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1 Introduction

Low magnetic Reynolds number MHD flows and low Rossby number rotating
flows share a number of common features. Both are subjected to a strong linear
force: Lorentz or Coriolis. From an energetic point of view, they are very dif-
ferent, as Lorentz forces are dissipative in nature (Joule dissipation adding to
viscous dissipation) while Coriolis forces are purely conservative. Both forces
however tend to favour a two-dimensional flow, independent of the direction
of the applied magnetic field or rotation axis. This can be seen most easily on
steady solutions, where three-dimensional structures are absent in the bulk of
the flow. Exactly how these MHD or rotating flows become two-dimensional
is very interesting. In MHD flows, due to Joule dissipation, this takes the
form of a pseudo-diffusion (Moffatt 1967 [1], or Sommeria and Moreau 1982
[2]), whereby three-dimensional features are diffusively stretched in the direc-
tion of the magnetic field, with a pseudo-diffusion coefficient proportional to
the square of their size in the perpendicular direction. In rotating flows the
process is dominated by inertial waves. Three-dimensional structures give rise
to dispersive fast (small Rossby number) inertial waves, whereas nearly two-
dimensional structures correspond to inertial waves with a wave-number per-
pendicular to the rotation axis, hence a vanishing pulsation according to their
dispersion relationship (see Greenspan [3] for a complete exposition). Those
two-dimensional structures are thus not rapidly dispersed and remain alone
eventually. Historically, the tendency towards two-dimensional flows in rotat-
ing systems has been suggested and demonstrated experimentally by Proud-
man [4] and Taylor [5, 6].
Having established the two-dimensional nature of these flows, it was then

natural to derive two-dimensional flow equations. For rotating flows, Mont-
gomery 1938 [7] pointed out the role of the so-called geostrophic contours
(constant depth in the direction of rotation in the case of uniform density):
this follows from the conservation of the background angular momentum. If
the flow departs slightly from those contours, this is a source of vorticity in the
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rotating frame of reference. The contribution of Ekman layers was recognized
following Ekman [8]: for the case of a solid boundary, they are also a source
(or rather a sink) of vorticity associated to Ekman pumping. Finally, the core
two-dimensional viscosity is also “dissipating” enstrophy. When the mater-
ial derivative of the vorticity is expressed in terms of these above-mentioned
three contributions, the equation of the so-called homogeneous model for ro-
tating flows is obtained. This has been used for modelling oceanic circulation
(Greenspan [3]): some typical boundary layers arising from this model have
been invoked to represent western streams such as the Gulf stream or the
Kuroshio stream. Stewartson [9, 10] played an important role in analyzing
shear layers developing on singular surfaces parallel to the rotation axis.
In parallel, progress has been made in the understanding of the behaviour

of electrically conducting fluids in the presence of an imposed magnetic field.
Hartmann and Lazarus 1937 [11] discovered Hartmann layers, the boundary
layer analogue to the Ekman layer and responsible for an increase in wall
friction. Another type of layers, parallel to the direction of the magnetic field
and an analogue to Stewartson layers, has been put in evidence by Sher-
cliff 1953 [12] first. Kulikovskii 1958 [13] made a major contribution when he
launched the concept of “characteristic surfaces”, analogous to the geostrophic
contours. Characteristic surfaces are made of magnetic lines with a constant
ratio of magnetic field intensity divided by the line length. Magnetic circula-
tion is conserved for flows following these surfaces. Otherwise, in case of cross
flow, vorticity is generated by the electrical currents created by the variations
in magnetic circulation. Holroyd and Walker 1978 [14] have written inertialess
two-dimensional equations, which were only recently put under a form sim-
ilar to the rotating homogeneous model and analyzed in terms of potential
two-dimensional structures [15].
The similarity between rotating and MHD flows will be emphasized here

as much as it is possible, so as to benefit from all advances in either field. More
efforts have gone into rotating flows, and they are perhaps slightly easier to
handle as there is only one equation to consider (Navier-Stokes) while Ohm’s
law has to be combined with Navier-Stokes in MHD studies. There has seemed
that rotating flows could show a greater variety of shear layers. Using the
analogy between both types of flows, one can either find the corresponding
MHD layers or find a good reason why the corresponding layer is not physical.
In §2, the fundamental length-scales arising in rotating or MHD flows will

be introduced. §3 will be devoted to the derivation of the homogeneous model
of rotating flows. An MHD two-dimensional model is derived in §4. The next
§5 will provide an example of a two-dimensional MHD flow calculated from
the model just derived. Finally conclusions and perspectives will be presented
in §6.
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2 Fundamental length-scales

Starting from the governing equations of rotating and MHD flows respectively,
fundamental scales will be identified and used to justify the subsequent two-
dimensional models to be introduced in the second stage.

2.1 Rotating flows

Fluid motion in a reference system rotating with a steady angular velocity Ω
is subjected to apparent forces, Coriolis and centrifuge. While centrifuge forces
can be absorbed in a modified pressure term, Coriolis forces have to be con-
sidered specifically as they play a distinct role. Momentum, or Navier-Stokes
equation, with Coriolis forces, is the governing equation for the solenoidal
velocity field u. This equation takes the following dimensionless form:

∂u

∂t
+ (u ·∇)u = −∇p+ 2E−1 u× ez +∇2u, (1)

where dimensionless vector position x, time t, velocity field u and pressure
field p are derived from their corresponding dimensional quantities using the
scales H, H2/ν, ν/H and ρν2/H2, respectively. Here H is a length-scale of
the fluid domain, ρ the density of the fluid and ν its kinematic viscosity.
The Ekman number appearing in the equation is defined as E = ν/(ΩH2).
Reference axes have been chosen so that the rotation axis lies in the z-direction
and ez denotes the unit vector along the z direction.
It is possible to extract fundamental time and length-scales from the gov-

erning equation. Taking the curl of Eq. (1) eliminates the pressure:

∂∇× u
∂t

+∇× [(u ·∇)u] = 2E−1 ∂u
∂z
+∇2 (∇× u) . (2)

In the asymptotic limit of strong rotation (E −→ 0), the first term on the
right-hand side of Eq. (2) is dominant and can be balanced by the first term
(time derivative) of the left-hand side when a short time-scale E is invoked,
i.e. the time for the reference system to rotate an angle of one radian. These
two terms are responsible for the inertial waves, which satisfy the following
dispersion relationship:

ω = ±2E−1 cos θ, (3)

where the velocity of inertial modes is defined as u = u0 ei(ωt+k·x) and where
θ is the angle between k and Ω. After a transient period of inertial wave
propagation, the final state of the flow corresponds to a quasi-steady two-
dimensional state (θ ' π/2, hence ω ' 0). These inertial waves can be dis-
rupted by non-linear inertial terms (the second term on the left-hand side),
provided the Rossby number is not small compared to unity. In our dimen-
sionless formulation, the Rossby number is the product of the dimensionless
velocity with the Ekman number, while it is Ro = U/(ΩH) when U denotes
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a dimensional velocity scale. Viscous effects (second term on the right-hand
side) can also affect inertial waves by viscous damping and are responsible
for thin shear layers in the steady or quasi-steady state: E1/2 Ekman layers
along boundaries not parallel to the rotation direction and E1/3 Stewartson
layers developing along surfaces containing the rotation direction. Finally, the
condition for the existence of a quasi-steady two-dimensional flow is that of
a small Rossby number only for regions outside Ekman and E1/3 Stewart-
son layers. These conditions will be used a posteriori to assess the validity of
two-dimensional solutions.

2.2 MHD flows

In MHD flows, our attention will be restricted here to the case of low magnetic
Reynolds numbers. Momentum equation and Ohm’s law are the two governing
equations, expressed in a dimensionless form:

∂u

∂t
+ (u ·∇)u = −∇p+Ha2 j×B+∇2u, (4)

j = −∇φ+ u×B. (5)

Dimensional scales already defined above for rotating flows are still valid. In
addition, the dimensionless electric current density j and electric potential field
φ are obtained from their dimensional counterpart using the scales νσB0/H
and νB0, where B0 is a typical value of the imposed magnetic field.
To obtain an equation for the velocity field u suitable for analysis, one can

take the curl of the momentum equation twice and substitute ∇× j using the
curl of Ohm’s law:

∂

∂t

¡−∇2u
¢
+∇×∇× [(u ·∇)u] = Ha2

∂2u

∂z2
− ¡∇2

¢2
u. (6)

This equation is obtained using the approximation of a locally uniform mag-
netic field. This is not exact but this does not affect the following scaling
analysis. The asymptotic strong MHD regime is characterized by a large value
of the Hartmann number (Ha −→∞). The dominant first term on the right-
hand side of Eq. (6) can only be balanced by the first term (time derivative)
on the left-hand side on a short timescale of order Ha−2, i.e. the so-called
Joule time ρ/(σB2). These two terms define an equation of pseudo-diffusion
for the velocity field. Its dispersion relationship takes the following form:

ω = iHa2
(k.B)2

k2
, (7)

for elementary solutions defined as u = u0 ei(ωt+k·x). This is similar to the dis-
persion relationship of an equation of diffusion, but with a diffusion coefficient
D dependent on the length-scale l of the velocity disturbance D ' Ha2l2. The
ultimate state of pseudo-diffusion is a quasi-steady two-dimensional flow. The
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non-linear inertial term (the second one on the right-hand side of Eq. (6)) can
disrupt this pseudo-diffusion process provided the interaction parameter N
is small compared to unity. In our dimensionless formulation, the interaction
parameter is defined as the square of the ratio of the Hartmann number by
the dimensionless velocity, or N = σB2

0H/(ρU) using the dimensional scale
U for the velocity. Viscous terms (the last term in Eq. (6)) provide additional
diffusion to the MHD pseudo-diffusion and are responsible for the existence
of thin shear layers in the steady state: Ha−1-thick Hartmann layers on walls
non parallel to the magnetic field and Ha−1/2-thick so-called “parallel” layers
developing along surfaces made of magnetic lines. Two dimensional models
will be valid for a large value of the interaction parameter and will apply
outside Hartmann or parallel layers.

3 The "homogeneous model" of rotating flows

This model has been developed initially to model oceanic circulation for which
the thin aspect ratio (depth over horizontal scales) gives another reason, in
addition to rotation effects, to focus on two-dimensional flows. This aspect
ratio condition is not necessary and the homogeneous model has also been
applied to other geometries, e.g. to the thick atmosphere of Jupiter or to the
Earth’s liquid inner core.
Let us assume for simplicity that the fluid domain is symmetrical with

respect to a plane perpendicular to the axis of rotation. A two-dimensional
model arises naturally for the long time evolution of flows in rotating systems
if one considers Eq. (2) and the fact that the fluid domain is bounded in the
direction of the rotation axis. From this last condition, it is concluded that
the strongest flow components will be perpendicular to the rotation axis. This
follows from continuity as Ekman layers cannot accept a jump in the normal
component but only a jump in the tangential components of velocity. Hence,
the two-dimensional flow is a flow with two-dimensional flow components in
the direction perpendicular to the axis of rotation. From Eq. (2), the flow
component parallel to the rotation axis is odd with respect to the plane of
symmetry and small compared to perpendicular components. The main com-
ponent of vorticity is parallel to the axis of rotation and is two-dimensional.
Traditionally, the homogeneous model is derived from the equation of

vorticity, projected on the direction of the rotation axis. Sources of vortex
stretching are due to two causes: geometrical effects and Ekman pumping. If
the depth of the fluid domain changes in the direction of the two-dimensional
flow, axial stretching or compression must occur so that the core flow remains
tangent to the upper and lower boundaries. Regarding Ekman layers develop-
ing at a solid boundary, there is a fundamental linear relationship between the
normal flow velocity entering the layer and the vorticity of the two-dimensional
flow.
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We are going to present a slightly different derivation based on global con-
servation, Ekman layer properties and analysis of the two-dimensional core
flow. The geometry of the cavity consists of the space situated between two
symmetrical surfaces, defined in the orthonormal coordinate system (x, y, z)
by the two functions, zu(x, y) and −zu(x, y), respectively, where z is still re-
ferring to the direction of the axis of rotation. The “depth” of the cavity
is defined as the distance between both surfaces as a function of x and y,
d(x, y) = 2zu(x, y). Assuming the existence of a core flow were x and y com-
ponents of the flow are independent of z, a purely two-dimensional flow u0
with no z component is introduced:

u0 =

∙
u0x(x, y)
u0y(x, y)

¸
. (8)

One must be careful as this is not the real flow and, for instance, this flow
need not be divergence-free. However, in the absence of flow injection through
the upper and lower boundaries, global volume conservation implies that the
two-dimensional mass flow rate, denoted Q(x, y), is a divergence-free two-
dimensional vector field. It is attributed a streamfunction, ψ:

Q =∇ψ × ez. (9)

One has to link Q to u0, taking into account the effect of the upper and lower
Ekman layers. These layers contribute a small flow deficit in the direction of
the core flow, but more importantly, they generate a component of cross-flow
due to Ekman pumping. This cross-flow is small but has important conse-
quences in terms of mass conservation: a vortex core flow creates a purely
divergent cross-flow in Ekman layers. In our dimensionless formulation, the
cross-flow is equal to E1/2ez×u0, so that the global two-dimensional flow can
be written:

Q = du0 +E1/2ez × u0. (10)

Finally, one must write the restriction of the momentum Eq. (1) to the x and
y components in the core of the flow, in terms of the two-dimensional vector
field u0 and the pressure field p = p0(x, y) at z = 0:

∂u0
∂t

+ (u0 ·∇)u0 = −∇p0 + 2E−1u0 × ez +∇2u0. (11)

Let us denote the single component (in the direction of the rotation axis)
of the curl of u0 by ω0. We shall take the curl of the restricted momentum
Eq. (11), bearing in mind that all variables are two-dimensional:

∂ω0
∂t

+ u0 ·∇ω0 + (∇ · u0)ω0 = −2E−1(∇ · u0) +∇2ω0. (12)

The divergence of u0 can be expressed from the two-dimensional divergence
of Eq. (10), where Q is solenoidal:
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∇ ·Q = d∇ · u0 + u0 ·∇d−E1/2ω0 = 0, (13)

hence
∇ · u0 = −1

d
u0 ·∇d+E1/2

ω0
d
. (14)

In the first term of the right-hand side, one can express u0 with Q at the
leading order: u0 = Q/d. Eq. (14) becomes:

∇ · u0 = Q ·∇
µ
1

d

¶
+E1/2

ω0
d
, (15)

where the small E1/2ω0/d term is necessarily retained as∇ ·u0 will be multi-
plied by the large E−1 factor in Eq. (12). Next, the non-linear term u0 ·∇ω0
will be approximated using u0 ' Q/d so as to retain only consistent orders
of magnitude in a E1/2 Taylor expansion. Eq. (12) can finally be written as
follows:

∂ω0
∂t

+∇
³ω0
d

´
×∇ψ = −2E−1∇

µ
1

d

¶
×∇ψ − 2E−1/2ω0

d
+∇2ω0. (16)

Note that all terms are scalars in the two-dimensional equation above: cross-
products are identified with their single non-zero z-component. Note also that
vorticity transport and geometrical vortex stretching have been combined into
a single term: ∇ω0 × (∇ψ/d) + ω0∇ (1/d) ×∇ψ = ∇ (ω0/d) ×∇ψ. These
are local vorticity terms, not planetary or background vorticity. Finally, as we
have carefully retained dominant terms in the vorticity equation above, we
can again use u0 ' Q/d to express vorticity in terms of the streamfunction
ψ:

ω0 = −∇ ·
µ∇ψ

d

¶
. (17)

The two-dimensional Eqs. (16) and (17) constitute the so-called homogeneous
model of quasi-geostrophic flows.
The homogeneous model can be entered into a numerical formulation, and

quasi-geostrophic flows can be computed. Here we shall only have a look at
this model to identify some expected features. In a steady or quasi-steady
low-Rossby number regime, there can be a competition between the last two
terms (dissipation by Ekman layer friction or bulk two-dimensional viscous
dissipation), which results in the development of E1/4 thick Stewartson layers.
This feature is legitimate in the quasi-geostrophic model, as E1/4 is thicker
than E1/3: as it is recalled in §2.1, the length-scales perpendicular to the rota-
tion axis of the order E1/3 or smaller are not associated with two-dimensional
structures, but to three-dimensional ones. Apart from Stewartson layers, there
can be Munk layers [16] when topography effects exist: the first and last
terms at the right-hand side of Eq. (16) compete on a length-scale E1/3β−1/3,
where β is the magnitude of ∇(1/d). When β is very small compared to
unity, this length-scale is large compared to E1/3 and corresponds to a valid
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quasi-geostrophic flow structure. When unsteady solutions are considered, the
easiest case is that of a balance between the time-dependent term and the dom-
inant term in Ekman number expansion, that of planetary vortex stretching.
Considering local coordinates (x,y) such that the depth d is constant along
the x direction, this balance in Eq. (16) can be written as follows:

∂ω0
∂t

= 2E−1β
∂ψ

∂x
. (18)

This equation is generating the so-called Rossby waves. When β is small com-
pared to unity, homogeneous elementary solutions eiωt+ik·x must satisfy:

ω = 2E−1β
kx
k2

. (19)

These waves live in two dimensions and are slower than inertial waves. Rossby
waves are indeed the trace of inertial waves in the two-dimensional plane
perpendicular to the axis of rotation.

4 A two-dimensional MHD model

The derivation of a two-dimensional MHD model presented here follows very
closely the presentation of the model of homogeneous rotating flows above.
Global two-dimensional conservation laws (for mass and electric charge) are
combined to the evolution equation for vorticity and electric current in the
bulk of the fluid to provide two coupled governing equations.
The magnetic field is supposed to lie in the z-direction, but its intensity

can now be a function of x and y, Bz = Bz(x, y): this is known as the “straight
magnetic lines approximation”. As a first step, we consider that the “horizon-
tal” components (perpendicular to B) of the velocity and also of the electric
current density are independent of z in the bulk of the fluid:

u0 =

∙
u0x(x, y)
u0y(x, y)

¸
, j0 =

∙
j0x(x, y)
j0y(x, y)

¸
. (20)

The two-dimensional integrated volume flow rate is still denoted Q(x, y)
and we introduce also the two-dimensional integrated electric current density
I(x, y). We shall then consider the two-dimensional mass and electric charge
conservation laws after integration along z over the total depth d(x, y) of the
cavity (from the lower wall z = −zu(x, y) to the upper wall z = zu(x, y)).
This implies the existence of two streamfunctions:

Q =∇ψ × ez, I =∇h× ez, (21)

where the variable name h(x, y) for the electric current streamfunction recalls
us that this is indeed the induced magnetic field in the z direction. The next



Geostrophic versus MHD Models 9

step is to express the two-dimensional, integrated fluxes in terms of a bulk
flow contribution (20) and a contribution from Hartmann layers. In MHD, the
flow deficit in Hartmann layers is of little importance. The electric current
developing in them is the important feature (Shercliff [12]):

Q = du0, I = d j0 + 2Ha
−1Bzez × u0, (22)

written here for the case of a slowly varying depth ∂d/∂x << 1, ∂d/∂y << 1.
We then consider the restriction of the momentum Eq. (4) and of Ohm’s law
(5) to the x and y components in the core of the flow, in terms of the two-
dimensional vector fields u0, j0 and pressure and electric potential fields at
z = 0, p = p0(x, y), φ = φ0(x, y):

∂u0
∂t

+ (u0 ·∇)u0 = −∇p0 +Ha2Bzj0 × ez +∇2u0, (23)

j0 = −∇φ+Bzu0 × ez. (24)

Taking the curl of these two-dimensional equations leads to:

∂ω0
∂t

+ u0 ·∇ω0 + (∇ · u0)ω0 = −Ha2∇ · (Bzj0) +∇2ω0, (25)

∇× j0 = −∇ · (Bzu0). (26)

From the expressions (22), divergence terms in the equations above can be
written:

∇ · (Bzj0) = (I ·∇)
µ
Bz

d

¶
+ 2Ha−1ez ·∇×

µ
Bz

d2
Q

¶
, (27)

∇ · (Bzu0) = (Q ·∇)
µ
Bz

d

¶
, (28)

which can be substituted into the two-dimensional governing Eqs. (23) and
(24). Using the streamfunctions ψ and h defined by Eq. (21), the governing
equations are finally written:

∂ω0
∂t

+∇
hω0
d

i
×∇ψ = Ha2∇

∙
Bz

d

¸
×∇h+ 2Ha∇ ·

∙
Bz

d2
∇ψ

¸
+∇2ω0, (29)

−∇ ·
∙
1

d
∇h

¸
= ∇

∙
Bz

d

¸
×∇ψ, (30)

where Eq. (17) relating ω0 and ψ is still valid here, in the MHD context.
These governing Eqs. (29), (30) and (17) will be discretized and solved

numerically in the next §5 for a particular configuration. Let us here first
analyze these equations from a general point of view in the same way as for
the homogeneous model of rotating flows. One can first look at the struc-
tures arising from the balance of bulk viscosity and Hartmann layer friction,



10 Thierry Alboussière

i.e. between the last two terms in Eq. (29). By scaling analysis, this corre-
sponds to shear layers of thickness Ha−1/2. This corresponds to the typical
thickness of parallel layers (see §2). This does not mean however that we are
representing parallel layers well with the two-dimensional model. On the con-
trary, we know that structures developing on a length-scale of unity in the
direction of the magnetic field and on a length-scale Ha−1/2 or less in a di-
rection perpendicular to the magnetic field are essentially three-dimensional.
We may obtain a solution looking like a parallel layer, but this is just an
approximation. And this approximation does not become any more accurate
as the Hartmann number is increased. As a corollary, we may just remove
the last term (bulk viscosity) from Eq. (29) as it will always be negligible
compared to the term before (Hartmann layer friction), as long as legitimate
two-dimensional structures are modelled. The situation has to be contrasted
with that of rotating flows for which a similar balance had provided a le-
gitimate E1/4 length-scale (two-dimensional Stewartson layers), larger than
three-dimensional E1/3 Stewartson layers1.
For steady, high interaction parameter flows, one may examine the balance

between Hartmann layer friction and the first term on the right-hand side of
Eq. (29), representing a source of vorticity as the electric current passes across
characteristic surfaces (Bz/d constant). To do so, we must use the electric Eq.
(30), expressing the fact that curl is generated for the two-dimensional current
when the two-dimensional flow passes across characteristic surfaces. In order
to combine more easily Eqs. (29) and (30), it will be useful to write them in
local coordinates (x, y), such that the characteristic function Bz/d is constant
along the x axis. In the steady, inertialess regime, denoting the magnitude of
∇(Bz/d) by G and neglecting other variations of Bz and d for simplicity, the
governing two-dimensional equations take the following form:

0 = −Ha2G
∂h

∂x
+ 2Ha

Bz

d2
∇2ψ, (31)

−1
d
∇2h = −G∂ψ

∂x
. (32)

Taking the Laplacian of Eq. (31) and substituting h using Eq. (32), one gets
a local equation for ψ, bearing in mind that all variations of Bz and d have
been discarded, except obviously when building G:

−HaG2d∂
2ψ

∂x2
+ 2

Bz

d2
∇4ψ = 0. (33)

This balance shows that shear layers of thickness Ha−1/4G−1/2 and length
unity can develop along characteristic surfaces, as illustrated in [15]. This
equation can also be used to derive the development length Ha1/2G observed

1 The fact that both structures have been discovered by Stewartson and named
after him does not help to distinguish them.
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for instance in pressure-driven flows in cylinders with a step transverse mag-
netic field. Another outcome of Eq. (33) takes the form of boundary layers
along walls cutting characteristic surfaces. They are equivalent to Munk layers
in rotating fluids, or rather Stommel layers [17], as the balance in Eq. (33)
involves topographic effects and Hartmann layer friction. In this case, scaling
analysis of Eq. (33) provides a typical thickness Ha−1/2G−1. When G << 1,
this scaling is legitimate with respect to the two-dimensional nature of the so-
lution. In reality, there is probably a double layer structure in most practical
cases, with a genuine Ha−1/2 (three-dimensional) parallel sublayer within this
thicker Ha−1/2G−1 two-dimensional layer. The steady features above have
been described in more details in [18, 15].
Finally, one can take a look at the unsteady two-dimensional regime in the

simplest regime of negligible non-linear inertial terms. The time-dependent
term in Eq. (29) is balanced by the dominant term in terms of Hartmann
number expansion, Ha2∇ [Bz/d]×∇h. Using again the local coordinates de-
fined above, and neglecting variations of Bz and d, the following equation can
be derived:

1

d

∂

∂t

¡∇2¢2 ψ = Ha2G2d
∂2ψ

∂x2
.

Solutions to this equation are the counterpart of Rossby waves in rotating
fluids. Starting from elementary eiωt+ik·x the dispersion equation is:

ω = iHa2G2d2
k2x
k4

, (34)

typical of a pseudo-diffusion equation. This is obviously reminiscent of the
three-dimensional pseudo-diffusion in the direction of the magnetic field. For
two-dimensional flows, this has become pseudo-diffusion in the direction of the
characteristic surfaces, with a pseudo-diffusion coefficient, Ha2G2d2l4, where l
is the typical size of the structure considered. When G is very small compared
to unity, this pseudo-diffusion coefficient is small compared to that of three-
dimensional MHD pseudo-diffusion.

5 A flow in a spatially-varying magnetic field

This section will be devoted to an example of an MHD two-dimensional flow,
calculated numerically from Eqs. (29), (30) and (17). As can be seen in Fig.
1, the configuration is that of a duct of a rectangular cross-section with a
(smooth) step transverse magnetic field. Two apparently slightly different con-
figurations will be considered: one in which the shape of the duct is strictly
rectangular and another one in which, downstream the magnetic field change,
the top and bottom duct walls are slightly curved. The difference lies in the
fact that characteristic surfaces are degenerate in the first case, while charac-
teristic surfaces are well defined and aligned with the mean flow direction in
the second case, downstream the magnetic field step.
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Fig. 1. Rectangular ducts with transverse step magnetic field: (a) flat case, (b)
curved case

To be more specific, the width of the duct is equal to 2 in dimensionless
terms while its length is 24, from x = −6 to x = 18, the change in magnetic
field intensity taking place between x = −2 and x = +2:

Bz = 0.2, for x ≥ 2,
Bz = 1− 0.6x+ 0.05x3, for − 2 ≤ x ≤ 2, (35)

Bz = 1.8, for x ≤ −2,

ensuring a smooth magnetic field and first derivative for all values of x. The
depth of the duct in the direction of the magnetic field is uniform and equal
to 1 for the first case (a), and varies in the following way for case (b):

d = 1, for x ≤ −2,
d = 1− (0.25 + 0.1875x− 0.015625x3)y2, for − 2 ≤ x ≤ 2, (36)

d = 1− 0.5y2, for x ≥ 2.

Fig. 2 shows lines of constant value for the characteristic function Bz/d
for both configurations (a) and (b), in the (x, y) plane. Numerical simulations
have been run for a single value of the Hartmann number, Ha = 5 × 103, and
increasing values of the Reynolds number (see Fig. 2). In these simulation, the
small bulk viscous term has been retained but boundary conditions at y = ±1
are free-slip conditions for the velocity field. A no-slip condition would be
numerically more demanding as the parallel layers would cause considerable
mesh refinement. Moreover we are not particularly interested in Ha−1/2 par-
allel layers in this study. The smallest value of Reynolds number corresponds
to an inertialess solution. In the region of varying magnetic field, the flow
goes through boundary layers, as expected [15], scaling like Ha−1/2G−1 as
discussed in the previous section. For larger values of the Reynolds number, a
clear asymmetry appears between upstream and downstream regions on each
side of the magnetic field change. Upstream the flow is quite similar to the
inertialess case, while downstream the wall jets, generated in the non-uniform
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Fig. 2. Isovalues of the characteristic function Bz/d (top), vorticity isolines for
increasing Reynolds, Re = 5, 103, 2× 103 and 4× 103: (a) flat case, (b) curved case

region of magnetic field, remain and undergo instability. These instabilities
lead to vortices, eventually damped by Hartmann layer friction.
The difference between cases (a) and (b) is visible in the behaviour of the

wall jets. In Fig. 2, snapshots of the vorticity isovalues are shown in the final
statistically steady regime. For the case (a) of a strictly rectangular duct, the
jets undergo shear instability and mixing is rather efficient. For the case (b) of
non-uniform duct depth, the characteristic surfaces channel the jets and delay
their instability, so that these jets survive further downstream. As discussed
in the previous section, vortices are stretched along the x direction by pseudo-
diffusion, which is probably at the origin of the observed stabilization of the
jets. Their flow direction coincides with the orientation of the surface layers
which helps them to propagate further downstream.

6 Conclusions and perspectives

Rotating and MHD flows have been compared for a long time. The compari-
son is extended here to show that the two-dimensional models can be derived
within the same framework in both cases. The two-dimensional equations are
different indeed but they both indicate that the evolution of (local) vorticity
is subjected to four effects: (1) non-linear transport and stretching of local
vorticity, (2) "topographic" constraint, related to the conservation of back-
ground circulation or magnetic circulation, (3) Ekman or Hartmann layer
friction, and (4) two-dimensional bulk viscosity. These terms involve different
derivation orders and their magnitude have different scalings with respect to
the Ekman or Hartmann number. Hence, various shear layers can arise with a



14 Thierry Alboussière

range of different thicknesses. Attention must be paid to the lower acceptable
size for these two-dimensional structures, Ha−1/2 for MHD flows, and E1/3

for rotating flows, under which structures are necessarily three-dimensional.
We have also discussed the unsteady behaviour of two-dimensional flows.

Rossby waves dominate two-dimensional rotating flows unless there is no topo-
graphic (or beta-plane) effect. Correspondingly, we have shown here that two-
dimensional unsteady MHD flows are subjected to pseudo-diffusion in the
direction of characteristic surfaces, unless there is no topography and the
magnetic field is uniform2. These unsteady two-dimensional features can be
linked to the basic unsteady features of the three-dimensional flows. Inertial
waves responsible for the two-dimensional nature of rotating flows reappear
as Rossby waves in the (imperfectly) two-dimensional beta-plane configura-
tion. Similarly, pseudo-diffusion responsible for the two-dimensional nature of
MHD flows has a pseudo-diffusion reminiscence in the two-dimensional MHD
equations.
The analysis of the MHD equations has been restricted here to the case

of electrically insulating boundaries. It would be interesting to extend this
work to electrically conducting boundaries for practical applications, as done
by Bühler and Molokov [19]. Another interesting extension for practical ap-
plications (e.g. cooling by liquid metal films of fusion reactors) would be to
study the effect of a free surface flow, as initiated by Molokov [20]. Combining
MHD two-dimensional modelling and free surface analysis should result in a
“shallow water” model for MHD flows.
Let us mention other effects not included in the present work which can

affect MHD flows. Inertial effects can become significant in the Hartmann
layers themselves at sufficiently high Reynolds number. This causes the ap-
pearance of Ekman pumping within the Hartmann layers. In consequence, the
two-dimensional equations contain an extra term. This effect has been studied
by Pothérat et al [21] and by Dellar [22] in the absence of topography. One
can even go a step further and consider the effects of instability [23] and tran-
sition to turbulence [24] in Hartmann layers. One can envisage the possibility
of a two-dimensional flow with turbulent Hartmann layers. This is analogous
to the case of atmospheric or oceanic studies where a turbulent Ekman layer
is adjacent to a two-dimensional large-scale flow.
From a theoretical point of view, an important question is related to the

nature of the MHD two-dimensional turbulence under the effect of the pseudo-
diffusive effects described above. As we know, beta-plane turbulence, studied
initially by Rhines [25] departs very significantly from pure two-dimensional
turbulence. This turbulence is characterized by a mixture of non-linear in-
ertial terms and linear Rossby waves. Not much has been done so far to
characterize two-dimensional MHD turbulence, in the presence of topography
or non-uniform magnetic fields.

2 By the way, this shows that the case of a uniform transverse magnetic field and
parallel walls constitutes a very singular case.
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