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The motion of an electrically conducting fluid in the presence of a steady magnetic field is analyzed.
For any non-uniform magnetic field and any non-electromagnetic driving force, a high Hartmann
number asymptotic analysis is developed using curvilinear coordinates based on the magnetic field.
This analysis yields the structure of the electric current density and velocity fields. In a second step,
orthogonal planar symmetries lead to a significant simplification of the asymptotic structure,
depending on the nature of the symmetry. The asymptotic solution is applied to some configurations,
some of them corresponding to crystal growth from a melt. In the case of electrically insulating
boundaries, the nature of the symmetry is found to govern the magnitude and structure of the
damped velocity. ©1996 American Institute of Physics.@S1070-6631~96!02207-6#

I. INTRODUCTION

In many problems, especially in crystal growth from a
melt, the knowledge of the velocity field is needed, e.g., to
investigate the segregation of species in the resulting solid
phase. For instance, Hurle1 showed how an unsteady convec-
tion could be stabilized when a magnetic field is applied: this
is of great interest for the elimination of striations.2,3 But
even a steady convection produces radial and longitudinal
segregations.4 Some of these steady movements were studied
with or without a magnetic field in crystal growth
configurations.5–7 Outside the field of crystal growth, many
other problems also require a good understanding of MHD
convection. Convection in the tokamak blanket8 is such a
problem. The fusion energy must be carried away by a
lithium or lithium-lead flow. The amount of energy required
for the pumping and the efficiency of the heat transfer are
still open questions. Another potential application consists in
the determination of diffusion coefficients~thermal, solute or
crossed! in electrically conducting fluids. In general, these
measurements can easily be disturbed by unavoidable fluid
movements. The use of a magnetic field, with its damping
effect on convection, could help to get precise diffusion data.

Our purpose in this paper is to carry out an original
asymptotic analysis adapted to flows of electrically conduct-
ing fluids under a strong, possibly non-uniform, steady mag-
netic field. An arbitrary known body force is included in our
formulation, the only requirement being that it should not
depend on the fluid velocity. This force need not be specified
until applications are considered: for instance, it may be ther-
mal buoyancy in the case of crystal growth configurations.

In section II, the governing equations are written under
two main simplifying assumptions. One is quite classic for
MHD at the laboratory scale and consists in assuming that

the magnetic Reynolds number is small enough to neglect
the perturbation of the applied magnetic field due to the fluid
flow. The other, which assumes that inertia is negligible,
limits the scope of this work either to weak driving forces,
large interaction parameter or fully-established rectilinear
flows. In addition, in section III, the magnetic field is as-
sumed to be strong enough to justify an asymptotic analysis,
valid for large Hartmann numbers; the flow is considered as
the sum of a core flow~inviscid! and some boundary layer
flows ~viscid!, each obeying a particular structure. The struc-
ture of the core flow, which is derived from an integration
along the magnetic field lines, is expressed in a curvilinear
system of coordinates such that one of them~x1! is constant
on the iso-potential surfaces of the curl-free magnetic field
and the others~x2 andx3! are constant on the magnetic flux
lines. This asymptotic study essentially differs from Kulik-
ovskii’s approach9 by the fact that the flow may be driven by
any kind of body force.

After the asymptotic analysis is completed, the initial
three-dimensional problem is changed to a two-dimensional
one. Nevertheless, it may still be very difficult to get the
asymptotic solution, and we show in section IV that certain
symmetries can significantly simplify the problem. Two
kinds of orthogonal planar symmetries are examined. In both
cases, the symmetry leads to simplifications in the structure
of the asymptotic solution obtained in section III. The sim-
plification is more important for one symmetry which we call
‘‘singular’’. In section V, the asymptotic solution is derived
for some flows in crystal growth configurations and for some
other convective flows with magnetic fields. Asymptotic so-
lutions are also derived in the case of a ‘‘regular’’ symmetry.
Finally, in section VI the role of the symmetries is high-
lighted and the scope of the asymptotic theory is discussed.
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II. MATHEMATICAL MODEL

A cavity V containing an electrically conducting fluid is
placed in a region of a steady magnetic field. The magnetic
field, which is curl-free and divergence-free in the cavity, is
generated by an external device~a coil or a permanent mag-
net! and may be non-uniform. The fluid motion results from
boundary conditions and non-electromagnetic body forces.
The electromagnetic body force is separated from other body
forces. In addition to the classical MHD assumptions, the
following hypotheses are assumed to hold:
• the magnetic field is not disturbed by the motion of the

fluid;
• inertia is negligible;
• non-electromagnetic body forcesf̃ are known in the

whole cavity and are independent of the velocity field;
• the physical properties of the fluid are uniform.
The motion of the fluid is modelled with four equations:

the conservation of mass, electric charge and momentum,
along with Ohm’s law. Using a typical length scaleH of the
cavity, a typical magnitudeB0 of the magnetic flux density,
the kinematic viscosityn, the electric conductivitys and the
mass densityr, non-dimensional variables are defined:
x5x̃/H, B5B̃/B0, f5f̃H3/n2, u5ũH/n, j5j̃H/nsB0 , p
5p̃ H2/rn2 andw5w̃/nB0. The symbols with a tilde,x̃, B̃, f̃,
ũ, j̃ , p̃ and w̃ denote the dimensional spatial coordinates,
magnetic field, non-electromagnetic body force, velocity
field, electric current density field, pressure field and electric
potential field. The governing equations take the non-
dimensional form

div u50, ~1!

div j50, ~2!

2“p1f1Ha2j`B1Du50, ~3!

j1“w2u`B50, ~4!

where the Hartmann number,Ha 5 As/rnB0H, is the single
non-dimensional parameter in the problem. The required
boundary conditions are associated with each particular
problem. A weak formulation and the Lax-Milgram theorem
then prove the existence and uniqueness of the solution for
such a linear problem.

Equations~1!, ~2!, ~3! and ~4! are expressed in a vecto-
rial framework. The expression of velocity, electric current
density and magnetic field in terms of vector fields is not the
only one possible. They may equivalently be considered as
differential forms~the differential forms are the antisymmet-
ric tensors! in the framework of differential geometry~see
Westenholtz10 for the use of differential forms!. This ap-
proach will be adopted here for two reasons. First, from a
theoretical point of view, differential geometry provides a
clearer and more general tool than vectorial analysis. Differ-
ential properties~mainly the exterior derivationd! are clearly
distinguished from the metric properties~the metric tensorg
and the Hodge star operator!!. This is not the case in clas-
sical notations where the operators div, curl,“ and D all
involve both differentiability and distance. The other reason
is a practical one: we shall make use, in this paper, of non-
orthogonal coordinate systems for which expressions of the

classical operators~div, curl, D andD! are not easily avail-
able, whereas in the field of differential geometry, intrinsic
definitions allow one to express the operators in any system.

In the following, a field as a vector or as a differential
form, will be denoted by the same symbol, except for the
component indices that will take their conventional position.
If u, j , B andf are considered as differential forms of degree
one, equations~1!, ~2!, ~3! and ~4! now take the form

d!u50, ~5!

d! j50, ~6!

2dp1f1Ha2!~ j`B!1~!d!d!u50, ~7!

j1dw2!~u`B!50. ~8!

III. ASYMPTOTIC ANALYSIS

In this section, we concentrate on the asymptotic limit of
high Hartmann numbers. WhenHa@1, equation~3! or ~7!
indicates that the electromagnetic body force is large com-
pared to the viscous forces, which can be neglected in the
main part of the cavity, called the core region. Later, we shall
consider thin boundary layers or free shear layers for which
viscous terms may be comparable to the electromagnetic
body force.

A. The core solution structure

Before treating the general case of a non-uniform mag-
netic field, we consider a uniform field because the algebra is
easier while the basic ideas are the same. The curl of equa-
tion ~3! ~without the viscous term! is

curl f1Ha2~B.“ !j50, ~9!

because curl~j`B!5~B.“!j2~j .“!B2~div j !B1~div B!j re-
duces to~B.“!j considering~2! and the uniformity ofB.
Choosing the dimensional scale of referenceB0 as equal to
the magnitude of the uniform magnetic field, the non-
dimensionalB is simply a unit vector field. We choose a
Cartesian coordinate system (x1,x2,x3) such thatB5“x1.
Now, equation~9! gives the variation ofj with the x1 coor-
dinate in terms of the known curlf. By integrating~9! j has
the form

j5 j02Ha22E
0

x1

curl f dx81, ~10!

wherej0 is a vector field which is independent ofx
1. The curl

of equation~4! has exactly the same form as equation~9!,

curl j2~B.“ !u50.

It leads to an expression foru, similar to ~10!,

u5u01E
0

x1

curl j dx81,

5u01x1curl j0

2Ha22E
0

x1

curlS E
0

x81
curl f dx91D dx81,

~11!

whereu0 is a vector field which is independent ofx1.
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Conservation of mass~1! and electric charge~2! give
equations governingj0 andu0. With the solutions~10! and
~11!, these constraints are

div j05Ha22~curl f!~x150!

1 , ~12!

div u052~curl j0!
1. ~13!

For a uniform magnetic field, the asymptotic core structure is
thus defined by equations~10! and ~11! with the conditions
~12! and ~13!.

An analogous analysis can be performed for any arbi-
trary non-uniform magnetic field. It is useful to consider a
curvilinear system of coordinates based on the magnetic field
lines. In the cavity, the curl-free magnetic field may be writ-
ten as the gradient of a scalar functionx1 ~see Kulikovskii11!.
In an equivalent formulation, we write the differential form
B as the differential ofx1: B5dx1. Moreover, it is possible to
find two other scalar functionsx2 andx3 such that the metric
tensor,g, in the (x1,x2,x3) system of curvilinear coordinates,
can be expressed as

g5F g11 0 0

0 g22 g23

0 g32 g33
G . ~14!

This is the simplest metric that can be chosen in general.11

Wedenoteh 5 Adetgdx1`dx2`dx3, thevolumeRiemannian
3-form of the physical space. Furthermore, the magnetic field
must satisfy the Maxwellian condition of zero divergence. In
the context of differential geometry, the divergence is de-
fined by the relationd!B5~div B!h. In the coordinates
(x1,x2,x3),

d!B5
]

]x1 SAdetgg11
D dx1`dx2`dx3. ~15!

The quantityAdetg/g11 is thus invariant along magnetic field
lines. For a non-uniform magnetic field, the curl of equation
~3! does not lead to~9! since~j .“!B is not zero. Neverthe-
less, the solution is very similar with a few added terms due
to the non-uniform field. Recalling thatf, j andB are differ-
ential forms of degree one, we take the exterior derivative of
~7!, without the viscous term,

df1Ha2d!~ j`B!50, ~16!

and express itsdx1`dx2 anddx3`dx1 components relative
to (x1,x2,x3),

]

]x1 SAdetgg11
j 3D 52Ha22~d f !12,

]

]x1 SAdetgg11
j 2D 52Ha22~d f !31.

@The components of a vector field~or a differential form!
are denoted by the same symbol as the vector field itself, in
italics instead of boldface.# Integration of these equations
and the invariance ofAdetg/g11 along magnetic lines lead to

j 35 j 0
32Ha22

g11

Adetg
E
0

x1

~d f !12dx8
1, ~17a!

j 25 j 0
22Ha22

g11

Adetg
E
0

x1

~d f !31dx8
1, ~17b!

where j 0
3 and j 0

2 are components ofj at x150. The last com-
ponent ofj is derived from equation~6!,

d! j5F]~Adetg j1!
]x1

1
]~Adetg j2!

]x2
1

]~Adetg j3!
]x3 Gdx1

`dx2`dx350,

so that

j 15 j 012
g11

Adetg
E
0

x1 ]

]x2
~Adetg j2!

1
]

]x3
~Adetg j3!dx81. ~17c!

The exterior derivative of~8! is similar to~16!, andu is also
divergence-free. Therefore, the structure ofu parallels that of
j :

u35u0
31

g11

Adetg
E
0

x1

~d j !12dx8
1, ~18a!

u25u0
21

g11

Adetg
E
0

x1

~d j !31dx8
1, ~18b!

u15u012
g11

Adetg
E
0

x1 ]

]x2
~Adetgu2!

1
]

]x3
~Adetgu3!dx81. ~18c!

The fieldsu0
2, u0

3, u01, j 0
2, j 0

3 and j 01 are independent ofx1

and are also submitted to constraints, namely thedx2`dx3

component of~16! and of the exterior derivative of~8!:

]

]x3 SAdetgg11
j 0
3D 1

]

]x2 SAdetgg11
j 0
2D

5Ha22~d f !23~x150!
, ~19!

]

]x3 SAdetgg11
u0
3D 1

]

]x2 SAdetgg11
u0
2D 52~d j !23~x150!

. ~20!

The core structure for any non-uniform magnetic field is de-
fined, in the (x1,x2,x3) coordinates, by equations~17! and
~18! under the constraints~19! and~20!. The formulas reduce
to the previous ones for a uniform magnetic field. For either
a uniform or a non-uniform magnetic field, the boundary
conditions can not yet be considered with the hope to deter-
mine the unknown fieldsj0 andu0. The reason is that these
boundary conditions are changed through thin boundary lay-
ers ~see sections III B and III C!. The general method is the
following. An equivalent structure to that for the core re-
gions has to be found for the boundary layers. Afterwards,
the true boundary conditions have to be applied to the global
structure of the solution, consisting in the matched structures
of the cores and that of the boundary layers. A simultaneous
solution has finally to be found forj0, u0 ~in each core re-
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gion! and the unknown fields related to the boundary layers.
This nice program will be completed only in the presence of
some symmetry or in particular cases with the help of the
characteristic surfaces~see section IV!.

B. Hartmann layers

Near each boundary, the velocity gradients increase so
that the viscous term in equation~3! becomes comparable to
the electromagnetic body force term. In each boundary layer,
the solution can be considered as the sum of the neighbour-
ing core solution and a solution which is governed by the
homogeneous~f50! version of equations~1!, ~2!, ~3! and~4!
and which vanishes far from the boundary. The matching is
simply a sum, thanks to the linear behavior of the solution
with respect tof. The magnetic field being almost uniform at
the layer thickness scale, the curl of the homogeneous mo-
mentum equation and of Ohm’s law can be combined to get
the following equations:

2Ha2~B.“ !2j1D2j50, ~21!

2Ha2~B.“ !2u1D2u50. ~22!

When the normal unit vectorn ~directed toward the fluid! of
the boundary and the magnetic field are not parallel, an ana-
lytical solution can be derived for the system~21! and ~22!,
the so-called Hartmann layer solution. The thickness of these
Hartmann layers is found to scale asHa21, in the asymptotic
limit of high magnetic field: the magnetic field can indeed be
assumed uniform at this scale. In the analysis, spatial deriva-
tives alongn are considered as very important compared to
that along other directions. Let us limit ourselves to the pro-
jection of~21! and~22! on the plane tangent to the Hartmann
boundary. The derivative operator~B.“! is estimated as
~B.n!~n.“! and the projections of equations~21! and ~22!
admit the simplified form

2Ha2uB.nu2
]2j t
]n2

1
]4j t
]n4

50,

2Ha2uB.nu2
]2ut
]n2

1
]4ut
]n4

50.

The tangential part of the solution is therefore

j t5 j he
2HauB.nun, ~23!

ut5uhe
2HauB.nun, ~24!

where j h anduh are two tangential vector fields defined on
the Hartmann boundary: they are vector fields on the]V
manifold. It is well known~see for instance Moreau12! that
Ohm’s law implies a characteristic relation linkingj h anduh .
Since the normal componentsun and j n are very small, the
curl of equation~4! leads to:

n` j h5~B.n!uh. ~25!

One should not derive similar exponential-like functions for
j n andun, the normal components ofj andu, which para-
doxically seem to obey the same equations~21! and ~22!.
The equations for the normal components involve non-
negligible derivatives of the tangential components, and
these derivatives lead to terms involving the gradient of the

magnetic field along the surface and involving the boundary
curvature. The normal components are obtained by direct
integration of~1! and~2! using the expressions~23! and~24!.
The divergence of the electric current density and that of the
velocity field are

div j5
] j n

]n
1div@ j he

2HauB.nun#,

div u5
]un

]n
1div@uhe

2HauB.nun#.

The integration of these equations betweenn and1` yields
the expression forj n andun, taking into account the condi-
tion that the deviation fields vanish far from the boundary:

j n5SHa21 div]VS j h
uB.nu D2n

j h.“]VuB.nu
uB.nu De2HauB.nun,

~26!

un5SHa21 div]VS uh
uB.nu D2n

uh.“]VuB.nu
uB.nu De2HauB.nun.

~27!

The symbols div]V and“]V denote the divergence and gra-
dient operators defined on the]V submanifold. The value of
~26!, at n50, is the same as the conservation of electricity
given by Holroydet al.13 The term“]VuB.nu is not zero for
non-uniform magnetic fields or for curved boundaries, so
that equations~26! and~27! each involve a combination of a
constant and of a linear term times the basic exponential
function.

C. Parallel layers

When the normal to the layer is orthogonal to the mag-
netic field, the boundary layer equations involve derivatives
along bothn and B. These parallel layers are much more
difficult to handle. The literature contains solutions for sev-
eral particular cases~Hunt,14 Alty,15 Petrykowski and
Walker16!, but a general solution is not available to our
knowledge. In this paper, we do not treat any parallel layer.
These layers have a typical thickness ofHa21/2, and either
develop along walls which are parallel to the magnetic field
or develop as free-shear layers between two core regions:
any discontinuity on the boundary may generate an interior
layer through the cavity. While these layers may carry a
significant fraction of the total flow or electric current, they
are sometimes passive~e.g., in section IV A! and produce no
perturbation of the core flow, whereas the core solution can
not be determined in many cases without matching the Hart-
mann layer solutions, exception made of the very special
symmetry described in section IV A.

D. Characteristic surfaces

It has been stated in the past that flow streamlines and
electrical current lines must often lie on certain characteristic
surfaces.13,17,18 In a cavity V, these characteristic surfaces
are defined as the union of the magnetic linesA having the
same value for*Ads/iBi, wheres is the distance along each
magnetic field line and the integration is performed only on
the connected part of the field line insideV ~see Fig. 1!. The

2218 Phys. Fluids, Vol. 8, No. 8, August 1996 Alboussière, Garandet, and Moreau



assumptions and proofs in the previous work are based on an
analogy with the Kelvin-Helmholtz theorem and the induc-
tion equation while our purpose is to reexamine this concept
with more physical arguments, somehow related to Kulik-
ovskii’s proof.11 First we prove the following general theo-
rem, which defines the exact conditions for the relevance of
the characteristic surfaces, and then we discuss the applica-
tion to MHD problems.

Theorem 1: Let us consider a fluid physical domainV
such that the length of each part of each magnetic field lines
contained inV remains finite. We denotea a divergence-free
vector field inV, such that
• curl ~a`B!50 in V;
• a.n50 on ]V;

then, everywhere inV, a is tangent to the characteristic
surfaces.

Proof: The fielda is seen to satisfy the same equation as
j in the core flow~16! whendf50. So its structure can be
deduced from~17!:

a35a0
3, ~28a!

a25a0
2, ~28b!

a15a012
g11

Adetg
E
0

x1 ]

]x2
~Adetga02!

1
]

]x3
~Adetga03!dx81, ~28c!

wherea0 does not depend on thex1 coordinate in the same
metric ~14! as previously defined. On each connected part of
a magnetic field line inV, the two ends can be defined by the
relationsx15x1(x2,x3) and x15x2(x2,x3), with x2,x1.

On the boundary defined byx1, the condition of vanishing
normal component,d(x12x1).a50, can be rewritten using
~28!,

Adetg
g11

a012
]

]x2 E0x
1

Adetga02dx1

2
]

]x3 E0x
1

Adetga03dx150. ~29!

The same relation holds forx2 and equation~15! states that
Adetg/g11 does not vary along a magnetic line. Subtracting
the relation forx2 to that forx1, ~29! yields

]

]x2 Ex2

x1

Adetga02dx11
]

]x3 Ex2

x1

Adetga03dx150. ~30!

By analogy with~19!, a satisfies

]

]x2 SAdetgg11
a0
2D 1

]

]x3 SAdetgg11
a0
3D 50. ~31!

Since Adetg/g11 is independent ofx1, equations~30! and
~31! give

dS E
x2

x1

g11dx
1D .a50. ~32!

Since the norm ofB is 1/Ag11, s 5 x1Ag11 is the distance
along a magnetic field line. The change of variable yields

*x2
x1

g11dx
1 5 *s2

s1

ds/iBi . Equation~32! exactly means thata,
if considered as a vector field, is tangent to the surfaces
composed of magnetic lines with the same value for

*s2
s1

ds/iBi . h

Second proof:For a uniform magnetic field, there is a
simpler and more visual proof. Under our assumptions,
curl~a`B! is equal to~B.“!a. The vector fielda is thus in-
variant along a magnetic line and must also be tangent to
both boundaries crossed by the magnetic line. So, the direc-
tion of a is given as the intersection of both tangent plane
surfaces~see figure 1!. In this direction, the length of the part
of the magnetic line intercepted by the fluid domain obvi-
ously does not vary, which proves the theorem for uniform
magnetic fields. h

In MHD, the characteristic surfaces are important when
eitheru or j in the core satisfies the conditions fora, so that
u or j must be tangent to the surfaces, i.e., the flow or electric
current must follow these surfaces. For a curl-free non-
electromagnetic body force, the condition curl~j`B!50 is
fulfilled, but the assumption of electrically insulating walls is
not enough to state that the conditionj .n50 holds on]V for
the core solution. A significant electric current may develop
within the Hartmann layer so that there may be a significant
electric current between the core and the Hartmann layer. For
the velocity field, curl~u`B! is only 0 when the electric cur-
rent density is very small compared to the velocity. If the
no-slip condition is available, then the non-permeable wall
condition is still correct for the core since the normal veloc-
ity in the Hartmann layers is very small@see equation~27!#.

Thereforeu or j are only tangent to the characteristic
surfaces under certain special conditions, which will be ex-
plored further in section IV.

FIG. 1. Characteristic surface under a uniform magnetic field.
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IV. SYMMETRY

It is in principle always fruitful to identify a symmetry in
a given problem, since this allows one to consider only half
a cavity. In addition, a symmetry can provide much valuable
simplification when associated to the asymptotic structure of
MHD flows. Here, we concentrate on orthogonal symmetries
with respect to a plane surface.

A. Singular symmetry

Before describing the symmetry that we call singular,
some definitions are needed. Let us consider a plane surface
P and two pointsP and P8 symmetric with respect toP .
The anti-mirror operatorAM is defined for a scalar function
f and a vector fieldv as
• AM( f )(P)52 f (P8);
• AM~v!i(P)52vi~P8! andAM~v!'(P)51v'~P8!.

The subscriptsi and' , respectively, denote the parallel and
orthogonal parts of a vector relative toP . In the following
we say that an anti-mirror scalar functionf satisfiesAM( f )
5 f , and that an anti-mirror vector fieldv satisfiesAM~v!5v
~see Fig. 2!. For the class of problems governed by equations
~1! to ~4!; the occurrence of an anti-mirror solution is related
to the following theorem.

Theorem 2: If ~u, j , p, w! is the unique solution of the
equations (1), (2), (3) and (4) in a cavityV, and if
• there exists a plane surfaceP such thatV is orthogo-

nally symmetric with respect toP ;
• B, f and the boundary conditions are invariant under the

AM operator relative toP ;

then, u, j , p andw are all anti-mirror in the whole cavity.
Proof: The uniqueness of the~u, j , p, w! solution is

proved by the Lax-Milgram theorem for linear differential
equations with adequate boundary conditions. However, the
set@AM~u!, AM~j !, AM(p), AM~w!# also satisfies equations
~1! to ~4!. This is due to the commutative property of theAM
operator with the gradient, divergence, curl and Laplacian
operators, as well as its distributivity with respect to the
cross product: indeed, for any given scalar functionf and
vector fieldsv andw, it can be simply proved thatAM(“ f )
5“(AM( f )), AM~div v!5div~AM~v!!, AM~curl v!
5curl~AM~v!!, AM~Dv!5D~AM~v!! and AM~v`w!
5AM~v!`AM~w!. As the boundary conditions are assumed
AM invariant, the transformation of the solution byAM is a

solution and must by uniqueness be equal to the original
solution. It is interesting to notice that the inertial term
‘‘ ~u.“!u’’, neglected in our analysis, does not satisfy this
anti-mirror property. h

When this theorem can be applied, we propose to call
the problem ‘‘singularly symmetric’’. This result is true for
any value ofHa. Nevertheless, its application becomes es-
pecially fruitful when the large Hartmann-number asymp-
totic analysis can be applied, since the core solution must
have the same symmetry. An important consequence of theo-
rem 2 is that bothj andu have zero tangential components in
the symmetry planeP , where B is perpendicular. This
greatly simplifies the core structure~17! and ~18! since, if
x150 was chosen onP , the four componentsj 0

2, j 0
3, u0

2 and
u0
3 vanish. The core solution is only defined in terms ofj 01
andu01 which depend onx2 andx3. Now, the complete as-
ymptotic solution for the flow which is the sum of the core
flow and Hartmann layers only depends onj 01, u01, and both
components ofuh on the boundary defined byx1 since the
other boundary is symmetric, and sincej h is related touh.

A very interesting characteristic of the present singularly
symmetric problems is that, in the derivation of the core
solution, the Hartmann layers play a passive role. Let us
assume that, at the wall, the velocity field vanishes. The con-
dition of zero tangential velocity on the walls implies thatuh
is of the same order of magnitude as the core velocity and
thus the normal component in the Hartmann solution~27! is
negligible. Therefore, the non-permeable boundary condition
also applies for the core solution. By equation~18c!, u01 has
the same order of magnitude as the two other velocity com-
ponents and it can be deduced, using~18a! and ~18b! with
u0
25u0

350, that the core velocity is of the same order of
magnitude as the core electric current density. The surface
fields j h and uh are also of this same magnitude order,uh
because it cancels the core velocity at the wall andj h because
it is linked to uh by the relation~25!. In this special case of
singular symmetry, because there is no significant mass or
electric current flux within the Hartmann layers, the core
solution can be derived separately.

The core solution is not yet complete, sincej 01 andu01
are undetermined. The information necessary to complete the
solution comes from the nature of the electrical connection
between the fluid and the exterior. In the following, we limit
ourselves to the two simplest~and opposite! electrical
boundary conditions: perfectly insulating walls or perfectly
conducting walls~more precisely, with a uniform electric
potential on the boundary!.

1. Insulating walls

Using the same argument as that for the velocity, it is
straightforward to deduce from equation~26! that the normal
electric current component within the Hartmann layer is neg-
ligible compared to the core electric current density. There-
fore, the normal component of the core current density must
vanish at the wall. After some transformation, this condition
for the core current density,d(x12x1).j50 at the walls,
takes the form

FIG. 2. Anti-mirror and mirror properties.
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2
Adetg
g11

j 012
]

]x2 F E
0

x1

g11E
0

x1 ~d f !31
Ha2

dx81dx1G
2

]

]x3 F E
0

x1

g11E
0

x1 ~d f !12
Ha2

dx81dx1G50. ~33!

This equation determinesj 01 since the non-electromagnetic
force field f is known. The core electric current density is
now completely determined. We have pointed out that the
conditiond(x12x1).u50 also holds for the core velocity, so
that

2
Adetg
g11

u011
]

]x2 F E
0

x1

g11E
0

x1

~d j !31dx8
1dx1G

1
]

]x3 F E
0

x1

g11E
0

x1

~d j !12dx8
1dx1G50. ~34!

This equation determinesu01. Both components ofuh may
now be determined using the no-slip condition.

2. Conducting walls

Let us now assume a uniform electric potential at the
wall, corresponding to a perfectly conducting~connected!
wall: by singular symmetry, this wall potential must be zero.
There is no electric potential jump through the Hartmann
layer ~because there is no significant mass flux! and the core
potential is the same onP and at the walls. The integration
of the core currentj along a magnetic line betweenP and the
wall (x15x1) can be written as

E
A

j5E
0

x1

j 1dx
15E

A

2dw1!~u`B!50.

Using the structure ofj 1 ~17c! for a singular symmetry,j 01 is
given by

j 01x
15

g11

Adetg
E
0

x1E
0

x1 ]

]x2
~Adetg j2!

1
]

]x3
~Adetg j3!dx81dx1. ~35!

Then, as for the previous case, the core velocity is deter-
mined by the non-permeable condition at the boundary~34!.

For singular symmetry, for either insulated or perfectly
conducting walls, the electric current density and the velocity
are of the same magnitude order, namelyf/Ha2. The relation
curl~u`B!50 is far from being satisfied and thus, the char-
acteristic surfaces are not relevant. Two applications will be
studied in section V which have a singular symmetry. The
solution along each magnetic field line is determined by con-
ditions at the symmetry plane and wall, and is entirely inde-
pendent of the solution along other magentic field lines.
Thus, the local flow is independent of the flow at a distance,
provided that the singular symmetry holds everywhere. As a
consequence, the parallel layers do not affect the core flow.

B. Regular symmetry

Some flows have a different symmetry, with respect to a
planeP , which we call a regular symmetry. The mirror op-
eratorM with respect to the planar surfaceP is needed to
define this symmetry. With the same convention we define
• M ( f )(P)51 f (P8);
• M ~v!i(P)51vi~P8! andM ~v!'(P)52v'~P8!.

A mirror scalar functionf or a mirror vector fieldv is invari-
ant under the mirrorM operator~see figure 2!. An analogous
result as theorem 2 is derived for a regular symmetry.

Theorem 3: If ~u, j , p, w! is the unique solution for
equations (1), (2), (3) and (4) in a cavityV and if
• there exists a plane surfaceP such thatV is orthogo-

nally symmetric with respect toP ;
• B is invariant under the AM operator;
• f and the boundary conditions are invariant under the

mirror M operator;

then, u, j , p andw are all mirror in the whole cavity.
The only difference between the proof and that for theo-

rem 2 is thatM ~v`w!5M ~v!`AM~w! for vector fieldsv
andw. Contrary to the case of singular symmetry, it is inter-
esting to notice that the inertial term ‘‘~u.“!u’’ would satisfy
this mirror property. When the conditions of theorem 3 are
satisfied, we have a regular symmetry. A consequence of the
theorem is that the normal component ofj andu are zero on
P . When combined with an asymptotic core structure~17!
and ~18!, this condition yieldsj 0150 andu0150. There is
less simplification than for a singular symmetry since four
unknown core functionsj 0

2, j 0
3, u0

2 andu0
3, and both compo-

nents ofuh still have to be determined with equations~19!
and ~20!, and with the boundary conditions.

We shall concentrate on electrically insulating bound-
aries for a bounded cavityV. Thus, the characteristic sur-
faces close on themselves: they form rings.11 We shall later
see that the velocity streamlines lie on these characteristic
surfaces. In this special case, the asymptotic solution can be
derived by general formulas. By integrating the velocity and
electric current density along magnetic lines, we first derive
expressions for the mass and electrical transfers~Q andI ! as
functions ofx2 andx3:

!Q5E
A

!u, ~36!

!I5E
A

! j1
! j h1

HauB.nu
1

! j h2

HauB.nu
, ~37!

whereA is the portion of a magnetic line contained inV.
The last two terms in~37! are the electrical flux in the upper
and lower Hartmann layer: the~HauB.nu!21 factor is the
thickness deduced from~23!. The corresponding terms for
~36! are negligible due to the no-slip condition of the veloc-
ity field. Thanks to the regular symmetry, the last two terms
of ~37! are equal and the relation~25! can also be written as
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!j h5uB.nuuh , while uh is related to the core velocity with the
no-slip condition:

uh21u21u1
]x1

]x2
50, ~38a!

uh31u31u1
]x1

]x3
50. ~38b!

The relations~36! and ~37! can be expressed using the core
structure of the velocity and electric current density fields:

~!Q!2dx
21~!Q!3dx

35F2u0
3
Adetg
g11

E
x2

x1

g11dx
12E

x2

x1

g11E
0

x1

~d j !12dx8
1dx1Gdx21Fu02 Adetg

g11
E
x2

x1

g11dx
1

1E
x2

x1

g11E
0

x1

~d j !31dx8
1dx1Gdx3, ~39!

~!I !2dx
21~!I !3dx

35F2 j 0
3
Adetg
g11

E
x2

x1

g11dx
11E

x2

x1

g11E
0

x1 ~d f !12
Ha2

dx81dx112
uh2
HaGdx21F j 02 Adetg

g11
E
x2

x1

g11dx
1

2E
x2

x1

g11E
0

x1 ~d f !31
Ha2

dx81dx112
uh3
HaGdx3. ~40!

For electrically insulating walls,Q and I have a zero component through the line boundary of the 2D surface obtained by
‘‘compressing’’V along magnetic lines. MoreoverQ andI are divergence-free. In order to simplify the notations, we perform

a change of variable by choosingx2 5 *x2
x1

g11dx
1 ~this new coordinatex2 is independent of the initial choice ofx2 andx3 and

its isovalues are the characteristic surfaces; furthermore, it is orthogonal tox1: g1250!. The divergence-free condition forQ
and I can be written, using~19! and ~20!, as

x2~2d j23ux150!1u0
2
Adetg
g11

1
]

]x3 F E
x2

x1

g11E
0

x1

~d j !12dx8
1dx1G1

]

]x2 F E
x2

x1

g11E
0

x1

~d j !31dx8
1dx1G50, ~41!

x2S d f23ux150

Ha2 D 1 j 0
2
Adetg
g11

2
]

]x3 F E
x2

x1

g11E
0

x1 ~d f !12
Ha2

dx81dx1G2
]

]x2 F E
x2

x1

g11E
0

x1 ~d f !31
Ha2

dx81dx1G
12Ha21duh2350. ~42!

It is useful to consider the total amount of the electrical flux across a characteristic surface (x25cst) which is zero since it
forms a ring. We integrate~40! alongG, a closed line in (x2,x3) corresponding to a characteristic surface:

x2 R
G
F j 02 Adetg

g11
G2 R

G
F E

x2

x1

g11E
0

x1 ~d f !31
Ha2

dx81dx1G12Ha21 R
G
uh350. ~43!

Equation~42! gives j 0
2 in terms ofduh . After substitution,~43! becomes an ordinary differential equation governingrGuh3:

2~x2!2 R
G
Fd f23ux150

Ha2 G1x2
d

dx2 R
G
F E

x2

x1

g11E
0

x1 ~d f !31
Ha2

dx81dx1G22
x2

Ha

d

dx2 F R
G
uh3G

2 R
G
F E

x2

x1

g11E
0

x1 ~d f !31
Ha2

dx81dx1G1
2

Ha R
G
uh350. ~44!

The solution takes the form

R
G
uh352

1

2Ha R
G
F E

x

x1

2g11f 3dx
1G . ~45!

It is obvious thatrGuh3 is comparable todf/Ha while equa-
tion ~42! implies thatj 0

2;df/Ha2. Then~41! leads tou0
2; j 0

2

~as the characteristic surface is closed,j 0
3;u0

2 because there
is no global electric potential difference over one turn!. Sou0

3

must be of orderdf/Ha anduh , given by~38!, takes the form

uh25Fg231S ]x1

]x2 D S ]x1

]x3 Dg11Gu03,

uh35Fg331S ]x1

]x3 D
2

g11Gu03.
Moreover, equation~20! shows thatAdetg/g11u0

3 is indepen-
dent ofx3 ~to theHa21 order!. So, the main component of
the velocity,u0

3, is given by the relation
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u0
35

g11rGuh3

AdetgrG@@g331~]x1/]x3!2g11#g11/Adetg#
. ~46!

In applications, the velocity field, following the characteristic
surfaces, is determined by the key solution~45! and by sub-
stituting the result forrGuh3 in equation~46!.

Unlike the streamlines, the electric current lines do not
lie on the characteristic surfaces: the topological constraint of
a closed cavity~of finite extend! leads to closed characteris-
tic surfaces forming rings, thus precluding large electric po-
tential differences on each surface. This flow pattern is quite
different from that for duct flows with varying cross-section
or magnetic field intensity.13

The order of magnitude for the velocity is found to be
df/Ha in this case of regular symmetry. A similar~yet more
complicated! solution as~45! could be written for general
configurations, which are neither singularly nor regularly
symmetric: the functionsx1 andx2 would be different~not
just their sign! as well as the tangent fieldsj h1 and j h2 . It
appears that thedf/Ha2 order of magnitude for the velocity
can only be expected for singular configurations.

V. APPLICATIONS

In this section, we present some practical applications of
our analysis. First, the case of a pressure-driven flow in a
bend is considered; it is singularly symmetric and admits a
simple solution. Then, asymptotic solutions for three
buoyancy-driven flows are given: two are singularly sym-
metric, the other regularly.

A. A singular pressure-driven flow in a bend

A pipe is bended in a region of magnetic field as illus-
trated in the Fig. 3. The pipe as well as the magnetic lines are
symmetric with respect to the planeP . The flow is pressure-
driven: a pressure1P is assumed at the entrance and2P at
the outlet. First, let us show that this configuration is singu-
larly symmetric, i.e. that the requirements of theorem 2 are
fulfilled. The volume force is zero~gravity here only leads to
hydrostatic pressure! and can thus be considered anti-mirror
invariant. Concerning the boundary conditionsu50 and
j .n50 for electrically insulating walls~or j`n50 for per-
fectly conducting walls!, they also are anti-mirror invariant.

The pressure boundary condition is also invariant under the
anti-mirror operator. As the configuration is singular, the re-
sults derived in section IV A for insulating or perfectly con-
ducting walls apply in a region of connected magnetic lines
in the fluid ~the shaded regions in figure 3!. As f is zero, the
solution of equation~33! or ~35! is j 0150. The wall being
either insulating or perfectly conducting, there is no electric
current density in the bend region. Equation~34! then leads
to u0150. There is a zero velocity field in the bend. The
whole mass flux must flow within the interior layer~bold
dashed lines in figure 3!. A region of stagnant fluid exists,
which should be taken into account when heat or species
transfer are to be considered. A poor heat or species transfer,
only due to diffusion, is expected in such a configuration.
This result is true for any bend geometry and for any mag-
netic lines, provided the symmetry is maintained. Figure 3
illustrates two such configurations.

It is interesting to notice that Molokov and Bu¨hler19 have
found a non-zero velocity field in such regions under a uni-
form magnetic field, in the case of a finite electrical wall
conductivity: the electric current flow in the wall creates po-
tential gradients and precludes the derivation of a local solu-
tion. On the contrary, insulating walls prevent any current
flow and perfectly conducting walls, by impressing a uni-
form electric potential at the walls, prevent any electromo-
tive force within the fluid. Molokov and Bu¨hler used another
asymptotic approach based on pressure and electrical poten-
tial, combined with numerics. In the limiting case of large
wall conductivity they also predict that the velocity vanishes
in the bend, the mass flux being confined to the parallel
layers.

B. Two singular buoyancy-driven flows

We first consider the case of a buoyancy-driven flow
with a uniform magnetic field, since the algebra is simpler
than that for a non-uniform field. In the Boussinesq approxi-
mation, there is no mathematical contradiction between the
existing buoyant force due to mass density variations and our
assumption of uniform physical properties; indeed, the mass
density is assumed uniform and the buoyant force propor-
tional to the temperature. The dimensional force density is
expressed in the Boussinesq approximation,

f̃5rg@12b~T2T0!#,

whereb is the volumetric expansion coefficient of the fluid,
T the temperature field andT0 some temperature reference.
Since only the curl off̃ produces convection, we take equiva-
lently f̃52rbTg. In our dimensional scales defined in sec-
tion II, with a uniform thermal gradientT5Gx2 ~this coor-
dinatex2 is independent of the characteristic surfaces as seen
in Fig. 4!, this force density and its curl take the form

f5Grx2dx1,

df52Grdx1`dx2, ~47!

whereGr5bgGH4/n2 is the Grashoff number. The reader
can check that this configuration~figure 4! is singularly sym-

FIG. 3. Stagnant zone in a bend.
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metric. The analysis of section IV A can be applied; using
expression~47! for df, equations~33! and ~34! become for
the case of insulating walls

j 250,

j 351
Gr

Ha2
x1,

j 151
Gr

2Ha2
]x12

]x3
,

u25
Gr

Ha2
S 2x11

x1

2

]2x12

]~x3!2
D ,

u352
Gr

Ha2
x1

2

]2x12

]x3]x2
, ~48!

u15
Gr

Ha2
S 2

1

2

]x12

]x2
2
1

4

]x12

]x3
]2x12

]x3]x2

1
1

4

]x12

]x2
]2x12

]~x3!2
D .

The singular symmetry allows us to derive easily this three-
dimensional asymptotic solution. The velocity depends on
the shape of the cavity, defined by the functionx1, involving
its variations up to its second derivatives. The choice of this
shape may lead to very different flows, always of magnitude
orderdf/Ha2, provided the singular symmetry holds.

For perfectly conducting walls of uniform electric poten-
tial, equations~35! and ~34! lead to

j 250,

j 351
Gr

Ha2
x1,

j 150,

u252
Gr

Ha2
x1,

u350,

u152
Gr

2Ha2
]x12

]x2
. ~49!

In this case, the electric current density is seen to be inde-
pendent of the shape of the cavity and the velocity depends
only slightly on it, just in order to satisfy the non-
permeability condition.

Such results as~48! and ~49! can be applied in configu-
rations of Bridgman crystal growth: some particular cases of
these results can be found in Ref. 7. The velocity field can
then be used to study the species transfer governing solute
segregation in crystals.20

Let us now consider a quite similar case of buoyancy-
driven flow in the presence of a non-uniform magnetic field.
For the sake of algebraic simplicity, we assume here a cylin-
drical shape~Fig. 5! with an axial thermal gradient and mag-
netic lines lying in the cross-section plane:
B5~11ly!ez1lzey , defined in the (x,y,z) Cartesian coor-
dinate system. This magnetic field is a superposition of a
uniform vertical component and a linear field scaled by a
parameterl ~when l50, the magnetic field is purely uni-
form!. This field is clearly divergence-free and curl-free. A
look at figure 5 will convince the reader that the singular
symmetry holds. We first derive a coordinate system
(x1,x2,x3) adapted to the magnetic field such thatB5dx1

and the metric tensor in this orthogonal coordinate system,

H x15z1lyz,

x252y1
l

2
z22

l

2
y2,

x35x,

FIG. 4. A singular buoyancy-driven configuration.

FIG. 5. Non-uniform magnetic field and buoyancy.
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H g115
1

2 S S 122lx2D 21~lx1!2D 21/2

,

g225g11,
g3351.

Thendf must be expressed in the (x1,x2,x3) coordinate sys-
tem as well as the shape function~y21z250.25!. For insu-
lating boundaries, equation~33! must be solved, while equa-
tion ~34! leads to u0150. Then, u3, the single non-zero
velocity component, is obtained using equation~18a!. After
some tedious algebra~calculations of integrals!, we find

u3522
Gr

Ha2
x1F11

l2

2
24lx2G23/2

.

Expressed in the (x,y,z) system, the velocity can be written
as

ux522
Gr

Ha2
~z1lyz!F114ly1

l2

2
22l2z21

12l2y2G23/2

. ~50!

For small values ofl, a first order term takes the form
ux.22(Gr/Ha2)(z25lyz), previously found using an
analysis suitable for weakly non-uniform magnetic fields.21

Whenl is zero, we find:ux522(Gr/Ha2)z, which is also
the result of equation~48! when the shape is given byx1

5 A1/42y2 for a cylindrical circular cavity.

C. A regular buoyancy-driven flow

We consider a cavity with insulating boundaries: it is a
cylinder of lengthL, capped by two hemispheres~see Fig. 6!.
An axial thermal gradient normal to the gravity is imposed.
The uniform magnetic field is assumed to be orthogonal to
both gravity and thermal gradient. This configuration is regu-
larly symmetric with respect to the vertical plane of symme-
try orthogonal to the magnetic field. Characteristic surfaces
form closed rings~dashed lines in figure 6! and the analysis
developed in section IV B can be applied. In the cylindrical
part of the cavity, the only ‘‘free’’ coordinatex3, is chosen as
the axis linear coordinate (x35z), while an angular one is of
practical use at the ends~x35u!. The functions defining the
shape of the cylinder and the hemispheres are the same,

y(x2)5r (x2), and for a circular cross-section of diameter
unity: x2 5 A124y2. The general solution~45! allows us to
derive the explicit solution:

R
G
uh35

Gr

Ha S Ly1p
y2

2 D x2.
From equation~46!, the velocity magnitude can be ex-
pressed,

Ag33u035
Gr

Ha

L1p~y/2!

2L12py
x2y. ~51!

In the two limits of large or small lengthL, this solution is
written as

L→`Ag33u035
Gr

Ha

y

2
x2,

L→0Ag33u035
Gr

Ha

y

4
x2.

In the analysis, the symmetric shape in the plane (x1,x2) has
not yet been specified. One can substitute the circular equa-
tion, x2 5 A124y2, or any other, to fully describe the solu-
tion.

VI. CONCLUDING REMARKS

We have presented an original asymptotic analysis for
the flows of electrically conducting fluids under a strong and
possibly non-uniform magnetic field~see section III!. This
analysis is very general since it can handle any given driving
body force, denoted byf̃. When f̃50, the classical case of
pressure-driven flows can be analyzed. For example, the
classical Shercliff solution22 for the fully-established flow in
a circular duct in the presence of a strong uniform magnetic
field can be derived within this general theory. In natural
convection problems, the buoyant force can also be taken
into account for a small thermal Pe´clet number. Indeed, the
force densityf̃ must be known,a priori, which is the case if
the temperature field is not affected by convection~other-
wise, the force density depends on the solution for the veloc-
ity!. Other external forces than buoyancy can be treated
within our theoretical frame, e.g., the magnetic force with
f̃5~x/2m0!“B

2 wherex denotes the magnetic susceptibility
of the fluid andm0 the vacuum permeability: it is indepen-
dent of the velocity solution under our assumption of small
magnetic Reynolds number. As shown in the analysis, only
the curl of the body force can produce motion in a closed
cavity. So, the magnetic force leads to convection in the fluid
only if x is non-uniform. This occurs in a paramagnetic fluid
in a thermal gradient, since its magnetic susceptibility is pro-
portional to the inverse of the thermodynamic temperature.23

Our general asymptotic analysis is simplified for two
symmetries. It is found that the nature of symmetry, denoted
here by regular or singular, has as much effect as the elec-
trical conductivity of the walls on the characteristics of the
flow and on the magnitude of the velocity.

In singularly symmetric configurations, the simplifica-
tion leads to a local~i.e., in the vicinity of a magnetic line!
asymptotic solution. The non-dimensional velocity is propor-

FIG. 6. Buoyancy in a regular configuration.
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tional to Ha22, for any wall conductivity, and there is no
significant electric current flowing within the Hartmann lay-
ers.

In regularly symmetric configurations, the velocity is
proportional toHa22 for conducting walls and toHa21 for
insulating walls. Most of the classical pressure-driven duct
flows pertain to the regular symmetry, such as the Hartmann
flow. The asymptotic solution is generally difficult to derive;
a two-dimensional partial differential equation must be
solved. With insulating walls, there is a significant electric
current inside the Hartmann layers and the characteristic sur-
faces provide insights in the flow solution.

The terms ‘‘singular’’ and ‘‘regular’’ have been chosen
because general configurations~neither singular nor regular!
have the same characteristics as regular ones, since the regu-
lar contribution may beHa times larger than the singular
one. Besides, it can be inferred from Murphy’s law that the
combination of an easy singular problem and a difficult regu-
lar problem remains difficult. Nevertheless, singular configu-
rations are of great interest, because the mass transport may
be very desirable or undesirable.

Our analysis shows that the concepts of differential ge-
ometry can be a powerful mathematical tool in fluid mechan-
ics. In the asymptotic analysis, the choice ofx1 such that
B5dx1 and, in section IV B, the choice ofx25*ds/iBi are
both of the utmost importance. These curvilinear coordi-
nates, based on the magnetic field and on the geometry, have
been proved to be very useful. Differential geometry pro-
vides a very general framework.
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