetic body force, the condition ¢ufB)=0 is
a“=ay, (28D fulfilled, but the assumption of electrically insulating walls is
not enough to state that the conditipn=0 holds ond() for

g the core solution. A significant electric current may develop
11

a,=ag— —— v ( detga(z)) Within_ the Hartmann layer so that there may be a significant
vdetg Jo electric current between the core and the Hartmann layer. For
J the velocity field, culu/\B) is only 0 when the electric cur-
+ e (w/detgag)dx’l, (280 rent density is very small compared to the velocity. If the

no-slip condition is available, then the non-permeable wall

condition is still correct for the core since the normal veloc-
wherea, does not depend on the coordinate in the same ity in the Hartmann layers is very sméiee equatiori27)].
metric (14) as previously defined. On each connected part of Thereforeu or j are only tangent to the characteristic
a magnetic field line i), the two ends can be defined by the surfaces under certain special conditions, which will be ex-
relationsx*=x"(x2,x®) and x}=x"(x?,x%), with x_<x*.  plored further in section IV.
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solution and must by uniqueness be equal to the original

solution. It is interesting to notice that the inertial term

AM(v) - P “(u.V)u”, neglected in our analysis, does not satisfy this

: M(v) anti-mirror property. O
> . When this theorem can be applied, we propose to call
mirror . . . .

the problem “singularly symmetric”. This result is true for

any value ofHa. Nevertheless, its application becomes es-
pecially fruitful when the large Hartmann-number asymp-

L P o totic analysis can be applied, since the core solution must
anti-mirror . ;
vectors ﬂ """""""""""" ﬂ """""""""" have the same symmetry. An important consequence of theo-
rem 2 is that botl andu have zero tangential components in
P P the symmetry plane”, where B is perpendicular. This
greatly simplifies the core structuf@?7) and (18) since, if
FIG. 2. Anti-mirror and mirror properties. x1:0 was chosen or”, the four componentjséy jg, ucz) and
u3 vanish. The core solution is only defined in termsj gf
anduy; which depend ox? andx®. Now, the complete as-
IV. SYMMETRY ymptotic solution for the flow which is the sum of the core
Itis in principle always fruitful to identify a symmetry in flow and Hartmann layers only dependsjgn, uo;, and both
a given problem, since this allows one to consider only halfomponents ofi, on the boundary defined by" since the
a cavity. In addition, a symmetry can provide much valuableother boundary is symmetric, and singes related touy,.
simplification when associated to the asymptotic structure of A very interesting characteristic of the present singularly

MHD flows. Here, we concentrate on orthogonal symmetrie$ymmetric problems is that, in the derivation of the core
with respect to a plane surface. solution, the Hartmann layers play a passive role. Let us

assume that, at the wall, the velocity field vanishes. The con-

dition of zero tangential velocity on the walls implies thigt
Before describing the symmetry that we call singular,is of the same order of magnitude as the core velocity and

some definitions are needed. Let us consider a plane surfatieus the normal component in the Hartmann solut®n is

2 and two pointsP and P’ symmetric with respect to”.  negligible. Therefore, the non-permeable boundary condition

The anti-mirror operatoAM is defined for a scalar function also applies for the core solution. By equatid®c), up, has

A. Singular symmetry

f and a vector fields as the same order of magnitude as the two other velocity com-
« AM(f )(P)=—f(P’); ponents and it can be deduced, usiiga and (18b) with
* AM(V),(P)=—Vv,(P") andAM(v), (P)=+v, (P’). u3=ud=0, that the core velocity is of the same order of

The subscripts and , , respectively, denote the parallel and magnitude as the core electric current density. The surface
orthogonal parts of a vector relative 6. In the following  fields j, anduy, are also of this same magnitude ordey;,

we say that an anti-mirror scalar functibrsatisfiesAM(f )  because it cancels the core velocity at the wall griskcause
=f, and that an anti-mirror vector fieldsatisfiesAM(v)=v it is linked tou, by the relation(25). In this special case of
(see Fig. 2 For the class of problems governed by equationssingular symmetry, because there is no significant mass or
(1) to (4); the occurrence of an anti-mirror solution is related electric current flux within the Hartmann layers, the core

to the following theorem. solution can be derived separately.

Theorem 2: If (u, j, p, ¢) is the unique solution of the The core solution is not yet complete, singg andug,;
equations (1), (2), (3) and (4) in a cavify, and if are undetermined. The information necessary to complete the
« there exists a plane surfac® such that() is orthogo-  solution comes from the nature of the electrical connection
nally symmetric with respect te’; between the fluid and the exterior. In the following, we limit
» B, f and the boundary conditions are invariant under the ourselves to the two simplestand oppositg electrical
AM operator relative to7; boundary conditions: perfectly insulating walls or perfectly

conducting walls(more precisely, with a uniform electric

then u, j, p and ¢ are all anti-mirror in the whole cavity. )
nul.p ? Y potential on the boundayy

Proof: The uniqueness of théu, j, p, ¢) solution is
proved by the Lax-Milgram theorem for linear differential
equations with adequate boundary conditions. However, the
set[AM(u), AM(j), AM(p), AM(¢)] also satisfies equations ;. Insulating walls
(1) to (4). This is due to the commutative property of i
operator with the gradient, divergence, curl and Laplacian Using the same argument as that for the velocity, it is
operators, as well as its distributivity with respect to thestraightforward to deduce from equati26) that the normal
cross product: indeed, for any given scalar functfoand electric current component within the Hartmann layer is neg-
vector fieldsv andw, it can be simply proved th&M(Vf ) ligible compared to the core electric current density. There-
=V(AM(f)), AM(iv v)=div(AM(v)), AM(curl v) fore, the normal component of the core current density must
=curllAM(v)), AM(Av)=A(AM(v)) and AM(vAw) vanish at the wall. After some transformation, this condition
=AM (V)/\NAM(w). As the boundary conditions are assumedfor the core current densityd(x'—x").j=0 at the walls,
AM invariant, the transformation of the solution B\M is a  takes the form
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Vdetg 9 X" & (df )ap aa B. Regular symmetry
T Ton U ae fo g”fo Haz 9X 70X Some flows have a different symmetry, with respect to a

planeZ’, which we call a regular symmetry. The mirror op-

fﬁ fxl (df) dxldxt | = 0 (33  eratorM with respect to the planar surfacé is needed to

o 91, THa? e define this symmetry. With the same convention we define

* M(f )(P)=+f(P’);

This equation determinejg,, since the non-electromagnetic . M (v),(P)=+v,(P") andM(v), (P)=—v, (P’).
force fieldf is known. The core electric current density is A mirror scalar functiorf or a mirror vector field is invari-
now completely determined. We have pointed out that theant under the mirroM operator(see figure 2 An analogous
conditiond(x* —x*).u=0 also holds for the core velocity, so result as theorem 2 is derived for a regular symmetry.
that Theorem 3: If (u, j, p, ¢) is the unique solution for
equations (1), (2), (3) and (4) in a cavify and if

J
ax3

vdetg 4 x* x* « there exists a plane surface such thatQ) is orthogo-
B L2 ; 11yl Isap : g
g1 01T 552 Jo g“fo (d])z20x""dx nally symmetric with respect te’,
5 ) * B is invariant under the AM operator
x*t X . , . iti i i
+—y f gnf (dj) 0" tdxt| = 0. (34) «+ f and the bou.ndary conditions are invariant under the
1) 0 0 mirror M operator;

then u, j, p and ¢ are all mirror in the whole cavity
The only difference between the proof and that for theo-
rem 2 is thatM (v/\w)=M (v)NAM(w) for vector fieldsv
andw. Contrary to the case of singular symmetry, it is inter-
esting to notice that the inertial term(tf.V)u” would satisfy
2. Conducting walls this mirror property. When the conditions of theorem 3 are
satisfied, we have a regular symmetry. A consequence of the
Let us now assume a uniform electric potential at theyneorem is that the normal componentj aindu are zero on
wall, corresponding to a perfectly conductiigonnectedl  » \when combined with an asymptotic core struct(@)
wall: by singular symmetry, this wall potential must be zero.gnq (18), this condition yieldsj ;=0 andug,=0. There is
There is no electric potential jump through the Hartmanniess simplification than for a singular symmetry since four
layer (because there is no significant mass ¥lard the core  |,nknown core functions?, j2, u2 andug, and both compo-

potential is the same aw’ and at the walls. The integration nents ofu, still have to be determined with equatioff9)
of the core currentalong a magnetic line betweefiand the  gnq(20), and with the boundary conditions.

This equation determinas,,. Both components ofi, may
now be determined using the no-slip condition.

wall (x'=x") can be written as We shall concentrate on electrically insulating bound-
. aries for a bounded cavitf). Thus, the characteristic sur-
J j= fx jldxlzf —de+*(u/\B)=0. faces close on themselves: they form rifg®Ve shall later
A 0 A see that the velocity streamlines lie on these characteristic

surfaces. In this special case, the asymptotic solution can be

Using the structure ofy (170 for a singular symmetryjo1 1S gerived by general formulas. By integrating the velocity and

given by electric current density along magnetic lines, we first derive
e g expressions for the mass and electrical trangf@randl) as
- 911 fx f" 2 functions ofx? and x®:
X" = — (det :
JOl \/M o 0 (9X2 ( g] )
J
+ —5 (Vdetgj®)dx'tdxt. 35
53 9j°) (35 *Q:f ., (36
7
Then, as for the previous case, the core velocity is deter-
mined by the non-permeable condition at the boundady.
For singular symmetry, for either insulated or perfectly s *jp
conducting walls, the electric current density and the velocit i _
y 4 v f.%*]+Ha|B.n|+Ha|B.n|’ (37

are of the same magnitude order, nanféya®. The relation
curl(u/AB)=0 is far from being satisfied and thus, the char-
acteristic surfaces are not relevant. Two applications will be
studied in section V which have a singular symmetry. Thewhere.Z is the portion of a magnetic line contained $h
solution along each magnetic field line is determined by conThe last two terms ii37) are the electrical flux in the upper
ditions at the symmetry plane and wall, and is entirely inde-and lower Hartmann layer: théHa|B.n|)"* factor is the
pendent of the solution along other magentic field linesthickness deduced fror23). The corresponding terms for
Thus, the local flow is independent of the flow at a distance(36) are negligible due to the no-slip condition of the veloc-
provided that the singular symmetry holds everywhere. As dty field. Thanks to the regular symmetry, the last two terms
consequence, the parallel layers do not affect the core flowof (37) are equal and the relatiq@5) can also be written as
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*j,,=|B.n|uy,, while uj, is related to the core velocity with the ax*

no-slip condition: Ung+Us+ Uy — 3 =0. (38b)
Ut Usct U KIO (389 The relationg(36) and (37) can be expressed using the core
h2 T E2 T L ox2 structure of the velocity and electric current density fields:

\/det \/det
(*Q)dx2+ (*Q)zdx3=| —u f gpdxt— J gllf (dj)10x" *dx* [dx®+ | uf f g,dx
xT x1
+f 911J (dj)gdx dxt|dx3, (39
X 0

(x1),dX%+ (x1)5dx3=| —

\/det xt (df ydet +
f gpdxt +f gllf ( )lzd "tdx 1+2H }d [i(z) 9 2 fxf g,dxt
11 Jx

x* (df )z o _Ung| o
_f[ gllfo HaZ dx’*dx +Zm dxe. (40)

For electrically insulating wallsQ and| have a zero component through the line boundary of the 2D surface obtained by
“compressing” () along magnetic lines. Moreov€) andl are divergence-free. In order to simplify the notations, we perform

+
a change of variable by choosing = fi,glldxl (this new coordinate? is independent of the initial choice &f andx® and

its isovalues are the characteristic surfaces; furthermore, it is orthogoral gg,=0). The divergence-free condition f@
and| can be written, using19) and (20), as

. Vdetg d x*t xt 14 x*t xt
x2(—d123|X1:0)+uS +- f* 911j (dj) 10X dxt |+ —— fﬁ gnf (dj)adx tdxt| = (41
11 X X 0 X X 0
X2 df23‘x1:O n .2 \/detg_ 17 JX+ JXl (df )12 dx’ldxl _ J fx+ fxl (df )31 dx’ldxl
| gy | )9, R 2| ), Tz
+2Ha tduy=0. (42

It is useful to consider the total amount of the electrical flux across a characteristic surface®{) which is zero since it
forms a ring. We integraté40) alongT’, a closed line in x?,x®) corresponding to a characteristic surface:
det

s (df )ap
Xzé I fﬁ[f gllj _rdxldxl
r d11

Equation(42) givesj3 in terms ofdu, . After substitution,(43) becomes an ordinary differential equation goverrpg,,:

2 e 8 [ S ocor| 22

x* d(df e ]2
- ﬁ[ﬁ( gllfo HaZ dx’“dx ta ﬁuhg—o. (49

+2Ha ! 35 Upz=0. (43
r

Haa

The solution takes the form [ axt\ [ ox™
Uno= 923

r7X (9X
Ups= —=—— — X
Un3 2Ha Jr| J, Q1113

It is obvious thatf;u,; is comparable talf/Ha while equa-

tion (42) implies thatj3~df/Ha?. Then(41) leads tou3~j3

(as the characteristic surface is closgi u2 because there Moreover, equatiori20) shows that/detg/g;;u3 is indepen-
is no global electric potential difference over one juoui  dent ofx® (to theHa ! ordep. So, the main component of
must be of ordedf/Ha anduy,, given by(38), takes the form  the velocity,u3, is given by the relation

J11 Uo,

(49)

r &X+ 2
3
Upz= 933+(W) 911}“0
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The pressure boundary condition is also invariant under the
anti-mirror operator. As the configuration is singular, the re-
sults derived in section IV A for insulating or perfectly con-
ducting walls apply in a region of connected magnetic lines
in the fluid (the shaded regions in figure.As f is zero, the
solution of equation(33) or (35) is ju;=0. The wall being
either insulating or perfectly conducting, there is no electric
current density in the bend region. Equati@4) then leads

to up;=0. There is a zero velocity field in the bend. The
whole mass flux must flow within the interior layébold
dashed lines in figure)3 A region of stagnant fluid exists,
FIG. 3. Stagnant zone in a bend. which should be taken into account when heat or species
transfer are to be considered. A poor heat or species transfer,
only due to diffusion, is expected in such a configuration.
This result is true for any bend geometry and for any mag-

916 rUns netic lines, provided the symmetry is maintained. Figure 3
ug= e . (46)  illustrates two such configurations.
vdetg$r([gsst (9x7/9x7) 9111911/ Vdetg] Itis interesting to notice that Molokov and Bler'® have

In applications, the velocity field, following the characteristic found a non-zero velocity field in such regions under a uni-

surfaces, is determined by the key soluti@®) and by sub- form magnetic field, in the case of a finite electrical wall

stituting the result fofrup,; in equation(46). conductivity: the electric current flow in the wall creates po-
Unlike the streamlines, the electric current lines do nottential gradients and precludes the derivation of a local solu-

lie on the characteristic surfaces: the topological constraint ofion. On the contrary, insulating walls prevent any current

a closed cavity(of finite extend leads to closed characteris- flow and perfectly conducting walls, by impressing a uni-

tic surfaces forming rings, thus precluding large electric poform electric potential at the walls, prevent any electromo-

tential differences on each surface. This flow pattern is quitdive force within the fluid. Molokov and Buler used another

different from that for duct flows with varying cross-section asymptotic approach based on pressure and electrical poten-

or magnetic field intensity’ tial, combined with numerics. In the limiting case of large
The order of magnitude for the velocity is found to be wall conductivity they also predict that the velocity vanishes

df/Ha in this case of regular symmetry. A similaret more in the bend, the mass flux being confined to the parallel

complicated solution as(45) could be written for general layers.

configurations, which are neither singularly nor regularly

symmetric: the functiong™ andx~ would be different(not

just their sign as well as the tangent fieldg, andjy_ . It

appears that thef/Ha? order of magnitude for the velocity g. Two singular buoyancy-driven flows

can only be expected for singular configurations. ) ) )
We first consider the case of a buoyancy-driven flow

with a uniform magnetic field, since the algebra is simpler
than that for a non-uniform field. In the Boussinesq approxi-
In this section, we present some practical applications ofnation, there is no mathematical contradiction between the
our analysis. First, the case of a pressure-driven flow in @&xisting buoyant force due to mass density variations and our
bend is considered,; it is singularly symmetric and admits aassumption of uniform physical properties; indeed, the mass
simple solution. Then, asymptotic solutions for threedensity is assumed uniform and the buoyant force propor-
buoyancy-driven flows are given: two are singularly sym-tional to the temperature. The dimensional force density is

V. APPLICATIONS

metric, the other regularly. expressed in the Boussinesq approximation,
F=pg1-B(T-To)],
A. A singular pressure-driven flow in a bend where g is the volumetric expansion coefficient of the fluid,

T the temperature field anfiy some temperature reference.
Since only the curl of produces convection, we take equiva-
Eently f=—pBTg. In our dimensional scales defined in sec-

A pipe is bended in a region of magnetic field as illus-
trated in the Fig. 3. The pipe as well as the magnetic lines ar

symmetric with respect to the plane. The flow is pressure- tion Il, with a uniform thermal gradierit=Gx? (this coor-

driven: a pressure-P is assumed at the entrance an@ at . 2. o

. . : C dinatex“ is independent of the characteristic surfaces as seen
the outlet. First, let us show that this configuration is singu-_ _. . : .

o : in Fig. 4), this force density and its curl take the form

larly symmetric, i.e. that the requirements of theorem 2 are
fulfilled. The volume force is zergravity here only leads to f=Grx2dx?,
hydrostatic pressuyeand can thus be considered anti-mirror B 1 5
invariant. Concerning the boundary conditions=0 and df=—Grdx*/Adx’, (47
j.n=0 for electrically insulating wallgor j/An=0 for per- whereGr=BgGH?*/1? is the Grashoff number. The reader

fectly conducting walls they also are anti-mirror invariant. can check that this configuratidfigure 4 is singularly sym-
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FIG. 4. A singular buoyancy-driven configuration.

metric. The analysis of section IV A can be applied; using
expression47) for df, equations(33) and (34) become for

the case of insulating walls

. Gr ox*’
IT=t 502 ;
2Ha“ ox

Gr XL 92x+?
W=—| - x4 = ——
Ha? 2 9(x3)?)’

5 Gr xt o+’ 48
U a2 2 o “9

1oxt? 1axt At

2 X% 4 ax® 9xPox?

u

1_ Gr
Ha?

1 ox+? 2+’
+__—
4 9x% 9(x>)°

The singular symmetry allows us to derive easily this threenetic

z A
/74 /B

magnetic lines

B ,4 4
AL A for A\ =10.8
df S TN
D ! ‘ ;o
_1 1
A | S L HE B S - o
Yy T

i
\

FIG. 5. Non-uniform magnetic field and buoyancy.

Gr
2_ _ 1
u Ha?
u=0,
1 Gr ox*’
T T 2Ha? o 49

In this case, the electric current density is seen to be inde-
pendent of the shape of the cavity and the velocity depends
only slightly on it, just in order to satisfy the non-
permeability condition.

Such results ag48) and(49) can be applied in configu-
rations of Bridgman crystal growth: some particular cases of
these results can be found in Ref. 7. The velocity field can
then be used to study the species transfer governing solute
segregation in crystafS.

Let us now consider a quite similar case of buoyancy-
driven flow in the presence of a non-uniform magnetic field.
For the sake of algebraic simplicity, we assume here a cylin-
drical shapdFig. 5 with an axial thermal gradient and mag-
lines lying in the cross-section plane:

dimensional asymptotic solution. The velocity depends orB=(1+\y)e,+\zg,, defined in the X,y,z) Cartesian coor-

the shape of the cavity, defined by the function involving

dinate system. This magnetic field is a superposition of a

its variations up to its second derivatives. The choice of thisiniform vertical component and a linear field scaled by a
shape may lead to very different flows, always of magnitudeparametern (when A=0, the magnetic field is purely uni-

orderdf/Ha?, provided the singular symmetry holds.

form). This field is clearly divergence-free and curl-free. A

For perfectly conducting walls of uniform electric poten- look at figure 5 will convince the reader that the singular

tial, equationg35) and(34) lead to
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symmetry holds. We first derive a coordinate system
(x*,x?,x%) adapted to the magnetic field such tiBtdx’
and the metric tensor in this orthogonal coordinate system,

x1=z+\yz

A N
2 _ 52 2
X'=—y+522= 5y
x3=x,

Alboussiere, Garandet, and Moreau



y(x?)=r(x?), and for a circular cross-section of diameter
unity: x> = /1—4y?. The general solutiot45) allows us to
derive the explicit solution:

3g _Gr
U= g
From equation(46), the velocity magnitude can be ex-
pressed,

2
Ly+a %) X2,

Gr L+ m(y2)
[ 3_ 2
93lo™ Ha 2L+ 2my Y 5D

In the two limits of large or small length, this solution is
written as

FIG. 6. Buoyancy in a regular configuration.

Gry
L— 0 gaallg= = 5 X%,

2 ~172 Ha 2
+(>\x1)2) :

1 ((1 N
gu=5 | |5 AX Gr

2112 L—0ggud= — v
922= 011, Ha 4

03s=1. In the analysis, the symmetric shape in the pladex?) has

not yet been specified. One can substitute the circular equa-
tion, x2 = \1—4y?, or any other, to fully describe the solu-
tion.

Thendf must be expressed in thel{x?,x®) coordinate sys-
tem as well as the shape functioy?+z>=0.25. For insu-

lating boundaries, equatig83) must be solved, while equa-
tion (34) leads touy=0. Then, u® the single non-zero
velocity component, is obtained using equati@8a. After  VI. CONCLUDING REMARKS
some tedious algebr@alculations of integrajs we find

, " We have presented an original asymptotic analysis for

3= _op Gr 1 A N the flows of electrically conducting fluids under a strong and
U= =22 X 1+ 54N possibly non-uniform magnetic fieltsee section 1)l This
. . . analysis is very general since it can handle any given drivin
Expressed in thex(y,z) system, the velocity can be written Y Y9 = = y9 9

body force, denoted bf. Whenf=0, the classical case of

as pressure-driven flows can be analyzed. For example, the
Gr \? - classical Shercliff solutic?? for the fully-established flow in
Uy= _Z_Haz (z+Ayz)| 1+4Ny+ 5 2N+ a circular duct in the presence of a strong uniform magnetic

field can be derived within this general theory. In natural
convection problems, the buoyant force can also be taken
into account for a small thermal Blet number. Indeed, the
force densityf must be knowna priori, which is the case if
the temperature field is not affected by convectiother-
wise, the force density depends on the solution for the veloc-
ity). Other external forces than buoyancy can be treated
within our theoretical frame, e.g., the magnetic force with
T=(x/210)VB? where y denotes the magnetic susceptibility
of the fluid andu, the vacuum permeability: it is indepen-
dent of the velocity solution under our assumption of small
magnetic Reynolds number. As shown in the analysis, only
We consider a cavity with insulating boundaries: it is athe curl of the body force can produce motion in a closed
cylinder of lengthL, capped by two hemispherésee Fig. 8. cavity. So, the magnetic force leads to convection in the fluid
An axial thermal gradient normal to the gravity is imposed.only if y is non-uniform. This occurs in a paramagnetic fluid
The uniform magnetic field is assumed to be orthogonal tan a thermal gradient, since its magnetic susceptibility is pro-
both gravity and thermal gradient. This configuration is regu-portional to the inverse of the thermodynamic temperattire.
larly symmetric with respect to the vertical plane of symme-  Our general asymptotic analysis is simplified for two
try orthogonal to the magnetic field. Characteristic surfacesymmetries. It is found that the nature of symmetry, denoted
form closed ringgdashed lines in figure)@nd the analysis here by regular or singular, has as much effect as the elec-
developed in section IV B can be applied. In the cylindricaltrical conductivity of the walls on the characteristics of the
part of the cavity, the only “free” coordinate®, is chosen as flow and on the magnitude of the velocity.
the axis linear coordinate«t=z), while an angular one is of In singularly symmetric configurations, the simplifica-
practical use at the endz®=#6). The functions defining the tion leads to a locali.e., in the vicinity of a magnetic line
shape of the cylinder and the hemispheres are the samasymptotic solution. The non-dimensional velocity is propor-

—3/2

+2\2y? (50)

For small values ofn, a first order term takes the form
u,=—2(Gr/Ha?(z—5\yz), previously found using an
analysis suitable for weakly non-uniform magnetic fieltls.
WhenA\ is zero, we findu,=—2(G r/Ha?)z, which is also
the result of equatiort48) when the shape is given by"

= \/1/4—y? for a cylindrical circular cavity.

C. A regular buoyancy-driven flow
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