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Abstract

We consider the e7ect of a constant magnetic $eld on buoyant #ows generated by temperature gradients. We
focus on the domain of weak magnetic $elds, i.e., small values of the Hartmann number Ha, for which general
scaling laws can be derived. Concerning the braking of these buoyant #ows, it was found to scale at small
Ha as even powers of Ha. Concerning the damping of the oscillations, it can be shown that the instability
characteristics, critical threshold expressed through the critical Grashof number Grc, critical eigenvector, and
critical pulsation also scale as even powers of Ha. In particular, this gives an initial MHD stabilization e7ect
at small Ha of the form Grc−Grc0 ∼ Ha2 where Grc0 is the critical Grashof number at Ha=0. These $ndings
have been illustrated by results obtained in the case of the #ow in an in$nite layer.
c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.

1. Introduction

Material processing technologies often involve a liquid phase where convective motions and thus
heat and mass transport must be controlled in order to improve the material quality (Hurle, 1966;
Pimputkar and Ostrach, 1981). When metallic materials are concerned, a magnetic $eld can be
used as it allows, through the Lorentz forces, both the braking of the #ow and the damping of the
instabilities. One of these material processing techniques is the Bridgman crystal growth where the
melt sample, pulled out of the furnace, progressively solidi$es, and where the convective motions
correspond to long convection loops. The action of the magnetic $eld on such convective #ows has
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been the subject of many studies. Among them, for buoyant #ows, we can cite experimental works
(Hurle et al., 1974; Okada and Ozoe, 1992; Juel et al., 1999; Davoust et al., 1999; Hof, 2001; Hof
et al., 2003), theoretical works (Alboussi(ere et al., 1993) and numerical works (Oreper and Szekely,
1983, 1984; Kim et al., 1988; Ozoe and Okada, 1989; BenHadid and Henry, 1996, 1997; BenHadid
et al., 1997; Touihri et al., 1999; Gelfgat and Bar-Yoseph, 2001; Kaddeche et al., 2003) which
concern di7erent con$gurations, either close to industrial processes or more academic. These studies
have generally shown the relative eLciency of the magnetic $eld on the #ow braking or on the #ow
stabilization. Very often, scaling laws were sought for these e7ects, principally for large magnetic
$eld, i.e., large values of the Hartmann number Ha. Classical asymptotic laws of decrease of the #ow
velocity V for large magnetic $eld have been obtained, typically, V ∼ Ha−2 and V ∼ Ha−1 laws,
depending on the con$guration of the cavity and on the part of the #ow considered, i.e., the #ow in
the core, in the Hartmann layers or in the parallel layers. Concerning the stabilization of #ows, the
laws principally give the increase of the thresholds where the instabilities are triggered. Asymptotic
laws as Grc ∼ Ha have been found in a simpli$ed in$nite layer model under horizontal magnetic
$eld (Kaddeche et al., 2003), but generally strong increase of the thresholds are observed over a
moderate range of Ha with $tted laws for Grc −Grc0 (where Grc0 is the critical Grashof number at
Ha=0) which scale as Ha2 or even as exp(Ha2=K) where K is a constant (Hof, 2001; Gelfgat and
Bar-Yoseph, 2001; Kaddeche et al., 2003). From all these studies, the obtention of universal laws
for the action of the magnetic $eld, particularly for the stabilization of the #ow, seems diLcult,
even at high Ha, as it depends on many factors as the con$guration of the cavity and the orientation
of the $eld. In this study, we show that for a weak magnetic $eld universal laws exist for the
decrease of the convective #ow as well as for the stabilization of the #ow, which scale as Ha2.
Despite its validity for small values of Ha, this result, which has never been clearly stated in the
literature, is interesting as most stability experiments on convective #ows have been performed with
moderate (even weak) magnetic $elds because of the good eLciency of the magnetic $eld to damp
oscillations and the diLculty to experimentally generate the high Grashof numbers which would
be necessary to destabilize #ows at high magnetic $elds (Hof, 2001). Moreover, this result sheds
new light on the Ha2 law found as initial stabilization under magnetic $eld in many experiments
(Hof, 2001). These $ndings will be illustrated by the results obtained in the case of an in$nite
layer submitted to a horizontal temperature gradient and subject to a magnetic $eld with di7erent
orientations.

2. Governing equations and scaling laws for the magnetic damping of the basic �ow

We consider a viscous electrically conducting #uid with a constant electric conductivity �e con-
tained in a cavity subject to a temperature gradient and submitted to an external constant magnetic
$eld B0. We assume the existence of a reference length L and of a reference temperature gradient
∇T̃ . The orthogonal reference axes are x, y, and z, z being in the vertical direction, with respective
unit vectors ex, ey, and ez. The #uid is assumed to be Newtonian with constant kinematic viscosity �
and thermal di7usivity �. According to the Boussinesq approximation, the #uid density is considered
as constant except in the buoyancy term where it is taken as temperature dependent according to
the law � = �0(1 − �(T̃ − T̃ 0)) where � is the thermal expansion coeLcient and T̃ 0 a reference
temperature.
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The magnetic $eld B is the sum of the applied magnetic $eld B0 and the induced $eld b such that
B = B0 + b. Since in most laboratory experiments the magnetic Reynolds number Rem = ��eṼ 0H ,
where � is the magnetic permeability and Ṽ 0 a characteristic velocity, is very small, the induced
magnetic $eld b is negligible. Considering L, L2=�, �=L, ∇T̃L and �|B0| as scale quantities for length,
time, velocity, temperature and induced electric potential, respectively, the dimensionless equations
are then:

∇ · V = 0; (1)

@V
@t

+ (V · ∇)V =−∇P +∇2V + Gr Tez + Ha2 J × eB0 ; (2)

@T
@t

+ (V · ∇T ) =
1
Pr

∇2T; (3)

where the dimensionless variables are the velocity vector V =Uex +V ey +W ez, the pressure P and
the temperature T , and eB0 is the unit vector in the direction of B0. The dimensionless parameters
are the Grashof number Gr = g�∇T̃L4=�2, the Prandtl number Pr = �=�, and the Hartmann number
Ha = |B0|L

√
�e=�0�.

In the equation of motion (2), the body force Ha2 J×eB0 is the Lorentz force due to the interaction
between the induced electric current density J and the applied magnetic $eld B0. The dimensionless
electric current density J is given by Ohm’s law for a moving #uid:

J =−∇� + V × eB0 ; (4)

where � is the dimensionless electric potential. This electric potential can be determined through the
continuity equation for the electric current density, ∇ · J = 0. Appropriate mechanical, thermal and
electric boundary conditions in agreement with the chosen con$guration have to be considered. In
such a situation, for not too large values of Gr, a steady #ow can be obtained. This steady #ow is a
solution of Eqs. (2) and (3) at steady state coupled with Eq. (4) and with the continuity constraints
for the two vector $elds V and J , i.e., ∇ · V = 0 and ∇ · J = 0.

In the limit of small Ha, the solution for V , J , P, �, and T can be expressed as a Taylor
expansion with respect to Ha. The expression for V is

V = V0 + HaV1 + Ha2V2 + Ha3V3 + O(Ha4); (5)

where V0, V1, V2, and V3 depend on Gr and Pr. Similar expansions are de$ned for J , P, �, and T .
Using such expansions, we can develop the steady system deduced from (2) to (3) at the di7erent
orders in Ha. At order 0, we have

(V0 · ∇)V0 =−∇P0 +∇2V0 + Gr T0ez;

(V0 · ∇T0) =
1
Pr

∇2T0:

This non-linear system together with Eq. (4), the two continuity equations and the boundary condi-
tions leads to the steady solution at Ha = 0 expressed by V0, J0, P0, �0, and T0. At higher orders,
linear systems are obtained. At order 1, we get a homogeneous linear system for V1, J1, P1, �1, and



290 T. Alboussi8ere et al. / Fluid Dynamics Research 33 (2003) 287–297

T1 (no Lorentz forces, and homogeneous boundary conditions since the initially non-homogeneous
boundary conditions are accounted for by the zero order solution). As this system is not singular,
the only solution is the zero solution (V1 = 0, J1 = 0, P1 = 0, �1 = 0, T1 = 0). Using this result in
the expansion at order 2, we obtain

(V0 · ∇)V2 + (V2 · ∇)V0 =−∇P2 +∇2V2 + Gr T2ez + J0 × eB0 ;

(V0 · ∇T2) + (V2 · ∇T0) =
1
Pr

∇2T2;

together with Eq. (4), the two continuity equations and the boundary conditions. The Lorentz term
J0 × eB0 makes this linear system non-homogeneous. A generally non-zero solution for V2, J2, P2,
�2, and T2 will then be obtained. The expansion at order 3 will use the nullity of the solution at
order 1, which in particular induces a zero Lorentz force J1 × eB0 . At order 3, similarly to order 1,
it is found that V3, J3, P3, �3, and T3 are all zero, because the linear system is still homogeneous.
As a conclusion, the steady-state solution (denoted by F = (V ; J ; P; �; T ) with an index s) can be
expressed by the following expansion at small Ha:

Fs = F0 + Ha2 F2 + O(Ha4); (6)

indicating an evolution of the steady solution with respect to the even powers of Ha. Again, F0 and
F2 depend on Gr and Pr.

Conclusion (6) can be reached by another method. If the initial set of steady governing equations
derived from (2) to (4) is considered and if, for a given direction of the imposed magnetic $eld,
its orientation is changed, the solution is unchanged. This can be seen easily because changing Ha
to −Ha does not a7ect the equations. Hence, all solutions are even functions of Ha. Provided the
solution is analytic at Ha= 0, a condition also required to write the previous Taylor expansion (5),
it follows that all solution derivatives of odd order with respect to Ha must vanish. Explicit Taylor
expansions give the possibility of computing directly the e7ect of a weak magnetic $eld by solving
the second-order problem. Another advantage is that one can identify which term in the equations is
responsible for a change in the steady solution when Ha is increased from zero. This term is J0×eB0

in the second-order expansion. It can be seen from the equation at order zero that a non-zero elec-
tric current density J0 will be generated if V0 × eB0 is not a gradient. Equivalently, if V is not
uniform along magnetic lines, there will be some current J0. Each case has to be analyzed indepen-
dently to assess the magnitude of J0 × eB0 , which will ultimately be responsible for the magnitude
of F2.

3. Scaling laws for the magnetic stabilization of the �ow

The stability of the basic #ow solution obtained in the previous section is investigated here in a
general way by the linear analysis of in$nitesimal perturbations. The solution of the non-dimensional
problem is written as

(V ; J ; P; �; T ) = (Vs; Js; Ps; �s; Ts) + (v; j; p; "; #)eqt ; (7)

i.e., the sum of the basic #ow quantities with perturbations seen as normal modes in time. Substitution
into Eqs. (2)–(4) and linearization with respect to the perturbations yield to the following system
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written at the marginal state (q purely imaginary, i.e., q = i! where ! is the pulsation):

i!v+ (Vs · ∇)v+ (v · ∇)Vs =−∇p +∇2v+ Gr #ez + Ha2 j × eB0 ; (8)

j =−∇" + v× eB0 ; (9)

i!# + Vs · ∇# + v · ∇Ts =
1
Pr

∇2# (10)

with the continuity constraints for the two vector $elds v and j, ∇ · v= 0 and ∇ · j = 0. We use for
Vs and Ts the general form given by (6). System (8)–(10) can be written as

f(Gr; Pr; Ha; !; ';Vs; Ts) = 0; (11)

where ' = (v; j; p; "; #) is an eigenvector and ! the associated pulsation. For given values of Ha
and Pr, the critical threshold, expressed by the Grashof number Gr, is de$ned as

Grc = min{Gr=∃'c = (vc; jc; pc; "c; #c) non-zero associated to !c; so that f = 0}: (12)

At criticality, Gr, the eigenvector ', and the pulsation ! can be expressed around Ha=0 as Taylor
expansions with respect to Ha. We obtain for Grc:

Grc = Grc0 + HaGrc1 + Ha2 Grc2 + Ha3 Grc3 + O(Ha4)

and similar expansions for 'c and !c. The coeLcients at di7erent orders will depend on Pr. The
equation f=0 at criticality can then be written as the sum of linear terms (denoted L) and bilinear
terms (denoted B) with respect to the unknowns, under the following form:

!cLa('c) +Lb('c) + GrcLc('c) +B('c; Fs(Grc)) + Ha2 Ld('c) = 0: (13)

This expression can be developed at di7erent orders in Ha. At order 0, we have

!c0La('c0) +Lb('c0) + Grc0Lc('c0) +B('c0 ; F0(Grc0)) = 0; (14)

expression which gives the critical characteristics without magnetic $eld. At order 1, we can write

!c1La('c0) + !c0La('c1) +Lb('c1) + Grc1Lc('c0) + Grc0Lc('c1)

+B('c1 ; F0(Grc0)) +B

(
'c0 ; Grc1

@F0

@Gr
(Grc0)

)
= 0: (15)

This expression can be combined with (14). If we add * times (15) to (14), we obtain an expression
which can be written as

(!c0 + *!c1)La('c0 + *'c1) +Lb('c0 + *'c1) + (Grc0 + *Grc1)Lc('c0 + *'c1)

+B

(
'c0 + *'c1 ; F0(Grc0) + *Grc1

@F0

@Gr
(Grc0)

)
+ O(*2) = 0: (16)

If * is chosen small, we can neglect the last term of (16) which becomes similar to (14) with 'c0
replaced by 'c0 + *'c1 , !c0 by !c0 + *!c1 , Grc0 by Grc0 + *Grc1 , and with the steady regime taken
at this new Gr. This means that if the unknowns at order 1, 'c1 , !c1 , and Grc1 , were non-zero, we
could $nd solutions to the eigenvalue problem at order 0 which could be written 'c = 'c0 + *'c1
with !c =!c0 + *!c1 and would correspond to Grc =Grc0 + *Grc1 . With * chosen so that *Grc1 ¡ 0,
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we could $nd a critical Grashof number at Ha=0 less than Grc0 . This is impossible, which implies
that 'c1 , !c1 , and Grc1 are zero. Taking this result into account, (13) gives at order 2:

!c2La('c0) + !c0La('c2) +Lb('c2) + Grc2Lc('c0) + Grc0Lc('c2)

+B('c2 ; F0(Grc0)) +B('c0 ; F2(Grc0)) + Grc2B
(
'c0 ;

@F0

@Gr
(Grc0)

)
+Ld('c0) = 0: (17)

This equation is not an eigenvalue problem. The four underlined terms correspond to the linear
operator of the zero order eigenvalue problem applied to 'c2 : the range of this operator is of
codimension unity. The other $ve terms form an operator of range of dimension 1 (when the real
numbers Grc2 and !c2 are varying independently, this amounts to the choice of an arbitrary complex
number). There exists a unique combination of !c2 , and Grc2 such that the sum of these $ve terms
lies on the image of the zeroth order stability operator. Then, 'c2 is the function whose image
represents that intersection: in fact, the eigenvector being de$ned to within a multiplicative constant,
'c2 is unique once the multiplicative constant has been chosen for 'c0 . At last, at order 3, the same
remarks as for the order 1 allow to show that 'c3 , !c3 , and Grc3 are zero. As a $nal result, we get
the following expansion at small Ha:

'c = 'c0 + Ha2 'c2 + O(Ha4);

!c = !c0 + Ha2 !c2 + O(Ha4);

Grc = Grc0 + Ha2 Grc2 + O(Ha4):

This indicates that the initial increase with Ha of the main characteristics of the instabilities (critical
threshold, pulsation and eigenvector) occurs through a Ha2 law.

Again, this result can be derived directly from the fact that all solutions—including bifurcations—
are even with respect to Ha. The advantage of writing explicitly the Taylor expansion is that it
gives an idea of the origin and magnitude of the change in critical Grashof number when Ha grows
from zero. In Eq. (17) the two constant terms, B('c0 ; F2) and Ld('c0), contribute to the magnitude
of Grc2 . The $rst term represents the change of the steady solution when changing Ha: a simple
change in steady velocity pro$le or temperature distribution can of course a7ect the critical Grashof
number. The second term represents the Lorentz damping force on the disturbances themselves. This
last term can be very small or zero if the critical disturbance appears mainly in the form of rolls
aligned with the magnetic $eld direction. It is also possible to solve Eq. (17) to obtain Grc2 .

4. Illustration in the case of the �ow in an in"nite layer

To illustrate what has been shown in the two previous sections, we consider the speci$c situation
of an in$nite layer of conducting liquid material con$ned vertically by two horizontal perfectly
conducting rigid boundaries distant by L (z between −0:5 and 0.5). In such a situation, a horizontal
temperature gradient (along x) drives a #ow corresponding to an in$nitely long convective cell and
known as the Hadley circulation. This basic #ow can be obtained analytically (Kaddeche et al.,
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2003). The expressions giving the horizontal velocity Us and the temperature Ts in the case without
magnetic $eld are:

Us(z) = Gr
(

z3

6
− z

24

)
; (18)

Ts(x; z) = x + Gr Pr
(

z5

120
− z3

144
+

7z
5760

)
; (19)

expressions which are also valid if the magnetic $eld is horizontal, along x or along y (Kaddeche
et al., 2003). Under vertical magnetic $eld (Kaddeche et al., 2003), we have

Us(z) =
Gr
Ha2

(
sinh(Ha z)

2 sinh(Ha=2)
− z

)
; (20)

Ts(x; z) = x +
Gr Pr
Ha2

[
1

2Ha2

sinh(Ha z)
sinh(Ha=2)

− z3

6
+
(

1
24

− 1
Ha2

)
z
]
; (21)

expressions which, in the limit of small Ha, can be written as

Us(z) = Gr
[(

z3

6
− z

24

)
+ Ha2

(
z5

120
− z3

144
+

7z
5760

)
+ O(Ha4)

]
; (22)

Ts(x; z) = x + Gr Pr
[(

z5

120
− z3

144
+

7z
5760

)

+Ha2

(
z7

5040
− z5

2880
+

7z3

34560
− 31z

967680

)
+ O(Ha4)

]
: (23)

We verify that, in any of these cases, the basic #ow can be expressed as even powers of Ha, with
expressions similar to (6). For the horizontal magnetic $eld along x or y, the expressions (given by
(18) and (19)) are in fact limited to zero order terms. For the vertical magnetic $eld, a comparison
between the contributions at order 2 and at order 0 can be obtained by calculating the ratio between
the maxima reached by the expressions in z at the di7erent orders. This ratio (order 2/order 0 at
Ha = 1) is 0.02542 for the horizontal velocity Us and 0.02537 for the temperature Ts, indicating in
both cases a relatively small in#uence of the magnetic $eld (through the leading order 2 terms) at
small Ha.

The stability of the basic #ow is investigated through a linear stability analysis, the perturbations
being taken as normal modes of the form:

(v; j; p; "; #)(z)ei(hx+ky)+qt ; (24)

where h and k are real wavenumbers in the longitudinal, x, and transverse, y, directions, respectively.
The eigenvalue problem which is obtained is solved with the spectral Tau Chebyshev method (Kad-
deche et al., 2003). From the thresholds Gr0(Pr; Ha; h; k) (values of Gr for which an eigenvalue has a
real part equal to zero whereas all the other eigenvalues have negative real parts), the critical Grashof
number Grc has been obtained after minimization along h and k (Grc = inf (h;k)∈R2 Gr0(Pr; Ha; h; k)).
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Fig. 1. Variation of the critical thresholds (Grc) and wavenumbers (hc) as a function of Ha for the transverse instability
under vertical magnetic $eld. Comparison with characteristic curves $tting the results at small Ha.

For conducting materials (small Pr numbers), the main instabilities correspond either to steady
transverse instabilities (wavenumber along x) or to oscillatory longitudinal instabilities (wavenumber
along y). It has been found in a previous study (Kaddeche et al., 2003) that the vertical magnetic
$eld strongly stabilizes both instabilities, even at moderate Ha: the increase of the thresholds has
been characterized by $tted laws which scale as Grc − Grc0 ∼ Ha2 for the longitudinal instabilities
and still more eLciently as Grc ∼ Grc0 exp(Ha2=K) (where K is a constant) for the transverse
instabilities. The horizontal $eld (along x or y) only stabilizes the instability with a wavenumber
parallel to its direction. Moreover, it is eLcient only at large Ha with asymptotic stabilization laws
which scale as Grc ∼ Ha (Kaddeche et al., 2003).

In this paper, we focus on the variation of the instability characteristics at small Ha. For all the
di7erent cases mentioned just above, we have carefully looked at the initial variation with Ha of
the critical instability thresholds (Grc), wavenumbers (hc or kc), and pulsation (!c). The results are
shown in Figs. 1–4, each $gure giving the instability characteristics as a function of Ha (Log–Log
scale) for a given case, Fig. 1 for the transverse instability (Pr=0:001) under vertical magnetic $eld,
Fig. 2 for the oscillatory longitudinal instability (Pr = 0:02) under vertical magnetic $eld, Fig. 3
for the transverse instability under horizontal magnetic $eld along x, and Fig. 4 for the oscillatory
longitudinal instability under horizontal magnetic $eld along y. In each $gure, the numerical stability
results are $tted at small Ha by characteristic curves whose expressions are given explicitly. We
see that in any cases the initial variation with Ha of the di7erent instability characteristics scales
as Ha2, for the thresholds (Grc − Grc0) as well as for the wavenumbers (hc − hc0 or kc − kc0) and
pulsations (!c −!c0). This Ha2 variation is in general valid up to some units of Ha (limit between
1 and 3), except for the thresholds in the case of Fig. 2 where the limit is a little higher (this
case was found to scale as Ha2 even for moderate Ha). Concerning the thresholds, we see that
the normalized coeLcients of the Ha2 variation (normalization by the value at Ha = 0, Grc0) are
stronger for the vertical magnetic $eld cases (Figs. 1 and 2) where the further variation with Ha
is still more pronounced, than for the horizontal magnetic $eld cases (Figs. 3 and 4) where the
further variation is less steep and evolves towards an asymptotic Ha variation. In any case, these
coeLcients are rather small, less than 0.05, indicating that, for Ha = 1; Grc will increase from Grc0
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small Ha.
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Fig. 3. Variation of the critical thresholds (Grc) and wavenumbers (hc) as a function of Ha for the transverse instability
under horizontal magnetic $eld along x. Comparison with characteristic curves $tting the results at small Ha.

by 5% at most. Concerning the evolution of the wavenumbers, the normalized coeLcients of the
Ha2 variations are similar in all cases. We can remark that the wavenumbers reach an asymptotic
value at large Ha in the case of the horizontal $elds: this is due to the fact that hc (respectively
kc) tends towards zero so that hc0 − hc (respectively kc0 − kc) tends towards hc0 (respectively kc0).
At last, concerning the pulsation, the normalized coeLcients of the Ha2 variations are stronger for
the oscillatory longitudinal instability under vertical magnetic $eld (Fig. 2) than under horizontal
magnetic $eld (Fig. 4), the asymptotic value reached by !c−!c0 at large Ha in this last case being
connected to the asymptotic value reached by !c.
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Fig. 4. Variation of the critical thresholds (Grc), wavenumbers (kc) and pulsations (!c) as a function of Ha for the
oscillatory longitudinal instability under horizontal magnetic $eld along y. Comparison with characteristic curves $tting
the results at small Ha.

5. Conclusion

It has been shown in this note that the braking of buoyant #ows under a magnetic $eld scales at
small Ha as even powers of Ha, the initial braking then scaling as Ha2. Moreover the instabilities
which are triggered present characteristics (critical thresholds, eigenvectors and pulsations) which
also scale at small Ha as even powers of Ha giving an initial stabilization as Ha2. These $ndings
have been illustrated by the case of the #ow in an in$nite layer.

These results show that the speci$c form of the equations under a magnetic $eld with a Ha2

coeLcient in the Lorentz force term can induce speci$c behaviours for the variation at small Ha
of the #ow intensity and of the instability characteristics. Nevertheless these universal evolutions
at small Ha do not anticipate what is obtained at larger Ha which is often connected to speci$c
evolutions of the #ow structure. Moreover, the evolutions obtained in this small Ha domain are
rather small. In the case of the #ow in an in$nite layer, at most an increase of the thresholds by
20% with respect to Grc0 is obtained at the limit of the Ha2 variation (Ha ∼ 2) for the transverse
instabilities under a vertical magnetic $eld, a case for which the further increase with Ha is very
strong, reaching a factor 42 for Ha = 10 (4200%) and even a factor 667 for Ha = 14.

The results obtained for linear stability can be extended to the case of other eigenvalue problems.
For instance, energetic stability (Lingwood and Alboussi(ere, 1999) leads to an eigenvalue problem
distinct but of the same form as the linear stability problem. It can be shown that the energetic
threshold will also follow a Ha2 law at weak magnetic $elds.
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